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Abstract—In the present paper Lagrangian Coherent Struc-

tures are detected in the Gulf of Trieste, i.e., a Gulf located
in the north-eastern part of the Adriatic Sea. Lagrangian
Coherent Structures are usually detected through Lyapunov

exponent diagnostic tools. However, such diagnostics lack of a
rigorous mathematical background and try to associate well-
known classical dynamical system structures of autonomous

dynamical systems to the features of fluid flows. Such flows
are studied under the perspective of non-autonomous dynamical

systems, neglecting diffusion. In this work we try to detect
Lagrangian Coherent Structures, i.e., the key material lines
that shape trajectory patterns, with both the established Finite-

Time Lyapunov Exponents and the recently introduced rigorous
mathematical definitions implemented in the publicly available
MATLAB LCS Tool. A comparison between real and simulated

drifter trajectories is considered, too.

I. INTRODUCTION

Transport and mixing problems are of fundamental impor-
tance in several disciplines. In water bodies such phenomena
have strong effects on the quality of water due to transport
of pollutants. Two distinct processes govern the physics on
hand: advection and diffusion. Diffusion usually develops over
a time scale longer than the advection. Thanks to this reason,
in the initial stages of mixing processes, it is possible to
neglect diffusion and study transport phenomena on the basis
of advection alone. Therefore, fluid particle trajectories are
solution of ordinary differential equations:

ẋ = v (x, t) (1)

where the left hand side is the derivative with respect to time
and the right hand side is the velocity of the fluid.

The resulting pattern of advection can be studied through
the analysis of the corresponding non-autonomous dynamical
system (i.e., time-dependent) described by equation (1). Clas-
sic dynamical system theory of autonomous systems (i.e., time-
independent) reveals a wealth of structures influencing tracer
trajectories. In autonomous dynamical systems fixed points
and stable and unstable manifolds gain a decisive role in the
development of fluid-particle trajectories [1].

In case of real fluid flows described by non-autonomous
dynamical systems one must take into account not only the

explicit dependence from time but also the finite nature of
the phenomena. Such considerations led to the search for the
analogous of stable and unstable manifolds that behave as
transport barriers [2]. From this perspective the concept of
Lagrangian Coherent Structures aroused as the most influential
material line that shape trajectory patterns [3][4].

Heuristic indicators have been extensively used in order to
detect these structures. Their identification relies mainly on the
use of Lyapunov-exponent-based diagnostic tools, namely by
locating ridges (i.e., local maxima), in Finite-Time Lyapunov
Exponent (FTLE) scalar fields. FTLE applications are largely
diffused, despite the fact that the current techniques employed
in the literature can identify unequivocally actual LCSs only
under more restrictive conditions [5][6]. The continuous recent
use of the current techniques is supported by the fact that
Lyapunov Exponents still represent a relatively simple and
powerful mean to mark transport barriers and detect the
directions along which transport is likely to develop [7]–[12].

A rigorous mathematical approach to this subject has
been recently developed by [5][6], providing a theoretical
background that could be able to overcome the present in-
consistencies of the heuristic approach. Such material lines
should distinguish themselves by attracting or repelling nearby
trajectories at the highest rate in the flow.

The present work examines the differences between Finite-
Time Lyapunov Exponent scalar fields and Lagrangian Coher-
ent Structures detected according to [5][6][13] in the Gulf of
Trieste (GoT), located in the north-eastern Adriatic Sea, see
Figure 1. The identified structures will be compared with real
drifter trajectories deployed during the TOSCA (Tracking Oil
Spills & Coastal Awareness network) project field campaign.

II. TOSCA PROJECT

TOSCA (Tracking Oil Spills & Coastal Awareness net-
work) project aims at improving the quality and effectiveness
of decision-making in case of marine accidents concerning
oil spills and search and rescue operations (SAR) in the
Mediterranean Sea. The project aims at providing real-time
observations and forecasts of marine environmental conditions
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in the Western and Eastern part of the Mediterranean Sea.
Gathered data are combined in a useful decision support tool
for authorities in charge of marine emergency response. In
particular, in the GoT, which could be defined as the region
of the Adriatic Sea north-east of the ideal line connecting
Savudrija and Grado, a network of three CODAR (COastal
raDAR) was installed in order to measure surface velocity
fields. The three radars are located in Aurisina, Barcola and
Pirano spots (see Figure 1). The velocity data were collected
between the 23rd and 30th of April 2012 with a spatial
resolution of 1.5 km and a time resolution of 1 hour. In the
field campaign drifters were deployed, too. The trajectories
of the drifters deployed in the sea were recorded thanks to
GPS devices. Their positions were subsampled via kriging-
interpolation methods to work with the same time resolution
of the velocity fields.
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Fig. 1. Radar network locations in the Gulf of Trieste.

III. FINITE-TIME LYAPUNOV EXPONENTS

The detection of LCSs by FTLEs is pursued according
to [4]. In this context FTLEs can be considered a finite-
time average of the maximum expansion rate that a couple
of particles advected by the flow can experience in a finite-
time interval T , called integration time. The definition of the
FTLE reads

σt0+T

t0
(x) =

1

|T |
log

√

(λmax) (2)

where λmax is the maximum eigenvalue of the Cauchy-Green
tensor, t0 is the initial time and T is the integration time,
i.e., the finite-time interval over which the FTLE is calculated.
Defining the deformation gradient as

F =
dx(t0 + T )

dx(t0)
(3)

the Cauchy-Green Tensor is evaluated as

CG = F TF . (4)

The Cauchy-Green tensor is a linear operator represented
by a symmetric and positive definite matrix that expresses

a rotation-independent measure of deformation, since a pure
rotation does not produce any strain [14]. The FTLE values
are computed through a finite-difference scheme [15] over a
regular grid. The values associated with the nodes of the grid
form a scalar field. In [4], Lagrangian Coherent Structures are
defined as the ridges of Finite-Time Lyapunov Exponent fields.

Despite several recent issues aroused around the evaluation
of the flux across the ridges of FTLE fields [1] [5], a property
has generally been associated to these structures: the flux
across them is very small and if they are actual Lagrangian
Coherent Structures the flux is null.

It is worthwhile to note that FTLEs operate with a fixed
time-scale T and detect a separation rate that changes from
point to point. Detection of Lagrangian barriers leads to the
detection of two different types of structures that behave in op-
posite ways: repelling and attractive structures are commonly
presented in literature [4][16][7]. These features are calculated
with forward and backward particle trajectory integration in
time, respectively.

IV. HYPERBOLIC LAGRANGIAN COHERENT STRUCTURES

Recent works seek Lagrangian Coherent Structures on the
basis of a rigorous mathematical formulation [1] [5] [17] [6].
Over the time interval of interest the Authors define Lagrangian
Coherent Structures as the prevailing attracting or repelling
material lines. Considering a material line at the initial time,
a unit normal vector n0(x0) to this line in the point x0

will change orientation over the time interval of interest and
generally will not remain normal to the material line. Recalling
that a generic vector ξ at the initial time evolves, under the
linearized flow, into Fξ and by defining the repulsion rate
ρ(x0,n0) = 〈nt,Fn0〉 as the scalar product between the
evolved initial unit vector Fn0 and a new unit vector nt

normal to the advected material line, it is possible to evaluate
the behaviour of the material line over the time interval of
interest. If the repulsion rate ρ is greater than 1, the material
line will exert net normal repulsion on nearby fluid elements.
On the contrary, it will exert along its normal direction
attraction over the nearby fluid elements. [17] find that the
initial positions of Hyperbolic LCSs must be orthogonal to a
specific vector field. For two dimensional flows repelling LCSs
must be trajectories of the differential equation

r′ = ξ1(r) (5)

and attracting LCSs must be trajectories of the differential
equation

r′ = ξ2(r) (6)

where ξ1 and ξ2 are the eigenvectors of the Cauchy-Green ten-
sor associated with the minor and the maximum eigenvalues,
respectively. The numerical detection of these LCSs is carried
out by the publicly available software LCS Tool [13].

V. LAGRANGIAN COHERENT STRUCTURES IN THE GULF

OF TRIESTE

Thanks to the available velocity fields of the sea surface
of the Gulf of Trieste, a comparison between Finite-Time
Lyapunov Exponents fields and Lagrangian Coherent Struc-
tures detected by LCS Tool [13] is carried out. A further
investigation is developed since real drifter trajectories are



available and a direct comparison between drifters data and
LCS is possible.

A. FTLE fields and Lagrangian Coherent Structures

[4] associate ridges of Finite-Time Lyapunov Exponents
fields carried out with a forward integration with repelling
structures. In Figure 2 the underlying field is the FTLE forward
evaluated with an integration time T of 25 hours. The thin blue
lines represent the hyperbolic repelling LCSs computed over
the same time interval calculated via the LCS Tool [13]. It is
possible to see that the ridges of the FTLE field and the LCSs
do not perfectly superimpose. A good agreement between the
FTLE pattern and LCSs is present especially comparing the
structure located north-west of the GoT that closes the Gulf
of Monfalcone, i.e., an internal Gulf of the GoT.
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Fig. 2. Forward Finite-Time Lyapunov Exponent field for 00 UTC of the
23rd of April 2012, and repelling LCSs (thin blue lines).

[18] show that ridges of FTLE coincide in many cases
well with material structures. However, in general, they are
not exact material structures, no matter which ridge definition
of a scalar field is adopted. Unless very long integration times
are used, FTLE ridges can deviate considerably from material
structures.

Comparisons like those presented in Figure 2 could be
further investigated numerically, evaluating the flux across
the ridges of the scalar field and the flux across the LCSs.
However, such evaluations are carried out on the basis of
velocity fields whose reliability is taken for granted. Whether
or not ridges of FTLE fields and LCSs represent with good
approximations material boundaries, the most important basic
question remains: how reliable are the measured velocity
fields? To address this question, in the following we compare
trajectories obtained by integrating the measured velocity fields
and the Lagrangian real observed trajectories.

B. Drifters in the Gulf of Trieste

During the TOSCA project drifters were deployed in the
GoT making possible the comparison among drifter trajectories
and Lagrangian structures. Taking into account the trajectory
of a real drifter known with an hourly time step, it is possible to
compare such drifter trajectory and the LCS obtained with the
approaches described in Section V-A. Two types of simulations
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Fig. 3. Trajectories of actual drifters in green, simulated in red and reseeded
in blue. The numbers show the evolution of the reseed drifter (blue). The
starting point is common to all three.

are carried out. In the first type the simulated drifter is re-
initialized every 24 hours on the coordinates of the observed
real drifter (24-hour reseeding procedure). In the second type,
the simulated trajectory evolves freely for the whole duration
of the simulation and no reseeding procedure is applied. We
focus the analysis of the results of the simulation on one of
the deployed TOSCA drifters, namely drifter 41. The real and
simulated trajectories for this drifter are shown in Figure 3.
The real drifter is represented in green, the simulated drifter
in red and the simulated reseeded drifter in blue. In Figure 3,
the numbers alongside the reseeded drifter mark the evolution
of the trajectory: every number is associated with a different
time step. The starting point for all the three drifters is the
same and identified by the number 1. The real and simulated
drifters diverge, i.e., the trajectories are quite different because
the real and the simulated drifters tend to move at the opposite
sides of the GoT. In Figure 4 some snapshots of the evolution
of the drifters superimposed to the FTLE fields and LCSs are
depicted. On the left Panels the entire FTLE field is depicted,
while on the right Panels only the ridges (in red) are shown.
Blue lines are Hyperbolic LCSs computed by the MATLAB
LCS Tool [13].

From Panels g) and h) it is possible to see that the final
evolution of the simulated and real drifters over the time
interval of interest ends at the opposite sides of the GoT. This
difference in trajectories is well known [19] and due to, for
example, high sensitivity to initial conditions and coarseness
of the velocity field. Concentrating on FTLE fields, the reader
would argue from panels a) and b) that the drifter would move
preferentially along the north-south direction, being the drifter
on the left of a FTLE ridge pointing south. Actually, it would
move in the east-west direction in the next time steps. Panels a)
and b) depict the moment of deployment, when the positions
of real and simulated drifters are the same. This behaviour
is readable from FTLEs ridges only from panels e) and f)
whereas actual Hyperbolic LCSs evaluated according to [13]
had already shown this possible evolution from panels a) and
b).
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Fig. 4. Backward Finite-Time Lyapunov Exponent fields and attractive LCSs in blue. Real drifter in green, simulated drifter in red and simulated reseeded
drifter in blue. Left Panels show the whole FTLE field and hyperpolic LCSs (thin blue lines). Right Panels show only FTLE ridges (in red) and hyperpolic
LCSs (thin blue lines).



These findings suggest then that FTLE ridges can give
reasonable information about the most probable direction of
spreading of passive tracers even if they are not able to
reproduce accurately the information provided by LCS Tool.

VI. CONCLUSION

In this work we detected Lagrangian Coherent Structures
from a heuristic indicator such as Finite-Time Lyapunov Expo-
nents and from a rigorous mathematical definition in the Gulf
of Trieste. The input velocity fields are those measured by the
network of coastal radars of the TOSCA project. Lagrangian
structures are subsequently compared with field measurements
of drifter motion. A particularly interesting drifter is taken
into consideration and two different kinematic simulations are
carried out: one with a daily reseeding of the simulated drifter
on the coordinates of the real one and another without reseed-
ing. The trajectories are analysed at the light of the identified
Lagrangian Coherent Structures. Such an analysis shows how
useful Lagrangian structures are in studying drifter motion and
underlines that the new definitions of LCSs introduced by [5]
[6] could be important in finding true material lines that shape
trajectory patterns of passive tracers. However, further analysis
based on field data are to be carried out in order to assess
the reliability of LCSs to provide correct information about
the transport of mass in geophysical flows. Besides, further
investigations are needed to assess reliability of the measured
velocity fields.
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