New Result -- Bearing Accuracy with SeaSonde DF Established

The CODAR SeaSonde Ship Detection Processing Provides Files Inputted to AMI Kalman-Filter Tracker

- Detection is done after range/Doppler processing
- Peaks from two loop and monopole antenna signals identified before bearing determination (DF)
- Constant false alarm rate (CFAR) -- peaks on 2 out of 3 antennas must fall above threshhold with respect to background -- 7-10 dB seems best
 - Two types of background investigated:
 - Average of noise floor backward in time (IIR filter) -- this is best
 - Median of noise floor
- Simultaneous multiple FFT spectral processing gives best SNR for unknown maneuvering target -- 128 seconds appears best
- Bearing determined on peaks exceeding threshhold
- Estimates of uncertainties made for range, bearing, radial speed
- Information stored in ASCII 'Detection File' for tracker

Next Year Project: Getting Higher SNR for Detection by Combining 3-Antenna Signals -- Concept Demonstration with Ideal SeaSonde Antenna Patterns

- The Issue: Must now select ship peak from three possible antenna signals
- The Goal: Combine three signals to increase detectable signal power
- Ideal Crossed-Loop-Monopole Antenna Patterns:

 $S_1 \simeq COS\varphi; S_2 \simeq Sin\varphi; S_3 \simeq 1$

Point Cardioid beam to direction φ_o by software signal weighting & summing

$$V = s_1 \cos \varphi_0 + s_2 \sin \varphi_0 + s_3$$

 $V = 2\cos\left(\frac{\varphi - \varphi_0}{2}\right)^2$

 $V = \cos\varphi\cos\varphi_{o} + \sin\varphi\sin\varphi_{o} + 1$ $V = 1 + \cos(\varphi - \varphi_{o})$

At and near direction φ_o :

- Original signal amplitudes s < 1</p>
- Combined beam signal ~ 2
- 3-4 dB peak enhancement with respect to noise

A 3-4 dB SNR increase for detection with no hardware change is worth \$\$\$

Next Year Project: Getting Higher SNR for Detection by Combining 3-Antenna Signals -- Dealing with Measured Distorted Antenna Patterns

- Antenna patterns measured with transponder on boat are not ideal
- Pattern can be measured on horizon plane only -- not over upper hemisphere of space where gain is normally defined
- Pattern is measured only on part of 360° sector over sea
- Planned Solution/Analysis
 - Construct covariance matrix of three measured antenna signals
 - Perform eigenfunction analysis of signal covariance matrix to optimize gain pattern at several bearing directions
 - Solve for the required software antenna signal weights (amplitudes/phases)
 - Store these for use in detection algorithm
- We will deal with single range/Doppler peak spectrum rather than three
- Several such spectra represent 3 or 4 cardioid broad-beam patterns
 - Each gives peaks 3-4 dB higher SNR
 - Test new methodology with ship echoes vis-à-vis present method

Simulated Bearing Error with Distorted, Measured Antenna Patterns Compared with Real Ship Bearing Data

Simulated Bearing Error with Added Bias from Improper Antenna Pattern Compared with Real Ship Bearing Data

