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Predictability of surface drifter trajectories in the Deep Water Horizon oil spill region is used as a
criterion for optimizing the parameters of the 2d variational (2dVar) interpolation of high-frequency
radar (HFR) data, and assessing the accuracy of the surface currents' simulations by regional models. It is
shown that penalizing the magnitude and enforcing smoothness of the divergence field significantly
increases the Lagrangian predictability of the 2dVar output at the forecast times of 3–9 days while
preserving it at the shorter forecast times. Applying preliminary gap-filling technique based on the
analysis of spatial correlations of the radial velocities adds an extra 1–2% to the 2dVar forecast skill.
Comparison of the forecast skills provided by the 2dVar interpolation of the HFR data and the
assimilative solutions of the Navy Coastal Ocean Model demonstrates 25–30% better skill of the 2dVar
product, indicating potential benefits of assimilating HFR data into regional models.

Published by Elsevier Ltd.
1. Introduction

In recent years considerable efforts have been made to study
predictability of the trajectories of the floating material at the sea
surface (Özgökmen et al., 2001; van Sebille et al., 2009; Lumpkin
and Elipot, 2010; Huntley et al., 2011). This problem is important in
many applications, including search and rescue missions, accident
localization via backward tracking of the debris, or optimization of
the protective missions in response to environmental disasters.

Since numerical modeling became the major forecast tool in
oceanography a large literature appeared on the Lagrangian
predictability (LP) of the velocity fields produced by the models.
The major parameter, characterizing the LP of a model is the root-
mean-square (rms) separation eτ between the observed and
model-simulated drifters for a given forecast time τ. A few years
ago Barron et al. (2007) conducted a comprehensive LP study of
the Navy Layered Ocean Model by comparing drifter tracks in 30
regions of the World Ocean with the trajectories simulated by the
model. The estimated values of eτ varied in the range between
e1≃10–25 km for τ¼ 1 day and increased to 50–150 km for
τ¼ 7 days. Later, Huntley et al. (2011) studied the LP of the Navy
Coastal Ocean Model (NCOM) at 1/161 resolution in the South
China Sea documenting the values of e1¼17 km and e7¼145 km.
They also observed that coarsening of spatial resolution up to 1/21
had a relatively small impact on the LP. In contrast, reduction of
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the temporal resolution to 12–20 h significantly reduced the LP
due to poor resolution of tidal currents. In the most recent study,
Scott et al. (2012) have shown that LP of the model output could
be improved by taking the ensemble average of the drifter
trajectories produced by several models. In particular, the value
of e1 was reduced from 27 km to 21 km when averaging over five
models of the equatorial Atlantic was performed.

In general, it appears that a typical model value of e1 varies
within 15–25 km and rarely falls below 10 km (in the latter case, as
a rule, the background flow is strong and exhibits small shear). It is
also noteworthy that LP is weakly affected by data assimilation
(Scott et al., 2012), unless independent velocity observations are
taken along the drifter trajectories.

In this respect, development of the coastal HFR networks
(Harlan et al., 2010) can be considered as a major observational
support for increasing the accuracy of the Lagrangian forecasts in
the near-shore regions. HFR observations are capable of delivering
information on surface currents that is consistent in both space (1–
5 km) and time (0.2–1 h) resolutions of the regional circulation
models. Therefore, in recent years a lot of studies have been
devoted to LP comparisons of the surface currents derived from
HFR observations by various techniques. As a few examples,
Ullman et al. (2006) investigated the skill of the HFR-derived
currents in predicting drifter trajectories on the Atlantic coast of
the US and obtained the value of e1≃5–7 km, using Lagrangian
tracking with a random flight model to simulate the effect sub-
grid turbulence on the trajectories; Kohut et al. (2012) employed
8 drifters to assess the parameters of the optimal interpolation
scheme which was used to obtain gridded velocities from the HFR
ictability in the DWH region from HF radar observations and
2.2013.05.035i

www.sciencedirect.com/science/journal/0967-0645
www.elsevier.com/locate/dsr2
http://dx.doi.org/10.1016/j.dsr2.2013.05.035
http://dx.doi.org/10.1016/j.dsr2.2013.05.035
http://dx.doi.org/10.1016/j.dsr2.2013.05.035
mailto:max.yaremchuk@nrlssc.navy.mil
http://dx.doi.org/10.1016/j.dsr2.2013.05.035
http://dx.doi.org/10.1016/j.dsr2.2013.05.035
http://dx.doi.org/10.1016/j.dsr2.2013.05.035
http://dx.doi.org/10.1016/j.dsr2.2013.05.035


M. Yaremchuk et al. / Deep-Sea Research II ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
observations off the New Jersey coast, obtaining the value of
e1≃8 km; Shadden et al. (2009) have shown a substantial coher-
ence between the drifter trajectories and the HFR-derived Lyapu-
nov exponents in the Monterrey Bay. In their recent work, Barrick
et al. (2012) demonstrate a good forecast skill of a simple statistical
model of the surface currents derived from HFR data by the OMA
technique (Kaplan and Lekien, 2007).

These results indicate that HFR observations have a better
forecasting capability on their own right, and may substantially
increase the LP of the surface velocity fields after being assimilated
into the numerical models.

In the present study we assess LP of the HFR-derived currents
during the Deep Water Horizon (DWH) oil spill (May–December
2010). In particular, we explore the impacts on the LP of the
preliminary gap-filling and of suppressing divergence of the HFR
currents obtained by the 2d variational algorithm (Yaremchuk and
Sentchev, 2009, 2011). The LP is used as a benchmark in estimating
the overall accuracy of HFR observations in the DWH region and
optimization/tuning the 2dVar interpolation scheme. The potential
benefit of assimilating HFR data into regional models is assessed
by comparing the LPs of the HFR-derived velocity fields with the
data-assimilative NCOM output.

The paper is organized as follows. In the next section, we
delineate the study area, and describe the data. In Section 3, the
methodologies used to estimate surface currents and the respec-
tive Lagrangian trajectories are outlined. Then in Section 4 we
compare the trajectory forecast skill statistics for various HFR
interpolation products and for the assimilative NCOM model runs.
We conclude with a summary of the key results and their
implications for further studies of the DWH region.
2. Observations in May–December 2010

2.1. HFR observations

Radial sea surface currents were measured by three CODAR
SeaSonde systems operating along the northern Gulf of Mexico
(NGOM) coast in the region east of the Mississippi mouth. The
three-site long-range (∼4:5 MHz) system provided hourly surface
currents at 6 km radial and 51 azimuthal resolution over the region
shown in Fig. 1. Radial velocities observed at each of the 3 sites
were obtained with the MUSIC algorithm (Schmidt, 1986) using
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Fig. 1. HFR coverage of the DWH region. Dots show locations of the radial velocity
observations from the three radars denoted by gray triangles. Intensity of the gray
color of a dot is proportional to the total observation time during the period
between 7 May and 31 December, 2010. Shaded areas delineate subdomains
covered by HFR observations more than 80% of time (dark gray), 65—80% of time
(gray) and 50—65% of time (light gray). The DWH location is shown by the
black star.
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measured antenna patterns. These data were obtained from NOAA
National Data Buoy Center HFR archive.

The acquired radial velocity data were characterized by inho-
mogeneous coverage both in space and time (Fig. 2). The temporal
patchiness was caused by multiple reasons, mostly by malfunc-
tions of the radars (e.g., in the beginning of August) and required
filling the gaps in the space-time coverage of the domain by
observations prior to retrieving the gridded velocity fields from
the data. The utilized gap-filling method (Yaremchuk and
Sentchev, 2011) is similar to the technique used in preprocessing
satellite SST data that are often obscured by clouds. After filling of
the gaps, hourly velocity vector fields were reconstructed using
the variational interpolation method described in the next section.

The effective depth of the measured surface currents depends
on the HFR frequency. Under the assumption of a linear surface
current vertical profile the effective measurement depth is pro-
portional to the radar wavelength with the proportionality coeffi-
cient of 1=8π (Stewart and Joy, 1974). Therefore, the effective depth
of the current measurements is estimated to be ∼2:6 m.

Assessment of the uncertainties provided by the CODAR sys-
tems was made under the assumption that the respective errors
s- are δ�correlated in space. The error estimates were made using
statistical analysis of the radial velocities in the course of the gap-
filling. The resulting values of s were computed as square roots of
the azimuthally averaged diagonal elements of the noise covar-
iance matrix and varied from 4 cm/s to 16 cm/s for the ranges
between 15 and 240 km. These numbers are consistent with the
typical error estimates of the long-range CODAR systems. The
values of s were used in the definition of the cost function weights
in the 2dVar algorithm for retrieving the vector fields from the
observed radial components.
2.2. Drifter trajectories

We used the observed trajectories of satellite-tracked drifters
available at the Naval Oceanographic Office database for the
8 months (May–December) of 2010. The database contains drifter
data from many sources including the AOML Drifter Data Assem-
bly Center (www.aoml.noaa.gov/phod/dac/dacdata.html and the
US Coast Guard. In addition we used quality controlled drifter
trajectories from the Ocean Circulation Group at the University of
South Florida. These data included drifters that were deployed in
the eastern Gulf of Mexico region in summer 2010 as a rapid
response to the Deepwater Horizon oil spill (Liu et al., 2011;
Weisberg, 2011).

Most of the drifters were drouged to follow currents near the
1–2 m depth, which is consistent with the effective depth range of
the currents registered by the HFRs. The drifters have been tracked
with several satellites, with 1 h time between the fixes. We used
the quality-controlled drifters interpolated to 1-hourly positions in
the time interval between May 7, and December 31 of 2010. In
space, the domain was limited to the area of HFR coverage (Fig. 1).
All the drifter tracks considered were located within the regular
6 km grid (Fig. 3) used for HFR data interpolation (see Section 3.1).
Drifter trajectories observed between May 7 and December 31,
2010 in the study area are plotted in Fig. 3.

On the total, 37 drifters (comprising 297 drifter-days) were
used in the analysis. It should be noted that the major part of the
trajectories are located in the regions with relatively poor HFR
coverage (cf. Figs. 1 and 3): many drifters were released immedi-
ately after the spill in the vicinity of the DWH site (Fig. 3), which
was covered by coastal radars only 55% of the time (Fig. 1).
Temporal coverage was also uneven: 75% of the data (226
drifter-days) were acquired in the period between May 7 and July
31, 2010.
ictability in the DWH region from HF radar observations and
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Fig. 3. Drifter tracks for the 8-month period of the study (May 7, 2010 to Dec 31,
2010). The 6 km interpolation grid for the HFR data is shown in gray. The DWH
location is shown by the black star.
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Fig. 2. The total number K of the radial velocities measured by three HF radars as a function of time.
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2.3. NCOM model output

In the present study we used two data-constrained solutions of
the NCOM model (Martin, 2000; Barron et al., 2006; Martin et al.,
2008). The employed version of NCOM uses a combined s–z vertical
grid with 32 levels and the Arakawa C-grid in the horizontal at 3 km
resolution. The data assimilation scheme (Cummings, 2005) cur-
rently uses a 3d-variational method, which allows us to assimilate
satellite observations of sea surface height and temperature and
in situ temperature and salinity data from various sources.

The first set of data used in our experiments is the combined
set of 3dVar NCOM analyses (computed daily at 0 UTC) and 6-h
forecasts (at 6, 12 and 18 UTC) generated by integrating the model
from the analysis times. The hourly velocity components were
obtained by linearly interpolating these four model outputs within
the 24-h window. Since the 6 km HFR interpolation grid (Fig. 3)
was configured to coincide with every other node of the NCOM
grid, the output currents used for Lagrangian tracking were
obtained by picking every other grid point value from the original
model grid. These data cover the whole period from May 7 to
December 31, 2010. They will be further abbreviated by rNCOM
(regional NCOM).

The second set of velocity fields is the ensemble mean of the
NCOM runs constrained by the above described data using the
ensemble transfer (ET) technique (Bishop and Toth, 1999). The
ensemble contained 32 members, generated by perturbing atmo-
spheric forcing derived from the Navy atmospheric model using
the time-deformation technique (Wei et al., 2013). Additionally,
both vertical and horizontal mixing parameters were perturbed to
represent model uncertainties from NCOM sub-grid parameteriza-
tions. The mixing parameter perturbations were Gaussian with the
means of 0.125, 17.5 and variances of 0.01875 and 0.625 for the
Smagorinsky and Mellor–Yamada coefficients respectively. More
Please cite this article as: Yaremchuk, M., et al., Lagrangian pred
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details on the ET implementation with NCOM can be found in Wei
et al. (2013). The set of the ensemble analyses/forecasts (denoted
eNCOM further below) was available on the same space-time grid
as rNCOM, but for the shorter period of time fromMay 7 to July 25,
2010. Similar technique was used to project the eNCOM near-
surface velocities on the HFR interpolation grid. Hourly velocities
in both model outputs were taken from three different vertical
levels: 0 m, 2.5 m and 7.5 m.
3. Methodology

3.1. Processing HFR data

Since HFRs measure projections of the surface velocity vectors
on the directions r of the radar beams, an algorithm is needed to
reconstruct the velocity field from such observations. In the
present study we use a combination of the statistical gap-filling
technique with the 2dVar interpolation algorithm (Yaremchuk and
Sentchev, 2011) for this purpose. The approach is especially
suitable for gappy data (Fig. 2) with inhomogeneously distributed
observation points and allows to directly control divergence and
vorticity of the interpolated field u.

The optimal estimate of u is determined by maximizing its
likelihood expressed in terms of the Gaussian probability density
function PðuÞ∼exp½−JðuÞ�. The argument of the exponent (the cost
function) is quadratic in u and consists of two terms: J ¼ Jd þ Jr .

The first term Jd measures the distance between the radial
velocity un

k observed at the kth point and the corresponding
components of the interpolated field u at the observation points:

Jd ¼
1
2

∑
K

k ¼ 1
s−2k ½ðu � rkÞ−un

k�2
" #

ð1Þ

Because of Gaussianity the distance is quadratic in u and scaled at
the observation points by the corresponding measurement error
variances s2k . The regularization term Jr is introduced to penalize
higher spatial derivatives of u:

Jr ¼
K
2A

Z
Ω
½WuðΔuÞ2 þWdðΔ div uÞ2 þWcðΔ curl uÞ2� dx dy ð2Þ

where div u¼ ∂xuþ ∂yv, curl u¼ ∂xv−∂yu are the divergence and
vorticity respectively, Δ¼ ∂xx þ ∂yy is the Laplacian operator and A
is the area of interpolation domain shown in Fig. 3. The differential
operators were approximated by central finite differences on the
regular interpolation grid with a step δx¼ 6 km equal to the radial
resolution lr of the HFR data.

The weights Wu;Wd and Wc have the meaning of the inverse
error variances of the corresponding fields and allow to control
their magnitude in the interpolation pattern. In the experiments
described in the next section, the cost function weights were
derived from HFR data statistics and then fine-tuned to maximize
the predictability of the drifter trajectories.
ictability in the DWH region from HF radar observations and
2.2013.05.035i
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Fig. 4. Examples of the mean virtual drifter trajectories (gray) used for assessing
the LP skill and the corresponding real drifter tracks (black). The clouds of light gray
dots demonstrate the spread of the virtual trajectories around the mean at the end
point. Launch points of the virtual drifters are shown by black circles. Numbers
show the integration time in days.
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Another important aspect of the HFR data processing is gap-
filling. The back-scattered HFR signals suffer from distortions of
artificial and natural origin, such as atmospheric conditions, sea
surface roughness, sea traffic and malfunctions in radar operation.
As a consequence, estimates of the radial velocities extracted from
the Doppler shifts of the HFR signals become unusable, resulting in
numerous gaps in spatial coverage, which was the case with the
data we used (Fig. 2). As it is seen from Figs. 1 and 2, most of the
gaps have relatively short life time and are more frequent at long
ranges. At times, a large amount of data is lost due to improper
operation of a single radar when the radial velocities are still
observed at nearby locations by the two remaining HFRs.

In this case the gap-filling technique based on the EOF decom-
position of the sample covariance matrix (e.g., Beckers and Rixen,
2003) is quite efficient. In the present study we employed a similar
method adapted for HFR observations by Yaremchuk and Sentchev
(2011). The method usually works well for the observation loca-
tions where gaps occupy less than ξ∼20–30% of the total observa-
tion time. In our case this condition for the gap concentration
parameter ξ was satisfied for approximately 60% of the points
where radial velocities were observed.

The gap-filling procedure was performed in several steps. First, a
set of cross-validation (CV) points randomly distributed across the
8-month observation period was removed from the data. On the
average, 1% of the data were set aside from each hourly observation
of the radial velocities. Second, iterative processes of estimating the
covariance matrix and the gap-filling were performed for different
numbers M of the gap-filling EOFs. Third, the optimal value of M was
selected by minimizing the gap-filling error eg which was assessed
using the temporarily removed observations in the CV points. Finally,
the CV points were added to the data set and the remaining gaps
were filled using the optimal number of EOFs.

It is noteworthy that the optimal value of M allows for separa-
tion of signal from noise in the data space (e.g., Yaremchuk and
Sentchev, 2011): spatial structures, described by M EOFs with
largest amplitudes can be attributed to the “resolved signal”
whereas variability described by the rest of the EOFs can be treated
as noise. In our experiments the optimal value of M varied in the
range between 25 and 64, accounting for 60–80% variability of the
radial velocities. The noise covariance matrix C had negligible
correlations between the radial velocity errors, so we used the
inverse diagonal elements of C for weighting the misfits between
the observed and interpolated radial velocities (Eq. (1)).

In the course of numerical experiments the gap-filling was
performed in three sets of points characterized by three values of
ξ¼ 50;30 and 15%. The filled points contributed respectively by 28,
9 and 1.3% to the total number (6 324 530) of the observed radial
velocities. After normalization by the rms variance of the observed
radial velocities the gap-filling errors varied between 0.56 and
0.64 for the different values of ξ.

3.2. Computing trajectories and their predictability

Drifter tracks were used to evaluate errors of the particle
trajectories corresponding to the velocity fields u that were obtained
either from HFR observations or from the model. Each drifter
trajectory was divided into 4.5-day segments and the actual drifter
positions at the beginning of the segments were taken as the initial
condition for the virtual particle release. 1000 particles were released
within each segment into the 2d velocity field described by

dx
dt

¼ uðx; tÞ þ u′ðx; tÞ ð3Þ

where x is the position of the particle and u′ is the stochastic
contribution of the sub-grid scale variability and the measurement
uncertainty. The model used to determine u′ is a randomwalk model
Please cite this article as: Yaremchuk, M., et al., Lagrangian pred
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(e.g., Ullman et al., 2006) with the effective diffusion coefficient
of 1:5� 106 cm2=s, a typical value of the Smagorinsky diffusion
coefficient from the NCOM model. This approach provides a con-
sistent Lagrangian tracking techniques for the velocity fields obtained
from both HFR observations and the assimilative models (Fig. 4).

The prediction of the particle trajectory was done by integrating
Eq. (3) with a fourth-order Runge–Kutta scheme. At hourly times τ
of each integration of (3), the prediction error eτ was computed as
the distance between the location xc of the centroid of the particle
cluster and the actual drifter position xd : eτ ¼ jxcðτÞ−xdðτÞj. Predic-
tion errors were then averaged 〈〉 over all the available segments,
whose number n varied between 71 (τ¼ 1 h) and 20 (τ¼ 9 days).
Since the segment length (4.5 days) was chosen as the mean
decorrelation time scale of the HFR-derived (4.3 days) and model
(4.7 days) velocity fields, prediction error estimates for each seg-
ment were assumed to be statistically independent. Error bars for
〈e〉 were computed as the 70% confidence intervals derived from the
χ2 distributions with 2n degrees of freedom.

In addition to the virtual particle trajectories, the mean
separation 〈jxdðτÞ−xdð0Þj〉 between the actual drifter position at
time τ and its initial position xdð0Þ at the segment was also
computed. The prediction skill γ was defined by

γτ ¼
〈eτ〉

〈jxdðτÞ−xdð0Þj〉
ð4Þ

Thus, the skill was estimated relative to the “position persis-
tence scenario” which represents a search based on the last known
position xdð0Þ in the complete absence of information on the
surface currents.
4. Results

Computations reported in this section had two objectives. The
first one was to explore how preprocessing of the HFR data affects
the LP skill of the reconstructed velocity fields. The second one
was to compare in terms of the LP skill the HFR-derived velocities
with the available operational data-assimilation products, uncon-
strained by the surface velocity data.

4.1. Prediction skill of the HFR-derived currents

4.1.1. Impact of the prior statistical assumptions
As it has been mentioned in Section 3.1, result of 2dVar

interpolation crucially depends on the statistics of the interpolated
ictability in the DWH region from HF radar observations and
2.2013.05.035i
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Fig. 6. Drifter forecast skill γτ as a function of the forecast time τ for the results of
2dVar interpolation of HFR data with various values of the gap concentration
parameter ξ for the case Wd≠0.
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fields, which is expressed in terms of the inverse error variances
s−2, Wu;Wd and Wc of the cost function.

The interpolation error variances s2 which measure the misfit
between the observed radial velocities and their counterparts
derived from the interpolated pattern (Eq. (1)) were estimated as
the diagonal values of the noise covariance matrix (Section 3.1).
Their values varied between 16 cm2/s2 in the close proximity from
the radars to about 150–250 cm2/s2 at far ranges (150–240 km).
The regularization weights (Eq. (2)) were first estimated by
considering the typical spatial scales of the reconstructed velocity
field and then fine-tuned to obtain the best skill in predicting real
drifter trajectories.

As a rough estimate of Wu, we assumed that the smallest
spatial scale l is twice the range discretization l∼2lr ¼ 12 km of the
radial velocities. This assumption translates into the estimate
l∼ðs2=WuÞ1=4 ¼ 2lr , or Wu∼s2l

4
r =16. Fine tuning of this weight

against the drifter data (with Wc ¼Wd ¼ 0) has shown that the

best LP skill is achieved at Wu ¼ 0:05s2l4r , a value, corresponding to
the cut-off scale 2.15lr. The resulting mean interpolation error
〈e〉¼ 〈

ffiffiffiffiffiffiffi
KJd

p
〉 was 0.32, fairly consistent with the estimated noise

level in the radial velocity data.
After fixing the optimal value of 〈e〉, a large set of 2dVar

interpolation experiments has been conducted to optimize the
values of Wc and Wd. These experiments have shown that 〈γ〉 (the
value of γτ averaged over the forecast times between 0 and 9 days)
is weakly sensitive toWc and exhibits a slight decrease as the value
of Wc approaches zero. For this reason the corresponding termwas
eliminated from the cost function.

In contrast to Wc, varying Wd which suppresses the roughness
and magnitude of the divergence, had a significant impact on the
LP skill at the forecast times exceeding 3–4 days (Fig. 5). The
optimal value of Wd was found to be 8� 10−3 cm4 s2, and resulted
in the 2–3 smaller rms magnitude of the divergence compared to
the curl of the surface currents. The better LP skill at larger forecast
times can be partly explained by the fact that suppressing the
divergence tends to increase the accuracy in reconstructing the
geostrophic component of the flow, which is characterized by
slower variability than tidal and wave-induced components of the
surface currents.

Fig. 5 provides an indication that despite poorer Lagrangian
statistics at longer time scales, the effect appears to be statistically
significant: the error reduction observed at τ43 days persists
throughout the entire forecast time interval.

In terms of the absolute value, the LP error grows from 12–
20 km at the forecast times of 1–2 days to 35–50 km at τ¼ 5–9
days. The short-term forecast errors are consistent with the recent
LP study of Kohut et al. (2012) who validated HFR-derived currents
against six drifters in the region of the Mid-Atlantic Bight and
obtained the values of 8–14 km for the forecast times of 1–2 days.
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Fig. 5. Difference Δeτ between the forecast errors of the 2dVar interpolated HFR
fields obtained with Wd¼0 and Wd≠0 with various values of the gap concentration
parameter ξ. 70% confidence limit for the difference is shown by the thick dotted
line. Positive values correspond to smaller forecast error of the divergence-
penalizing interpolation (Wd≠0).
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When referenced to the persistence errors (Eq. (4)), these numbers
correspond to the values of γτ around 0.65–0.7, that is 25–30%
better than those shown in Fig. 6. Taking into the account more
complex (less deterministic) structure of the flow, poorer quality
of the HFR data (Fig. 2) and confinement of most of the drifters to
the outer regions of the HFR footprint (Fig. 1), the LP skill of the
2dVar algorithm can be considered as satisfactory.
4.1.2. Impact of the gap-filling
Fig. 6 shows that the forecast skill gradually degrades with the

decrease of the parameter ξ which defines the upper limit of the
gap percentage for filling an observation point with a value
derived from statistical analysis.

Because of the extremely intermittent time coverage (Fig. 2)
only 1.5% of the observation points were characterized by less than
15% of gaps (ξo0:15) and all of these points were located at
relatively short (20–50 km) distances from the radars, whereas
most (75%) of the drifter positions were observed at far ranges
(120–180 km) where the gap concentration was fairly high
(ξ∼0:4–0:7) and the accuracy of HFR observations is low.

Table 1 shows improvement (%) of the key parameters of the
velocity field normalized by their values obtained without pre-
liminary gap-filling. Apart from the forecast-time-averaged values
of γτ and eτ we computed the trace of the correlation matrix C and
the relative error er between the HFR-derived velocities ur and the
Eulerian velocity estimates vd obtained from finite differentiation
of the drifter positions in time:

trC¼ cður ;udÞ þ cðvr ; vdÞ; er ¼
1
2
ður−udÞ2 þ ðvr−vdÞ2

u2
d þ v2d

Here c stands for the correlation coefficient and overline
denotes averaging over all of the 7117 Eulerian velocities estimated
from 297 drifter-days of observations. Zonal ud and meridional vd
drifter velocity components were assessed every hour using
central differences.

As it is seen from the Table, persistent improvement is
observed only for the case of ξ¼ 0:15, and its magnitude (1.2–
1.6%) approximately corresponds to the relative increase in the
number of the radial velocities subject to interpolation (1.3%) after
the gap-filling. With the increase of ξ, the number of additional
(gap-filled) observations grows dramatically, but they do not result
in further improvement of the parameters. Instead, the gap-filling
“observations” tend to decrease the proximity between the HFR-
derived velocity fields and drifter velocities.

This can be explained by the above mentioned mismatch
between the spatial distribution of the drifter trajectories and
the density if HFR observations. With a more homogeneous
temporal HFR and spatial drifter coverages than shown in
Figs. 2 and 3 one may expect better performance of the gap-
ictability in the DWH region from HF radar observations and
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Table 1
Changes in the error er, correlation tr(C), and the mean LP skills 〈γ〉, 〈e〉 averaged
over the forecast times after the gap-filling performed with various threshold gap
concentrations ξ. Numbers (%) are normalized by the results obtained for the
velocity fields retrieved by the 2dVar without preliminary gap-filling. Positive
values denote improvement (decrease of er ; 〈eτ〉; 〈γτ〉 and increase of tr(C).

Wd ξ ξp er tr(C) 〈γτ〉 〈eτ〉

0 0.15 1.3 0.6 0.4 1.2 1.9
0.30 9.1 0.2 3.2 −4.2 −2.8
0.50 28.7 −2.4 −1.1 −7.8 −7.6

8 0.15 1.3 1.1 0.8 1.3 2.0
0.30 9.1 0.3 1.6 −3.7 −1.9
0.50 28.7 −2.5 3.7 −5.7 −4.8
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Fig. 7. Drifter forecast error eτ for the results of 2dVar interpolation of HFR data
with enforced smoothness in the divergence field (black curve) and for the NCOM
model solutions shown by thick lines.
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filling technique, possibly up to the values of ξ∼0:3. This requires
additional experimentation with the appropriate data sets.
4.2. Comparison with the NCOM output

Parameters listed in Table 1 were also computed for the available
surface and subsurface (0, 2 and 7.5 m) velocity fields of the two
NCOM data assimilation runs described in Section 2.3. The 2 m
velocities demonstrated the best values of the parameters. However,
the HFR-derived velocity fields were still 25–40% better both in terms
of the LP (Fig. 7) and discrepancies between the Eulerian velocities.

The NCOM LP error curves in Fig. 7 compare quite favorably
with the results of Price et al. (2006) who validated a combination
of surface velocities from the ORSA model (Smith et al., 1982) and
ECMWF wind-induced currents in the period of 1997–1999 in
approximately the same region. The diagnosed average discrepan-
cies were found to be 78 km (τ¼ 3 days), 229 km (τ¼ 10 days) and
400–500 km (τ¼ 20–30 days). It should be noted, however, that
the domain considered by Price et al. (2006) extended farther
offshore and included regions dominated by mesoscale eddies and
currents of the open Gulf.

Compared to the HFR-derived velocities, velocity error er for the
NCOM fields was approximately 10–15% larger, and the correlation
coefficient was smaller by 30%.

In general, both data-driven solutions in Fig. 7 demonstrate
similar skills, except for the forecast times exceeding 7 days, where
the ensemble solution shows 15–20 km larger discrepancy with
the drifters. This could be partly attributed to somewhat poorer
statistics of eNCOM, which was available only in the May–June
2010 compared to the full 8-month averaging period of rNCOM.

A substantially better LP skill of the HFR-derived currents is not
surprising, because the considered models are not constrained by
surface velocity data and also do not account for processes affecting
the transport by near-surface currents such as Stokes drift and small-
scale turbulent wind–wave interactions. Similarly, the NCOM model
has a limited skill in accurate simulation of the spatial structure of tidal
and inertial oscillations which have profound signatures in the
considered region, and sometimes dominate geostrophic and wind-
driven components of the surface flow. In this sense the considered
coastal region appears to be more challenging from the LP viewpoint,
as it is often dominated by smaller-scale processes neither well
resolved by the model nor manifested in the wind forcing. As a result,
model-generated trajectories have little or no correlation with the
drifter trajectories. In fact, the typical values of the LP skill γ for both
NCOM runs were close to unity, sometimes reaching 1.3–1.5 (cf. Fig. 6)
meaning that the models, on the average, do not have any LP skill
compared to the null assumption of zero surface velocity. This result
underlines the potential benefits of assimilating HFR observations into
the numerical models of coastal regions.
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5. Discussion and conclusions

A set of 37 drifter trajectories was used to evaluate the
Lagrangian predictability in the Deep Water Horizon (DWH) oil
spill region based on local HF radar data and two data-assimilating
regional model runs. The LP was used as a criterion to search for
the best parameters of the 2dVar algorithm retrieving the surface
velocity fields from the radial velocities recorded by the HF radars.

It is shown that penalizing the magnitude and enforcing
smoothness of the divergence field tends to increase LP by 2–6%
at the forecast times of 3–9 days while preserving it at the smaller
forecast times. Applying preliminary gap-filling technique based
on the analysis of spatial correlations of the radial velocities adds
an extra 1–2% to the LP and improves correlations between the
HFR-derived velocities and the respective Eulerian velocities
derived from drifters.

The analyzed drifter set was not conforming with the HFR
coverage pattern as most of the drifters were released in the DWH
region which is located at the far ranges (150–200 km) off the
radar sites. This partially explains a relatively moderate improve-
ment in the LP caused by gap-filling of the observation points
covered more than 85% of the time and failure to obtain an
improvement if much more numerous observation points with
gap concentrations less than 30–50% were taken into account. We
also assume that the divergence-related improvement of the LP at
the forecast times of 3–9 days could be more visible with a more
homogeneous coverage of the domain by drifter trajectories.

Comparing the LP skills of the HFR-derived velocities with
surface currents taken from the data-constrained NCOM solutions
have shown 25–40% better performance of the observational
product. The result is not surprising if previous model/drifter
diagnostic studies (e.g., Price et al., 2006; Barron et al., 2007) are
compared with validations of the HFR-derived velocities against
drifters (e.g., Ullman et al., 2006; Huntley et al., 2011; Kohut et al.,
2012). We assume that such a large gap in performance is due to
the fact that most of the tested models use relatively simple
description of the processes responsible for transport in the top
2 m of the water column, which is strongly affected by the waves/
swell and other upper-layer processes controlled by the momen-
tum transfer from the atmosphere. In that respect, assimilation of
the HFR data into numerical models is the most straightforward
way to improve the situation. Unfortunately, to the best of our
knowledge, there has been no assessment of the HFR data impact
on the LP skill in the known assimilation studies involving radar
observations (e.g., Paduan and Shulman, 2004; Hoteit et al., 2009;
Barth et al., 2010; Yu et al., 2012).

Comparison of the model runs driven by different data assim-
ilation algorithms has shown virtually no difference between the
ET and 3dVar methods. We attribute the departure of the eNCOM
curve from rNCOM at τ47 d in Fig. 7 to relatively poor statistics of
the 2.5 month eNCOM period characterized by an average duration
of a drifter trajectory of 16 days. Given this limitation, the result
ictability in the DWH region from HF radar observations and
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still appears to be inconsistent with the conclusions of Scott et al.
(2012) who have shown that using a multi-model ensemble mean
provides a significant (20%) improvement of the LP in the Equa-
torial Atlantic. The inconsistency could be caused by several
reasons, such as better statistics (∼3000 vs 297 drifter-days),
negligible tides and much coarser (20–30 km vs 3 km) resolution
in the LP computations of Scott et al. (2012). It should be also
noted that the LP skill demonstrated by NCOM in the DWH region
(e1¼20 km, e7¼67 km, Fig. 7) is still better than the best
ensemble-mean estimates (e1¼21 km, e7¼122 km) of Scott et al.
(2012) in the Equatorial Atlantic.

Our results also show that substantial LP improvements can be
achieved by preprocessing HFR data with a combination of the
gap-filling technique and 2dVar interpolation tuned to suppress
the divergence field. Apart from a much (20–30%) better LP
compared to the considered data-driven model runs, interpolated
HFR radial velocities are less noisy and continuous in space and
time. These properties make them attractive for assimilation into
numerical models as the interpolated HFR velocities are less prone
to spurious modes generated by the raw radial velocities often
characterized by highly intermittent patterns, especially at the
outer regions of the HFR footprint. The issue of efficiency of
assimilating either raw radial velocities or their projections on
the model grid remains an open question, which requires further
research.
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