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[1] Prescribing open boundary conditions for regional coastal ocean models encounters the
challenge of imposing information on sea level, velocity and tracers that characterize the
unrepresented far field ocean. Deriving such information from a larger domain model
without communicating information from the ‘‘nested’’ model back to the exterior model is
‘‘downscaling’’. We evaluate whether real-time models presently in operation for the
Mid-Atlantic Bight (MAB) can deliver useful predictions of subtidal frequency currents and
subsurface temperature and salinity for this downscaling purpose. The MAB is a broad
continental shelf region where several models run in real time and there is a dense
observational data set available for skill assessment. We examine seven real-time models
that cover the MAB: three global models, and four regional models. A regional climatology
is included as an eighth model. Skill metrics with respect to model bias, centered root mean
square error and cross correlation are computed for temperature and salinity profile data
from 16 autonomous underwater glider vehicle missions and four hydrographic voyages in
2010–2011. Two years of hourly HF-radar surface current observations that span the shelf
are used to evaluate modeled mean surface currents and daily time scale variability in speed
and direction. Skill metrics, with uncertainty estimates, are reported for inner and outer
shelf subregions, and for stratified and unstratified seasons. A group of models is identified
that offers useful skill for the purposes of providing open boundary data to inner shelf and
estuary models for real-time applications.
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1. Introduction

[2] Hydrodynamic models are widely used in coastal
oceanography to simulate the circulation of limited-area
domains for the analysis of regional dynamics and studies
of biogeochemistry, geomorphology, and ecosystem proc-
esses; for example, to deduce transport pathways for
nutrients, sediments, pollutants, or larvae. When operated
as real-time now-cast or forecast systems, coastal ocean
and estuarine models offer predictions of the ocean state
that assist decision making related to water quality and
public health, coastal flooding, shipping, maritime safety,
and numerous other applications.

[3] Simulations of limited geographic regions must be
constrained at their perimeter by open boundary conditions.
Depending upon the application, these lateral boundaries

might logically be placed near the mouth of an estuary,
somewhere midshelf, or in the adjacent deep sea. Having
open ocean boundaries introduces two related challenges:
(i) formulating computational algorithms that allow motions
generated within the domain to escape while simultaneously
imposing remote influences exterior to the domain, and
(ii) identifying sources of information on sea level, velocity
and tracers that accurately characterize the far field ocean
so as to incorporate their influence into the computational
boundary conditions. We do not consider the former issue
here, save to mention that there is a rich literature that
addresses aspects of the accuracy and stability of open
ocean boundary conditions [Blayo and Debreu, 2005;
Orlanski, 1976] and describes algorithmic approaches that
perform adequately in many practical situations [Herzfeld,
2009; Marchesiello et al., 2001; Mason et al., 2010;
Nycander and Döös, 2003; Oddo and Pinardi, 2008].

[4] Our focus here is on the second challenge: to
appraise the accuracy of ocean state estimates available as
boundary condition data for real-time regional coastal
ocean models.

[5] It is reasonable to expect that comprehensive
descriptions of regional temperature, salinity (T/S) and
velocity might be obtained from larger domain hydrody-
namic models that assimilate observations and are driven
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by skillful meteorological analyses or forecasts. By ‘‘com-
prehensive’’ we mean providing all necessary dynamic
quantities, in three dimensions, on a regular schedule, in a
timely manner for real-time applications [De Mey and
Proctor, 2009]. Providing output from one model as the
open boundary condition data to a second (usually higher
resolution) ‘‘nested’’ model, without communicating any
information from the nested model back to the exterior
model, is essentially the ‘‘downscaling’’ problem.

[6] We evaluate the quality of ocean state information
that is available in practice by focusing on shelf waters of
the Middle Atlantic Bight (MAB) – a region with a diversity
of real-time and operational models and a dense in situ
observational data set for skill assessment. A further moti-
vation for our focus on the MAB is that the U.S. Integrated
Ocean Observing System (IOOS) has sponsored a Coastal
and Ocean Modeling Test-bed (COMT) project which has
as one of its themes the examination of models of the Ches-
apeake Bay with respect to simulating currents, temperature
and salinity—these conditions being assumed physical
oceanographic drivers relevant to the occurrence of hypoxia
events that increasingly plague the Bay ecosystem. Most
existing Chesapeake Bay models assume climatological T/S
conditions at the open boundary and impose only tidal vari-
ability in currents and sea level; there is no imposed influ-
ence of mean currents or sea level gradients, or subtidal
frequency variability in these, from the shelf ocean. The
work described here contributes to the COMT Estuarine
Hypoxia project by considering whether the caliber of exist-
ing real-time models is sufficient to provide open boundary
conditions that improve upon climatological T/S, and
deliver useful predictions of subtidal frequency currents.

[7] The majority of the modeling systems we examine
assimilate satellite-observed surface temperature and sea
level anomaly (altimetry). Most global operational models
also utilize in situ T/S observations from ships of opportu-
nity, drifters, and profiling floats. In the MAB, further data
are available from the Mid-Atlantic Regional Association
Coastal Ocean Observing System (MARACOOS; mara-
coos.org), which operates an extensive CODAR (Coastal
Ocean Dynamics Applications Radar) network observing
surface currents from the coast to near the shelf edge, and
deploys autonomous underwater glider vehicles (AUGV)
that acquire surface to bottom T/S data from an onboard
conductivity temperature depth (CTD) sensor along trans-
ects throughout the MAB. None of the modeling systems
evaluated here assimilates MARACOOS AUGV data, and
only one assimilates CODAR data. While this is regrettable
in the respect that potentially useful data presently go
unused in these real-time systems, it does afford us a set of
independent data in shelf waters against which the models
can be assessed.

[8] In the next section, we describe MARACOOS data
acquired in 2010 and 2011 that form the basis of our analy-
sis, and the data processing applied to make the skill
assessment as objective as possible. Section 2 presents syn-
opses of the modeling systems evaluated; for readers famil-
iar with this subject these are three operational global
models (HYCOM, NCOM, and MERCATOR) and four
U.S. East Coast regional models (COAWST, UMassHOPS,
ESPreSSO and NYHOPS). A regional T/S climatology
(MOCHA) is included as an eighth predictive ‘‘model’’.

These abbreviations are explained fully, and references
provided, in Section 2.2.

[9] Section 2 also introduces the skill metrics we
selected for the comparison and the basis of our estimates
of their uncertainty. Results follow in section 3. The discus-
sion in section 4 reiterates possible limitations in the scope
of the skill assessment methodology, but highlights that the
models most likely to deliver useful real-time boundary
conditions for inner shelf and estuarine models of the MAB
are NYHOPS, ESPreSSO and NCOM for T/S, and
NYHOPS, ESPreSSO, COAWST and MERCATOR for
velocity.

2. Methods: Observations, Models, and Skill
Metrics

2.1. MARACOOS Observations

2.1.1. Subsurface Temperature and Salinity from CTD
[10] The vertical stratification of MAB shelf waters has a

strong seasonal cycle [Castelao et al., 2008a; Chapman
and Gawarkiewicz, 1993] with surface temperatures reach-
ing 25�C in summer in a mixed layer some 15–20 m thick
across much of the 100 km wide shelf, while below this
cooler waters of 8–10�C persist almost year round. Spa-
tially, bottom temperature takes a local minimum on the
outer shelf in a band termed the ‘‘cold pool’’ [Houghton et
al., 1982] that is maintained by southward advection of
water formed by winter mixing in the vicinity of Nantucket
Shoals. Further seaward, at the shelf edge, strong horizontal
gradients in T/S occur at a shelf-slope front that separates
cooler, fresher shelf water from the warmer, saltier Slope
Sea [Csanady and Hamilton, 1998] that occupies the region
between the shelf and the Gulf Stream.

[11] Freshwater runoff at the coast fosters a persistent
across-shelf salinity gradient; while after periods of high
discharge in spring and summer a pronounced vertically
stratified halocline forms [Castelao et al., 2010]. Abetted
by upwelling winds that drive coastal waters offshore, sa-
linity contrasts exceeding 2.5 have been observed across
the halocline more than 60 km offshore [Castelao et al.,
2008b; Gong, 2011]. Adding to the richness of the subsur-
face hydrography are Slope Water salinity intrusions
[Flagg et al., 1994; Lentz, 2003]. Most common in
summer, these occur at the pycnocline some 30 m below
the surface, may be as little as 10 m thick or less with salin-
ity anomalies of 0.5–1.0 [Castelao et al., 2010], and can
extend tens of kilometers across the shelf. Lentz [2003]
estimates these intrusions can endure for 90 days and over
the course of a summer act to raise average salinity of the
MAB by 0.3.

[12] Wind-driven mixing events (more so than surface
cooling) have been observed to instigate the breakdown of
vertical stratification in November [Lentz et al., 2003].
While the MAB shelf remains substantially isothermal
throughout winter, across-shelf displacements of the foot of
the shelf-slope front can introduce near bottom thermal
inversions. The encroachment of this warm, salty water
also acts to maintain year round vertical salt stratification
on the outer shelf [Castelao et al., 2010].

[13] Reproducing the hydrographic variability described
above is a demanding test of any coastal circulation model
because it requires reasonable representation of numerous
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processes, including air-sea fluxes, vertical turbulent mix-
ing, baroclinic dynamics, river sources, and shelf-edge
exchange, to list only a few. Therefore, we have formulated
a set of performance metrics that compare model results to
full water column observations of temperature and salinity
spanning the entire MAB shelf. We consider this a more
rigorous test than comparisons to sea surface temperature
(SST), which in the majority of models here is constrained
by imposed air temperatures in the meteorological forcing
and assimilation of satellite observations.

[14] MARACOOS have augmented the repeated AUGV
surveys described by Castelao et al. [2010] by introducing
long (>30 days) deployments that traverse the full MAB,
and missions targeting the New Jersey coast. In 2010–
2011, 16 AUGV missions (Figure 1) achieved extensive
coverage of the region. A quite different sampling pattern
is accomplished by National Marine Fisheries Service Eco-
system Monitoring (ECOMON) voyages. Each quarterly
survey visits some 120 stations with positions selected ran-
domly for each voyage (Figure 1, þsymbols). We used full
water column CTD profile data from four ECOMON voy-
ages in 2010–2011.

[15] To characterize model performance in differing geo-
graphic regions and circulation regimes we consider three
subregions indicated by color shading in Figure 1. The
boundary between inner and outer shelf regions follows the
50 m isobath which is a zone of persistent T/S midshelf
fronts that separate distinct regimes [Ullman and Cornillon,

2001]. The north-south division was a compromise between
adding geographic refinement and maintaining sufficient
data in each subregion to achieve statistically significant
results. Region 1 thus combines both the Delaware and
Chesapeake Bay entrances—there being insufficient obser-
vations to separate the zones further. Region 3 emphasizes
the approaches to New York Harbor and the area influ-
enced by the Hudson River plume and New Jersey coastal
current dynamics [Castelao et al., 2008b; Chant et al.,
2008; Zhang et al., 2009]. Region 2 between the midshelf
and shelf-slope fronts intrudes shoreward at the Hudson
Shelf Valley, but the absence of observations there leaves
the analysis unaffected.

[16] The color-coded timelines in Figure 1 show the
period of each AUGV deployment, with the ribbon colors
set to indicate in which map subregion the vehicle was
operating. The background dark and light shading indicates
the summer stratified (May-October) and winter mixed
(November-April) seasons, respectively, revealing the rela-
tive paucity of data during winter. In total there were 233
days of AUGV data during the 2 years.

[17] Webb Research Slocum electric gliders deployed by
MARACOOS complete a vertical glide cycle in 5–20 min
at a forward speed of about 0.3 6 0.1 m s�1. We averaged
sequential groups of 6–24 CTD profiles, binned to 1 m
standard depths, to derive average T/S profiles at roughly 1
km intervals. This averaging suppresses some of the instru-
ment noise in individual profiles. None of the models

Figure 1. AUGV tracks (colored lines) and ECOMON CTD stations (þ symbols) in 2010–2011. Geographic subregions
R1, R2, and R3 are shown by color shading. Timeline panel shows dates of observations grouped by pro-
ject : Rutgers University Endurance Line (RUEL), New Jersey state environmental agencies (ENV), long
range MARACOOS deployments (MAB), and NMFS stock assessment voyages (ECOMON). For each
box on the timeline the central line color corresponds to a map track, and the background color the sub-
region in which the vehicle was operating at that time. Dark and light gray shading on timeline indicates
summer and winter, respectively.
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achieves effective horizontal resolution better than 2 km so
greater data resolution would add little value. Moreover,
we examined the along-track auto-correlation of individual
AUGV CTD profiles and deduced a correlation length scale
of about 24 km throughout much of the MAB, so to retain
higher spatial resolution would sacrifice independence of
the data. An example subset of the resulting binned profile
data for the AUGV deployment of April 2010 is shown in
the top row of Figure 2 as a function of along-track
distance.
2.1.2. Surface Currents from HF-Radar

[18] The mean circulation in the MAB is largely consist-
ent with simple dynamical models; a mean southwestward
along-shelf flow is driven by a large-scale along-shelf pres-
sure gradient and across-shelf buoyancy forcing associated
primarily with the across-shelf salinity gradient [Csanady,
1976; Lentz, 2008]. Surface and bottom Ekman layers and
geostrophic flow due to the along-shelf pressure gradient
contribute to across-shelf currents [Lentz, 2008; Zhang et
al., 2011]. Wind forcing imprints seasonal variability on
the circulation. Zhang et al. [2009] showed that omitting
the southward mean flow from the open boundary condi-
tions of a model of the New York Bight significantly
impacted the modeled circulation of the mid- and outer
shelf affecting the dispersal of the Hudson River plume on
time scales of several months.

[19] A lengthy archive of MARACOOS CODAR obser-
vations is available to test, at least at the ocean surface,
whether real-time models capture observed subtidal shelf-
wide currents. These data have previously been used to
describe across-shelf transport of low salinity Hudson
River water [Castelao et al., 2008b; Zhang et al., 2009],
characterize seasonal variability in circulation in the New
Jersey sector of the MAB [Gong et al., 2010], and analyze
and predict Lagrangian trajectories [Ullman et al., 2006].
Since those studies were undertaken the MARACOOS
network of long range (5 MHz) SeaSonde transmitters has
expanded considerably, and from 2009 onward has
provided near complete coverage from Cape Cod to Cape
Hatteras to a range of roughly 100 km offshore [Roarty
et al., 2010]. Radial velocities measured from multiple
transmitter/receiver pairs are combined by optimal interpo-
lation (OI) [Kohut et al., 2006] to give hourly total velocity
vector observations on a 6 km spatial grid, with accompa-
nying expected error estimates that depend on the geometry
of the radar sites, range to target, and the number of radial
data combined in the OI. An accepted value for the effec-
tive depth of measurements from 5 MHz radar is 2.4 m
below the surface [Ullman et al., 2006]. From these data
for 2010–2011 we have prepared a surface current data set
for comparison to the models.

[20] The OI combining step uses covariance scales of 10
km across-shelf and 25 km along-shelf, so to ensure inde-
pendent data we merge hourly data into 28 km bins. We
exclude vectors with high expected error as an added qual-
ity control step. Near the coastline the transmitter/receiver
geometry leads to low precision in the vector direction and
we exclude data within 25 km of the coast as a further
aggressive quality control step. Hourly data are binned to
daily values.

[21] Daily binning potentially aliases energy from the
semidiurnal tides, but for the four models that simulate

tides we average the output in the same manner to make
the comparison of velocity variability. For the three models
that do not include tides a comparison between simple daily
averages is reasonable.

[22] To downscale models to nested inner shelf domains
a conventional approach is to construct open boundary con-
ditions using independent harmonic tidal variability added
to slowly time evolving boundary conditions from the outer
domain model. Thus, some low-pass filtering strategy for
the outer domain solution is required. We have effectively
chosen daily boxcar filtering as that strategy for the
purposes of this skill assessment.

2.2. Real-Time Models

[23] We evaluate seven hydrodynamic models of the
MAB region that we know ran in real time during 2010–
2011 and provide output openly accessible via the Internet.
In all instances, we evaluate the fields the respective mod-
eling groups elected to present as their ‘‘best time series’’
estimate of the ocean state.

[24] Some groups may have identified and remedied
real-time configuration errors and superseded results with
more skillful reanalyses, but we do not consider reanalyses
here. So our assessment may not appraise skill as it is now.
However, we assume that the real-time results were the
genuine best efforts of the respective modeling groups at
the time they were generated, and this approach is the only
methodology we could envision to compare fairly all mod-
els. Groups who are nimble at catching faults in their real-
time systems, and promptly remedying them, are rewarded
in the skill assessment by virtue of our having made the
model-data comparison over a lengthy 2 year period of
observations.

[25] The models are introduced next. We have done our
utmost to verify our synopses of model configurations with
the creators, but accept responsibility for any misrepresen-
tations of the modeling system features. Key elements of
each model are given in Table 1, notably the open access
THREDDS (Thematic Real-time Environmental Distrib-
uted Data Services) servers at which we accessed output.
The adoption of THREDDS and CDM (Common Data
Model) standards by most of the groups archiving these
data greatly facilitated this project by enabling us to use
software tools developed for interoperability of CDM for-
matted data to access the output of several diverse models
with minimal code customization.
2.2.1. HYCOM

[26] The HYbrid Coordinate Ocean Model analyzed here
is global with 1/12� horizontal resolution [Chassignet et
al., 2009]. The real-time system is operated by the U.S.
Navy NAVOCEANO center and uses the NCODA (Navy
Coupled Ocean Data Assimilation) [Cummings, 2005] mul-
tivariate optimal interpolation (MVOI) scheme to assimi-
late satellite sea surface height (SSH) and SST, and
temperature and salinity profiles from Argo floats and ships
of opportunity. Surface meteorological forcing is from the
U.S. Navy Operational Global Atmospheric Prediction Sys-
tem (NOGAPS) [Rosmond et al., 2002]. Tides are not
simulated. River inflows are from a climatological monthly
global database [Vörösmarty et al., 1996]. Vertical coordi-
nates are a hybrid of isopycnal layers in deep water and a
mixture of pressure and terrain following on continental
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shelves [Chassignet et al., 2006]. There are 32 layers in
total with typically 10 active layers on the MAB shelf. We
access daily snapshots output at fixed vertical levels
interpolated by the HYCOM group.
2.2.2. NCOM

[27] The Navy Coastal Ocean Model is a 1/8� resolution
global system also operated by NAVOCEANO. Aspects of
the code are described by Barron et al. [2006] and the real-
time system is outlined by Kara et al. [2006]. NCOM
assimilates essentially the same data as HYCOM but using
the Navy’s MODAS system [Fox et al., 2002] to prepare
the analysis fields. A slow data insertion technique [Rhodes
et al., 2002] introduces incremental adjustments over the
analysis interval. The surface meteorology is NOGAPS.
Tides are modeled. River inflows are monthly climatology
[Barron and Smedstad, 2002]. The model has a hybrid ver-
tical coordinate: 19 terrain following levels on the shelf
stretched to give resolution better than 1 m at the surface;
21 fixed depth z levels in the deep. The open access output
is 3 h interval snapshots interpolated to fixed vertical
levels.
2.2.3. MERCATOR

[28] MERCATOR is based on the NEMO ocean model
[Madec, 2012] and uses a z level coordinate system with
partial cells to represent sloping bathymetry. The daily av-
erage output analyzed here is from the 1/12� resolution
operational Atlantic Ocean model with 43 vertical levels.
On the MAB shelf where the shelf-break parallels the 100

m isobath there are 12 vertical levels with thickness
increasing from 5 m at the surface to 25 m at 100 m depth.
Output for 2010–2011 assimilated SSH, SST and profile
data using a reduced Kalman filter approach [Brasseur et
al., 2005]. MERCATOR is forced with surface meteorol-
ogy from the European Centre for Medium-range Weather
Forecasts (ECMWF). Tides are not modeled. River inflows
are Dai and Trenberth [2002] monthly climatology.
2.2.4. NYHOPS

[29] The New York Harbor Observing and Prediction
System [Blumberg et al., 1999; Georgas and Blumberg,
2010] is based on the Princeton Ocean Model [Blumberg
and Mellor, 1987]. The domain spans the MAB shelf to the
200 m isobath from Cape Cod to Maryland; it does not
encompass the approaches to Chesapeake Bay. The curvi-
linear horizontal grid resolution is approximately 4.5 km at
the inner shelf. There are 10 terrain following vertical lev-
els. Outputs from a companion model of wind-wave
growth, propagation and decay [Schwab et al., 1984] are
used in a parameterization of wave-current effects on bot-
tom drag [Grant and Madsen, 1979]. T/S observations
inside New York Harbor are assimilated by optimal inter-
polation every 24 h at the initialization of a new forecast.
Over 200 river and stream inflows are specified using 6 h
forecasts from NOAA’s Advanced Hydrological Prediction
System [McEnery et al., 2005] plus mean inflows at more
than 240 urban point sources. Meteorological forcing is
from the NCEP (National Centers for Environmental

Figure 2. (left) Temperature and (right) salinity versus along-track distance and depth for the MAB AUGV deployment
of 04/2010 (see Figure 1 for trajectory). Top row: reduced resolution observation set obtained following
binning described in text. Other rows: Individual model results interpolated to the AUGV track at binned
observation times. Model labels are as defined in Table 1. Summary line plots show root mean squared
error (RMSE), mean bias (MB), centered root mean squared error (CRMS), and cross-correlation (R)
versus depth for each model compared to this set of observations.
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Prediction) 12 km resolution North American Mesoscale
model (NAM) [Janjic, 2004]. Conditions imposed at the
open boundaries are World Ocean Atlas 1998 (WOA)
[Antonov et al., 1998] monthly climatological T/S, mean
geostrophic current and sea level, low frequency sea level
variability from the National Oceanic and Atmospheric
Administration (NOAA) Extratropical Storm Surge Model
(ETSS), and harmonic tides [Mukai et al., 2002].
2.2.5. ESPreSSO

[30] The Experimental System for Predicting Shelf and
Slope Optics uses the Regional Ocean Modeling System
(ROMS; www.myroms.org). The model domain extends
from Cape Cod to Cape Hatteras and the coast to beyond
the shelf-break, with 5 km horizontal resolution and 36 ter-
rain following vertical levels. Open boundary values are
taken from global HYCOM with adjustments using MO-
CHA climatology (introduced below) to reduce bias in T/S,
and the addition of harmonic tides [Mukai et al., 2002].
Meteorology forcing is NAM. Inflows for the seven largest
rivers are from daily average USGS discharge data. Strong
constraint four-dimensional variational (4D-Var) data
assimilation [Moore et al., 2011] is used to incorporate sat-
ellite SSH from Jason-2, satellite SST from infrared and
microwave radiometers, monthly MOCHA T/S climatol-
ogy, and hourly CODAR surface currents [Zavala-Garay et
al., 2012].
2.2.6. UMassHOPS

[31] The University of Massachusetts at Dartmouth has
configured a version of the Harvard Ocean Prediction Sys-
tem [Robinson et al., 1988] for the MAB and Gulf of Maine
[Schmidt and Gangopadhyay, 2012] out to beyond the Gulf
Stream. An analysis of T/S and geostrophically balanced
velocity for assimilation is computed using feature model
sets for Gulf Stream meanders and rings [Gangopadhyay et
al., 1997] and the Gulf of Maine and Georges Bank [Gang-
opadhyay et al., 2003], melded with WOA climatology for
the MAB. Dynamic height is adjusted to the shelf bathyme-
try [Brown et al., 2007]. Horizontal resolution is 15 km.
There are 16 terrain-following vertical levels. Tides are not
modeled. The surface forcing is GFS [NCEP, 2003]. The
Orlanksi [1976] open boundary radiation condition does
not require external data.
2.2.7. COAWST

[32] The Coupled Ocean-Atmosphere-Waves and Sedi-
ment Transport model covers the U.S. east coast and Gulf
of Mexico [Warner et al., 2010]. The ocean component is
ROMS with 5 km spatial resolution and 16 vertical levels.
COAWST is two-way coupled to a regional surface waves
model (SWAN) [Warner et al., 2008] with 60 direction and
24 frequency bins. Waves modify currents via Stokes drift
and bottom drag, and through the influence of wave break-
ing on mixed layer turbulence. NAM atmospheric forcing
drives both models. Boundary conditions to SWAN are
from WaveWatch III ; boundary conditions to ROMS are
HYCOM. There is assimilation in the form of nudging to
HYCOM throughout the domain. Tides are modeled. There
are no river inflows.
2.2.8. MOCHA

[33] The Mid-Atlantic Climatological Hydrographic
Analysis [Fleming and Wilkin, 2010] is a three-
dimensional regional climatology of temperature and salin-
ity based on a comprehensive collection of historical in situ

observations in the MAB and Slope Sea. Though not a
prognostic hydrodynamic model, MOCHA nevertheless
offers a prediction of the ocean state at any time; namely,
the long-term average of prior observations. MOCHA uses
weighted least squares to produce monthly analyses on a
4.5 km horizontal grid. In shelf waters (< 100 m depth)
there are 22 vertical levels. None of the 2010–2011 glider
observations used in the skill assessment were included the
MOCHA. MOCHA does not provide velocity.

2.3. Model Versus Observation Skill Metrics

[34] We use conventional measures of model-observation
difference to quantity model skill with respect to AUGV T/S
data: root mean squared error (RMSE), mean bias (MB),
and centered root mean squared (CRMS) error. Denoting a
set of observational values as o, corresponding model pre-
dictions as m, using an over bar to denote the mean of the
set, and a prime to denote perturbations from the mean, i.e.,
m0 ¼ m�m, these error metrics are defined as:

RMSE ¼ m� oð Þ2
h i1

2
; ð1Þ

MB ¼ m � o; ð2Þ

CRMS ¼ m0 � o0ð Þ2
h i1

2

: ð3Þ

[35] On a Cartesian graph with axes MB and CRMS,
RMSE is the distance from the origin. Treating CRMS as
negative when model variance is less than observed, Jolliff
[2009] introduced the so-called target diagram. We observe
no patterns in the sign of MB that inform our discussion, so
for clarity we plot absolute value of both MB and CRMS.
This effectively transforms all values to the first quadrant
of a target diagram.

[36] CRMS can be expanded in terms of variance and
correlation as

CRMS 2 ¼ S2
m þ S2

o � 2SmSoR; ð4Þ

where Sm and So are model and data standard deviation,
and R is the cross-correlation coefficient R ¼ m0o0= SmSoð Þ.
Exploiting the law of cosines, Taylor [2001] observed that
for a point plotted in polar coordinates with radius Sm and
azimuth cos �1R, CRMS is the distance to the point (So, 0).
These are widely termed Taylor diagrams; it is common
practice to normalize values by the observation standard
deviation So. Taylor diagrams do not depict MB, so it must
be reported separately.

[37] For vector surface current data from CODAR, com-
plex values are formed from the velocity components: o ¼
uo þ ivo and m ¼ um þ ivm. We present vector MB m � o
and the complex vector correlation R̂ ¼ m0o0�= SmSoð Þ,
where the asterisk denotes complex conjugate, by computing
the mean of time series of velocity data at each location. For
complex data the standard deviations are e.g.,

Sm ¼ m0m0�
1

2=
. It follows that R̂ is complex; its phase repre-

sents consistent directional errors in velocity variability. In
practice, this has little spatial structure so we map only the
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magnitude. We depict skill of the velocity direction in the
subregions using polar histograms.

[38] Individual AUGV deployments and ECOMON voy-
ages naturally give differing values for any given skill met-
ric; likewise for temporal subsets of the CODAR data. This
uncertainty in the skill scores must be contemplated when
concluding whether differing models perform consistently
better or worse, or are indistinguishable. We characterize
uncertainty in the T/S skill scores in two ways. First, in
Taylor diagrams we show results for separate AUGV
deployments to indicate how much the same model metric
can differ for independent subsets of observations. Second,
in MB versus CRMS plots we show the 95 percentile range
of an ensemble derived using random sampling with
replacement of entire deployments or voyages from the
combined set of AUGV and ECOMON data. Conventional
bootstrap approaches to estimating uncertainty would do
this slightly differently: by randomly sampling individual
depth profiles from the entire set irrespective of mission.
We chose our methodology out of concern that particularly
long AUGV deployments could skew the comparison to-
ward models that happened to have scored especially well
at those times, or in the regions they sampled. By this we

are acknowledging that our along-track binning procedure
is unlikely to have reduced the data to a set of truly inde-
pendent profiles, and that distinct deployments are decid-
edly more independent (if we may be permitted this loose
expression of the concept of independence).

3. Results

3.1. Subsurface Temperature and Salinity

[39] Line plots in Figure 2 show vertical profiles of the
skill metrics averaged across each standard depth for this
AUGV deployment. RMSE, MB, and CRMS are in T/S ob-
servation units. A number of patterns emerge. Several mod-
els are biased warm and slightly salty. Skill is highest
near the sea surface (high R; low CRMS) presumably
due in part to the constraints of imposed atmospheric
conditions and assimilation of satellite data (in the case
of temperature). Errors generally increase with depth.
The scores are erratic at the deepest depths where the
data show warm, salty Slope Sea water encroaching
onto the shelf—though these metrics may be unreliable
given there are only a handful of observations below
75 m depth.

Figure 3. Vertical profiles (0–100 m depth) of skill metrics for each model (rows) for (a) summer and (b) winter. Col-
umns are grouped by (left) temperature and (right) salinity in each panel with columns for the three sub-
regions (Figure 1: R1, R2, and R3). Red: Root mean squared error RMSE; black: mean bias MB; blue:
centered root mean squared error CRMS; green: Cross correlation R. Except for R, values are in the ob-
servation units: �C for T, no units for S. Columns without x axis tick labels have the same values as to
their left.
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[40] Figure 3 presents the same profiles of skill metrics
computed across all AUGV deployments and ECOMON
voyages, but grouped according to subregions R1–R3, and
winter or summer (Figure 1). Model errors are consistently
less in winter than summer, but Taylor diagrams (Figure 4)
show this distinction vanishes when scores are normalized
by observation variance. Again, the majority of models are
biased warm and salty. In summer, temperature errors are
low near the surface and both RMSE and bias typically
take a mid-depth maximum. This would be consistent with
the models imprecisely tracking variability in the depth of
the strong summer thermocline. For winter temperature,
there is a tendency for RMSE to increase steadily with
depth without a local maximum. For the inner shelf subre-
gions R1 and R3, ESPreSSO and NYHOPS appear to have
the better performance for temperature, but are inferior to
MOCHA climatology.

[41] For summer salinity, ESPreSSO appears to give the
best results in R1 and R3, with NYHOPS and NCOM little
different. The other models have pronounced summertime
high salinity biases at the surface (exceeding three units in
the case of UMassHOPS and COAWST) though these
biases decrease in magnitude with depth. CRMS in winter
salinity exhibits a similar but less pronounced trend of
being greater at the sea surface and decreasing with depth.
There is rather less difference between the models in the
outer shelf subregion R2, in either season, though the same
three models ESPreSSO, NYHOPS, and NCOM generally
outperform the others.

[42] While there are patterns to the vertical structure of
the skill metrics, these are largely consistent between mod-
els such that if we were to compare only near surface, or
mid-depth, or near seafloor results, it would not fundamen-
tally alter a ranking of models. Consequently, we proceed

Figure 4. Normalized Taylor diagrams for models (see color key in legend) compared to AUGV observations of temper-
ature (left) and salinity (right) for winter (top row) and summer (bottom row). Large symbols show ag-
gregate of statistics across all deployments; light lines connect to small color symbols showing the
contributing statistics from the individual AUGV deployments to illustrate the spread in statistics
between deployments. In a normalized Taylor diagram radius is model standard deviation error divided
by observation standard deviation, azimuth is arccos of cross correlation (R), and distance to point (1,0)
on the abscissa is Centered RMS. Light lines that reach axis limits connect to values with negative R or
extreme standard deviation error that are not plotted.
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by averaging the skill metrics over depth for further model
comparison.

[43] Figure 4 presents Taylor diagrams for T and S
grouped by season and with coordinates normalized by So.
Each model is depicted in a distinct color by a graphical
object that somewhat resembles a sea urchin: results calcu-
lated for all AUGV and ECOMON data aggregated to-
gether are marked by a large symbol (the ‘‘body’’); the
spines that emanate from this connect to the results calcu-
lated separately for each deployment/voyage. The broad
spread of the spines indicates how much results can vary
for the same metric computed from independent sets of
observations, and highlights that there is uncertainty in the
analysis.

[44] On first thought the body of the urchin might be
expected to be centered on the pattern of spines—being as
it is based on the aggregation of all individual deployment
data. This is not the case because statistics for each AUGV
deployment use means (o, m) computed for that deploy-
ment alone, which differs from the mean of the aggrega-
tion, so variance and correlation are defined with respect to
different means. The aggregated data can include a trend or
long period variability within the season (exacerbated by
sampling clustered toward late fall and early spring; Figure
1) whereas for the individual statistics this low-frequency
variability is relegated to the MB. (Recall MB is not
depicted in a Taylor diagram). For temperature, we see cor-
relations tend to be greater for the aggregated data than for
most of the individual deployments. It is rather easier to
model low frequency temperature variability than capture
submesoscale variance along an AUGV trajectory, so this
is a caution against assuming aggregate skill scores apply

equally at higher frequencies. This effect can occur in any
skill assessment that utilizes time series that resolve a long
period cycle. This is why we present both individual and
aggregate scores in Figure 4. Note that we cannot average
the statistics computed for individual deployments and plot
an ensemble result because the geometry in the law of
cosines holds only when o and m are held constant.

[45] Overlooking the uncertainty in the Taylor diagram
metrics betrayed by the lengthy urchin spines, some pat-
terns emerge from the aggregate data skill scores. Recalling
that points closest to (1,0) have the least CRMS error we
see that models NCOM, ESPreSSO, and NYHOPS gener-
ally perform best overall.

[46] An exception is winter temperature when MERCA-
TOR has the lowest CRMS, and COAWST and HYCOM
have CRMS less than NYHOPS. However, none of these
achieve the skill of MOCHA climatology. Also, for winter
salinity, UMassHOPS has comparable CRMS to NYHOPS,
and MOCHA climatology performs poorly.

[47] In summer, NCOM, ESPreSSO, and NYHOPS have
the best correlation for both T and S though the normalized
variance for NYHOPS salinity is low, as it is in winter.
ESPreSSO is consistently closest to the unit radius indicat-
ing its variance matches observations. The more skillful
models tend to have somewhat less spread in the individual
metrics (i.e., shorter spines).

[48] Ranking models by correlation or CRMS gives rea-
sonably consistent results so we turn our attention to MB in
Figure 5. Values are again normalized by observation
standard deviation. Panels in the bottom row show MB ver-
sus CRMS for each model (marker color) computed for
data aggregated over all deployments, grouped by season,

Figure 5. Mean bias (MB) and centered root mean square error (CRMS) of each model (see legend for model color key)
with respect to AUGV and ECOMON CTD observations of temperature (left two columns) and salinity
(right two columns), calculated separately for summer and winter seasons. Bottom row: Values for indi-
vidual subregions R1–R3 (see Figure 1). Top row: Values for all sub-regions combined; horizontal and
vertical bars depict 95% confidence limits (see text).
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and further split according to subregion R1–R3 (marker
shape). Symbols with the same color tend to cluster to-
gether so we see no tendency for any model to perform
especially well in one region over others. Subregion 2
results (square symbols) plot closer to the origin (with the
exception of winter temperature) suggesting that the outer
shelf is better modeled than the inner shelf.

[49] With no clear distinction between the models by
subregion we consider statistics computed for the entire
shelf in the top row of Figure 5. Crosses indicate 95% con-
fidence limits derived as described in section 2.3. It seems
no model can achieve CRMS error less than one quarter of
the observation standard deviation for either T or S, while
(except for summer temperature) no model CRMS is ever
worse than half of So. With the exception of summer salin-
ity for just a few models, all results fall above the unit slope
line indicating CRMS contributes more than MB to overall
mean squared error (distance from origin). The model with
the smallest MB is ESPreSSO in all cases, though it is

defeated by MOCHA climatology for summer salinity.
MERCATOR and HYCOM have lower salinity bias than
NYHOPS in both seasons. NYHOPS winter temperature
performance is relatively poor, while summer temperature
is extremely good, results that are consistent with Figure 4.

[50] A general observation, consistent with the Taylor
diagrams, is that the models with generally greater skill
(NYHOPS, ESPreSSO and NCOM) have less uncertainty
in the metrics.

3.2. Surface Currents

[51] Mean velocity vectors are shown in Figure 6 along
with color symbols indicating the magnitude of the vector
correlation R̂ for daily variability. COAWST, MERCA-
TOR, ESPreSSO, and NYHOPS mean currents most
closely resemble the observations (but remember
ESPreSSO assimilates these data). These four models have
the highest correlation, although COAWST is slightly less
than the others. NCOM has a poor representation of the

Figure 6. Mean (2010–2011) surface velocity from HF-radar (top left) and the respective models at 2 m below surface.
For the models, colored dots show the magnitude of the complex correlation between daily variability of
HF-radar and model.
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mean flow but is competitive in correlation. UMassHOPS
performance is lackluster.

[52] Figure 7 aggregates results for subregions R1–R3
depicting summary statistics for speed variability and
direction errors. Plots in the bottom row are polar histo-
grams of direction errors (model minus data) with the mean
velocity retained in the difference. The closer the major
axis of the roughly elliptical shape aligns with 0� the more
accurate is the direction on average, while the more eccen-
tric the ellipse the more consistent is the agreement. We
summarize the results further in the top row; each model is
represented with a horizontal bar the breadth of which
spans the 90 percentile range of direction error, and small
tick marks show the 70 percentile limits. The vertical axis
is the normalized CRMS error of velocity magnitude. The
heavy tick mark on the bar shows the mean direction error,
and its vertical span is the 90 percentile spread of CRMS.
For example, a heavy tick mark at [5�, 0.9] would say that
on average the model velocity is 5� to the right of observed,
and RMS error in speed is 90% of the observed standard
deviation; a perfect model would plot at [0�, 0]. Both axes
are stretched.

[53] ESPreSSO assimilates the HF-radar data so it is not
surprising it achieves the smallest mean directional error in
R1 and R2, and close to smallest in R3. COAWST and
MERCATOR perform well everywhere in direction,
closely followed by NCOM which has smaller direction

errors than NYHOPS in R1 and R3. NYHOPS performs
best in terms of CRMS in speed on the inner shelf (R1,
R3). MERCATOR and NYHOPS are comparable on the
outer shelf (R2). In all subregions, HYCOM and UMas-
sHOPS are much too energetic and have mean direction
errors exceeding 20�.

4. Conclusions

[54] We have used 2 years of observations of surface ve-
locity and subsurface temperature and salinity to evaluate
best-estimate analysis fields from seven hydrodynamic
modeling systems that deliver real-time predictions of the
MAB continental shelf. An eighth ‘‘model’’ is a regional
climatology (T/S but not velocity).

[55] The skill metrics are conventional: bias, root mean
squared error, centered RMS and cross correlation. The
data set is large enough to evaluate separately the outer
shelf, and northern and southern inner shelf, but this dis-
tinction does not find that particular models have regional
strengths or weaknesses. Nor does separation of results by
season lead to any difference in a ranking of overall skill.
Relative model skill is quite consistent.

[56] Errors are less in winter for T/S for all models but
not when normalized by observation variance showing that
lower wintertime errors stem from there being less dynamic
range in the ocean state in vertically well-mixed conditions.

Figure 7. Velocity variability statistics for the sub-regions R1, R2, and R3 (see Figure 1) arranged by columns from left
to right. Bottom row: polar histograms of model minus data direction error ; positive angle for model
current to the right of observed. Top row: Average for all points in each sub-region of angle error (ab-
scissa) and centered RMS of speed (ordinate). The extent of each bar is the 90-percentile spread of direc-
tion error; small tick marks are 70 percentile ; heavy tick mark is mean direction error. Height of center
tick is 90 percentile spread of CRMS speed.
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Other common patterns are that skill is greater at the sur-
face and seafloor for summer T/S, and least in the middle
of the water column, while winter skill is generally best at
the surface and diminishes with depth.

[57] Averaging over the water column but still separating
the results into the contributions from bias and centered
RMS we find that CRMS dominates the error. It is never
less than 25% of observed standard deviation. Bias is
always less than this, and even more so in winter than
summer.

[58] In Taylor diagrams, which discriminate between
correlation and CRMS, we find aggregating all data gives
higher correlations than when glider deployments are con-
sidered separately. We speculate that long period variabili-
ty is intrinsically more predictable (e.g., the seasonal cycle)
so that when variability is defined with respect to a longer
time average this somewhat inflates the skill. Consequently,
models may be rather less skillful at the mesoscale to sub-
mesoscale than metrics derived from a year or more of data
would suggest. The 233 days of T/S data available to us for
2010–2011, very unevenly distributed by season, were not
sufficient to take this aspect of the analysis further.

[59] For temperature and salinity, three of the models,
NCOM, ESPreSSO, and NYHOPS, tend to perform better
than the other dynamic models for most metrics in the ma-
jority of situations (season, region, and vertical structure)
though there are certainly occasional exceptions to this
ranking. Of note is that MOCHA climatology is as good or
better than several of the dynamic models in many
situations.

[60] While the assessment of T/S skill was made with
respect to data that were not assimilated by any of the sys-
tems, the velocity data were assimilated by ESPreSSO.
This limits what we can state about its velocity skill. We
find that the models NYHOPS, MERCATOR, and
COAWST simulate annual mean inner shelf-surface veloc-
ity that closely resembles the HF-radar mean, while the
other three models decidedly do not. In terms of daily vari-
ability in current speed and direction, and vector cross cor-
relation, NYHOPS, MERCATOR, COAWST, and NCOM
perform well (in addition to ESPreSSO). In the inner shelf
regions (R1 and R3) COAWST and MERCATOR have the
better direction skill and NYHOPS the best variance among
the models that do not assimilate velocity data.

[61] The scope of this model assessment was dictated in
large measure by the data available for corroboration, but
also by our suppositions as to the ocean state information
most needed as boundary conditions for models of the
MAB inner shelf and estuaries. Our conjecture is that
three-dimensional T, S, and velocity are all important.

[62] We could not assess subsurface velocity. Only
NYHOPS and COAWST include the direct effect of atmos-
pheric pressure gradients on sea level so we have not con-
sidered storm surge. Nor did we develop a metric for tidal
sea level variability, since estuary/inner shelf models are
generally quite skillful in this respect by use of independent
tidal harmonic boundary conditions.

[63] Of the seven models we consider, NYHOPS,
ESPreSSO, and NCOM generally exhibit superior perform-
ance when considering 3-D T/S. Their skill is comparable
to, but often eclipsed by, MOCHA climatology. Surface
velocities modeled by COAWST, MERCATOR, and

NYHOPS very closely resemble CODAR observations and
are little different from the output of the CODAR-
assimilating system ESPreSSO. Whether these represent
reliable sources of three-dimensional velocity remains
uncertain. The across-shelf density gradient of the MAB
shelf, which is dominated by salinity, makes a modest but
non-negligible contribution to vertical shear in the along-
shelf mean flow [Lentz, 2008]. The extent to which some
models poorly simulate salinity might bring into question
their subsurface velocity skill.

[64] NOAA supports two Operational Forecast Systems
(OFS) in the MAB for the Chesapeake Bay (CBOFS)
[Lanerolle et al., 2011] and Delaware Bay (DBOFS)
[Schmalz, 2011]. As presently configured, T/S open bound-
ary conditions imposed along arcs roughly 100 km from
the mouth of each of these estuaries are derived from the
NCEP Real-Time Ocean Forecast System (RTOFS) imple-
mentation of the HYCOM system evaluated here. Coastal
tide gauge data merged with ETSS are used for subtidal fre-
quency sea level. The mean inflow/outflow and subtidal
frequency velocity variability is assumed to be zero, yet
mean velocity open boundary conditions were shown to
have a significant impact in a model by Zhang et al. [2009]
of the New Jersey inner shelf. Thus, there is scope for
improving the far-field ocean state information used by
present NOAA operational estuary models.

[65] We conclude this discussion with some speculation
on the elements that might comprise a more skillful model-
ing system than any single model considered here.

[66] The COAWST and NYHOPS models are both
coupled to surface wave models and incorporate wave-
related processes in the surface and bottom boundary
layers. It is quite possible that these added dynamics con-
tribute to their skill in simulating surface current variability
and indicate a fruitful direction for model system develop-
ment. But surface velocity skill in COAWST is not signifi-
cantly different from the global model MERCATOR.
Features of MERCATOR affecting the MAB momentum
balance that might be superior to other models could be the
treatment of sea ice and rivers that set buoyancy inflows
from the Labrador Sea, the mean dynamic topography used
in SSH assimilation, or ECMWF meteorology forcing. It
would take further comparison of the global systems to
unravel this. The absence of rivers in COAWST almost cer-
tainly upsets the across-shelf density gradient and works
against mean current skill.

[67] The modest edge in velocity skill that ESPreSSO
has over COAWST and MERCATOR suggests that assimi-
lation of CODAR is worth retaining, and improving upon,
in future system development.

[68] The bias in ESPreSSO T/S is the lowest of all mod-
els potentially indicating the value of the assimilating cli-
matology to diminish errors inherited from boundary
conditions or internal to the modeling system.

[69] All models exhibit a midwater minimum in sum-
mertime T/S skill suggesting that steps to improve the sim-
ulation of surface mixed layer depth variability are in
order, but from the results here we cannot conclude
whether this would be helped most by enhanced vertical re-
solution, improved air-sea buoyancy fluxes, or changes to
the methods by which vertical turbulent mixing is
parameterized.
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[70] The modeling systems we identify as offering useful
skill for the purposes of providing open boundary data to
inner shelf and estuary models for real-time applications in
the MAB are NCOM, ESPreSSO, NYHOPS, and MOCHA
climatology for T/S, and NYHOPS, ESPreSSO, COAWST,
and MERCATOR for velocity.

[71] It is somewhat unfair to appraise global models with
respect to such a regionally limited set of shallow coastal
observations. But most of the regional models have used
global models in some form for open boundary data, so it is
of interest to see how much downscaling has improved
upon the global model skill through enhanced resolution,
dynamics, or data assimilation. That the global models are
competitive in our skill assessment suggests there is scope
for further progress in downscaling methods that could
deliver yet more skillful boundary data for inner shelf and
estuary models.
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