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[1] Seasonal and interannual variability of the circulation in the Rhode Island Sound (RIS)
is investigated by employing the Regional Ocean Modeling System (ROMS) with two
configurations in which a local-scale model with very fine resolution over the RIS is nested
within a regional-scale model covering the entire US Northeastern Continental Shelf. The
models are driven by tidal harmonics, climatological river discharge, and realistic ocean
open boundary conditions and atmospheric forcing from January 2004 to December 2009.
Results show that the tidal residual current forms a cyclonic circulation in the RIS, with
amplitude of a few centimeters per second. During summer, the cyclonic circulation is
significantly strengthened owing to tidal mixing and local stratification. However, due to
strong northwesterly winds in winter, the cyclonic circulation disappears and instead the
surface currents in the RIS move offshore. Simulations further indicate that the RIS winter
currents, in terms of their magnitude and direction, have interannual variability that appears
to be related to the North Atlantic Oscillation (NAO) winter index. In addition, the
southwestward jet near the southern New England shelf break is found to intensify
(weaken) during the low (high) phases of the NAO with a lag of about 1 year. The ROMS
models are also used to examine the response of the regional ocean circulation to global
warming, with both atmospheric forcing and open boundary conditions obtained from
global climate model outputs. As the climate warms, it is found that the cyclonic gyre in the
RIS is intensified, and this change is due to an intensification of the larger-scale cyclonic
coastal ocean circulation over the Middle Atlantic Bight in a warming climate.

Citation: Luo, Y., L. Rothstein, Q. Liu, and S. Zhang (2013), Climatic variability of the circulation in the Rhode Island Sound: A
modeling study, J. Geophys. Res. Oceans, 118, 4072–4091, doi: 10.1002/jgrc.20285.

1. Introduction

[2] The Rhode Island Sound (RIS) is a semicircular
embayment off the Southern Rhode Island and Massachu-
setts coast (Figure 1). It is partially bounded on the west by
Point Judith and Block Island and on the east by Martha’s
Vineyard and the Elizabeth Islands. Its water is in free
exchange with that of Block Island Sound (BIS) to the
west, Narragansett Bay and the Sakonnet River to the
north, Buzzards Bay and Vineyard Sound to the east, and
the Atlantic Ocean continental shelf to the south.

[3] The RIS is an inshore temperate shelf area on the
inner portion of the southern New England continental
shelf. Ocean circulation of the broader southern New Eng-
land shelf has received considerable attention with a well-

established baseline understanding [e.g., Beardsley and
Boicourt, 1981; Ingham et al., 1982; Mountain, 2003;
Lentz, 2008a, 2008b; Chen and He, 2010; Zhang et al.,
2011]. In sharp contrast, relatively little appears to be
known about the RIS; for example, in a recent review of
Middle Atlantic Bight (MAB) observed mean circulation
using all available archived mooring current meter records,
the RIS area forms a somewhat conspicuous gap in cover-
age [Lentz, 2008a, Figure 1].

[4] Water on the southern New England shelf originates
primarily from the Scotian shelf to the north [Chapman and
Beardsley, 1989], and passes across Nantucket Shoals (ad-
jacent the RIS to the southeast) generally after having
passed through the Gulf of Maine and around or across
Georges Bank. The polar origins, together with the effects
of river and estuarine contributions, lead to shelf waters
that are generally cooler and fresher on the inshore side of
the shelf break front than the adjacent deep ocean slope
water conditions to the south.

[5] The regional-scale long-term average circulation of
the southern New England shelf is alongshore to the south-
west, increasing in strength with distance offshore to reach
10–15 cm/s in a jet centered near the shelf break [e.g.,
Lentz, 2008a]; it is typically strongest at the surface and
weakens toward the seafloor. Spatial and temporal
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variability of nontidal flow superposed on this broad mean
circulation pattern is significant (typically 10 to 40 cm/s,
but up to 80 cm/s) and results largely from wind fluctua-
tions, coastal-origin flows emanating from rivers and estua-
ries, and interactions with Gulf Stream (GS) rings.

[6] Regarding the shallower shelf area within the RIS,
our knowledge about its circulation pattern is much less but
limited observations have revealed a jet-like current near
the northern RIS coast with its strength strongest in
summer and disappearing in winter [Kincaid et al., 2003;
Ullman and Codiga, 2004]. It is not clear, however, if the
causes of such seasonal variability of the current is driven
locally or remotely. The local forcing may include winds,
river discharge, stratification and tides. These forcing
mechanisms have each been identified as important for
shaping the seasonal changes to the circulations in the adja-
cent inner shelf bodies of water. For example, Ullman and
Codiga [2004] find that a jet southwest of Block Island
arises due to the shifting balance between buoyancy-driven
flow (that is always downshelf but intensifies somewhat in
summer) and wind-driven flow (which dominates in winter
when wind stress becomes strongly upwelling favorable),
whereas Edwards et al. [2004] conclude that the jet is a
combination of tide-induced flow (nearshore) and
buoyancy-driven flow (offshore). Tidal mixing and rectifi-
cation are also found to contribute significantly to the
coastal circulation in the upstream regions, i.e., Buzzards
Bay and Vineyard Sound [e.g., Sankaranarayanan, 2007]
and West of Martha’s Vineyard [e.g., Wilkin, 2006; He and
Wilkin, 2006].

[7] In addition to these local dynamics, the flow in the
RIS is likely part of the larger-scale cyclonic coastal ocean
circulation over the MAB. Measurements of the annual
mean circulation clearly demonstrate that the along-shelf
flow is directed toward the southwest through the MAB
[Beardsley and Boicourt, 1981]. Driven primarily by an

alongshore pressure gradient associated with the large-
scale wind stress and heat flux patterns over the region, this
southwestward flow may be viewed as a boundary-layer
component of the large-scale ocean general circulation of
the western North Atlantic. Based upon this point of view,
the observed flow in the RIS might plausibly be decom-
posed into a mean component driven by remote forcing and
a fluctuating component driven by local forcing.

[8] In addition to seasonal variations, the circulation in
the RIS may have significant variability on much longer
time scales. The North Atlantic Oscillation (NAO) has
been suggested as a natural mechanism for influencing the
physical, biogeochemical and ecological environment off
southern New England [e.g., Oviatt, 2004; Sullivan et al.,
2005]. Variations in the NAO are associated with changes
in the position of the GS, frequency of storm events, and
patterns of temperature, winds, and precipitation during the
year [Hurrell, 1995]. As such, all of these may play a role
in influencing the seasonal-to-interannual circulation in the
RIS.

[9] Coastal waters in southern New England have further-
more exhibited significant warming in the past few decades.
For example, long-term data collected in Narragansett Bay
have revealed trends of increasing water temperature, partic-
ularly in winter, and in the past 25 years winter water tem-
peratures have increased by approximately 2�C [e.g., Nixon
et al., 2004]. Accompanying this warming may also be a
change in the circulation pattern of the southern New Eng-
land shelf.

[10] For this study we employ a nested version of the Re-
gional Ocean Modeling System (ROMS) to investigate the
variability of the circulation in the RIS and to understand
the processes that cause that variability. The numerical
experiment design is described in section 2. Tidal-induced
circulations are presented in section 3. The model results
are validated in section 4. The seasonal and interannual

Figure 1. Bathymetry (color in m) and geographic features around the Rhode Island Sound. Place
names: Rhode island Sound (RIS), Block Island (BI), Montauk Point (MP), Block Island Sound (BIS),
Point Judith (PJ), Narragansett Bay (NB), Sakonnet River (SR), Buzzards Bay (BB), Elizabeth Islands
(EI), Vineyard Sound (VS), and Martha’s Vineyard (MV).
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variability of the circulation is examined in sections 5 and
6, respectively. Section 7 explores the response of the cir-
culation to global warming, and a summary is given in
section 8.

2. Design of Numerical Experiments

[11] Numerical experiments are implemented using
ROMS with two model configurations (Figure 2). A local-
scale ROMS is configured for the domain including the
RIS, the BIS, the Long Island Sound (LIS) and the adjacent
inner shelf area, with a horizontal grid varying from 600 m
over the RIS and BIS to 1 km along the boundaries. A
regional-scale ROMS grid covers the Gulf of Maine/
Georges Bank and New England shelf region and is
enclosed by an open boundary from the New Jersey shelf to
the Nova Scotia shelf, with a constant horizontal resolution
of 5 km. Both models have 15 terrain-following layers in
the vertical, and the topography is derived from the 15 sec-
ond resolution bathymetry data from the Coastal Relief
Model of the National Oceanic and Atmospheric Adminis-
tration’s Geophysical Data Center. The local-scale ROMS
is one-way nested within the regional-scale ROMS for
specifying its open boundary conditions.

[12] The open boundary conditions for the regional-scale
ROMS are derived from a global eddy resolving model sim-
ulation produced by the Hybrid Coordinate Ocean Model
(HYCOM)/Navy Coupled Ocean Data Assimilation
(NCODA). HYCOM/NCODA provides daily three-
dimensional ocean state variables at a resolution of 1/12� in
both longitude and latitude and 32 vertical layers. The output
used for this study spans 6 years from January 2004 to De-
cember 2009, and a monthly climatology of each variable

(velocity, temperature, and salinity) is also obtained to use
as boundary conditions for the model’s spinup run. Specifi-
cally, for tracers and baroclinic velocity we apply radiation
conditions with nudging toward HYCOM/NCODA solu-
tions; the nudging time scale varies linearly from 5 to 60
days over an eight gridpoint wide buffer zone along the open
boundaries. For both the free surface and depth-averaged ve-
locity we use the method of Flather [1976] with external
subtidal values defined by HYCOM/NCODA plus tidal har-
monics from five tidal constituents (M2, N2, S2, O1, K1) in
an Advanced Circulation Model for Oceanic, Coastal and
Estuarine Waters (ADCIRC) tidal simulation of the western
Atlantic [Luettich et al., 1992]. The latter tidal input pro-
vides needed tidal mixing, which is an important element of
the regional circulation [e.g., He and Wilkin, 2006; Chen
and He, 2010]. In addition, we choose a quadratic drag for-
mulation for bottom stress, and the Mellor-Yamada Level
2.5 turbulence closure for vertical mixing.

[13] Monthly surface atmospheric forcing fields (includ-
ing winds, air temperature, air pressure, relative humidity,
rainfall rate, short wave, and long wave radiations) are
obtained from a new National Centers for Environmental
Prediction (NCEP) global reanalysis [Saha et al., 2010],
which is available in a resolution of 0.5� longitude � 0.5�

latitude. To serve as surface forcing conditions for the
spinup runs, a monthly climatology of each field is also
derived with the new NCEP data from January 2004 to De-
cember 2009. Bulk formulae are used to calculate latent
and sensible heat fluxes. For the long-term computations,
in order to constrain the drift of surface flux, the common
practice is to relax temperature and salinity to their
observed values. Here for the regional-scale ROMS, we
implement a thermal correction following He and Weisberg
[2002]:

Figure 2. Model configurations. The local-scale ROMS grid (plotted every 8 grid points) varies from
600 m over the RIS and BIS to �1 km along the boundaries. The regional-scale ROMS grid (plotted ev-
ery 4 grid points) is uniform with a resolution of 5 km.

LUO ET AL.: CIRCULATION IN THE RHODE ISLAND SOUND

4074



KH
@T

@Z
¼ Q

�Cp
þ cðTobs � TmodÞ

where KH is the vertical diffusivity coefficient, Q is the net
heat flux, � and Cp are the seawater density and specific
heat capacity, respectively. The relaxation coefficient,
c¼ 0.8 m/day, represents the reciprocal of the restoring
time per unit area, and Tobs is the daily blended cloud-free
sea surface temperature from the Jet Propulsion Laboratory
(http://mur.jpl.nasa.gov/index.php). In addition, the sea
surface salinity is restored to a monthly climatology from
HYCOM.

[14] Fresh water outflow is incorporated using the United
States Geological Survey (USGS) stream gauge data from
15 major rivers. These are, from south to north, Hudson
River, Housatonic River, Connecticut River, Pawcatuck
River, Pawtuxet River, Blackstone River, Taunton River,
Neponset River, Merrimac River, Saco River, Androscog-
gin River, Kennebec River, Penobscot River, St. Croix
River, and St. Johns River. In these experiments, the baro-
tropic and baroclinic time steps are 10 and 300 s, respec-
tively, for the regional-scale ROMS, and are 5 and 150 s,
respectively, for the local-scale ROMS.

[15] Initialized with a resting ocean and with temperature
and salinity set to the January climatologies, the models are
first spun up with the monthly climatological forcing for 5
years, and then integrated with the surface and open bound-
ary forcing from January 2004 to December 2009. We label
this set of experiments as ‘‘REAL’’ (Table 1), with results
to be presented in sections 5 and 6.

[16] In addition to the REAL experiments we have also
performed a pair of experiments with the ROMS models to
examine the response of the oceanic circulation to global
warming in which both atmospheric forcing and open
boundary conditions are obtained from the MIROC3.2
model of the Fourth Assessment Report (AR4) of the Inter-
governmental Panel on Climate Change (IPCC). This mod-
el’s ocean component has the highest horizontal resolution
(0.28� longitude � 0.18� latitude) of the entire collection of
IPCC AR4 coupled models available from the Program for
Climate Model Diagnosis and Intercomparison (PCMDI)
data center. Specifically, simulations from 1991 to 2000 in
20C3M are selected to represent the present-day climate,
and simulations from 2091 to 2100 in SRESA1B represent
the future climate. The 20C3M experiments simulate the

20th century climate where atmospheric CO2 concentra-
tions and other input data are based on historical records.
The SRESA1B scenarios represent a climate in which
atmospheric CO2 concentrations double their present-day
level in the year 2100. This pair of experiments are called
‘‘CTRL’’ and ‘‘WARM’’ (Table 1), respectively, and
results from them will be examined in section 7.

[17] Another experiment is configured for verifying
model fidelity and for testing our hypothesis regarding the
cyclonic circulation in the RIS. For this experiment we iso-
late tidal forcing from all other forcing in which tidal har-
monics are applied to the model open boundaries and the
ocean is configured with constant temperature (14�C) and
salinity (35 psu). We call this experiment ‘‘TIDE’’ (Table
1), and its results will be discussed in the next section.

3. Tidal-Induced Circulation

[18] There are five tidal constituents (M2, N2, S2, O1, K1)
in and around the RIS that represent �80% of the variance
of the total depth-averaged tidal kinetic energy, with the
M2 constituent dominating the energy (between 85% and
90%) [Codiga and Rear, 2004]. As a result, evaluation of
the tidal motion within the model is an important prerequi-
site to any model investigation.

[19] To verify the modeled tidal simulations we compare
them with observations from tidal stations [Mau et al.,
2007; Moody et al., 1984] and Coastal Ocean Dynamics
Applications Radar (CODAR) [Ullman and Codiga, 2004],
with the root-mean-square error (RMSE) used as a measure
of precision. Table 2 lists both observed and modeled M2

amplitude and phase at 17 stations. It is found that the
model results are in good agreement with the observations,
with the RMSEs of the amplitude and the phase being
about 4 cm and 6�, respectively. In addition, a comparison
of surface tidal ellipses of M2 between the simulations and
the observations further confirms the model’s tide-
simulating performance. In the offshore area (Figure 3a),
the RMSE is about 2 cm/s for both the semimajor and semi-
minor axes, with the discrepancy smaller south of the RIS
than off Long Island. Similar errors in the latter region
have been found in previous modeling works [Mau et al.,
2007; Oey et al., 1995], and are attributed to surface wave
contamination in the observations [Myers et al., 1990]. In
and around the BIS (Figure 3b), the general structure of the

Table 1. List of Experiments with ROMS

Name

Forcing

MotivationTides (M2, S2, N2, O1, K1)
Climatological River

Discharges

Oceanic and
Atmospheric Forcing

Fields

TIDE Yes No No Tidal residual current
REAL Yes Yes Yesa Seasonal and interannual variability
REAL�NoR Yes No Yesa Role of river discharge
REAL�NoRT No No Yesa Role of tides
CTRL Yes Yes Yesb Control run
WARM Yes Yes Yesc Response to global warming

aAtmospheric surface forcing from 2004 to 2009 in NCEP and oceanic open boundary conditions from 2004 to 2009 in HYCOM/NCODA.
bBoth atmospheric surface forcing and oceanic open boundary conditions from 1991 to 2000 in 20C3M from MIROC3.2.
cBoth atmospheric surface forcing and oceanic open boundary conditions from 2091 to 2100 in SRESA1B from MIROC3.2.
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tidal flow is also well represented by the model, with the
RMSE being about 2 cm/s for the semimajor axis and 1
cm/s for the semiminor axis. In addition to the M2 constitu-
ent, the modeled results of the other four tidal constituents
(N2, S2, O1, K1) are also consistent with the observations
(Figures 3c–3f).

[20] Residual (rectified) currents, which are mostly gen-
erated by nonlinear interactions between the currents and
topography, play an important role in the local circulation
and net water transport. To extract the tidal residual cur-
rents (Figure 4), the model currents are averaged over the
last month of the 4 month long run. To the south of Mar-
tha’s Vineyard, there is a westward current with amplitude
of a few centimeters per second. The westward current
bifurcates in two directions in the southeast of the RIS: one
branch moves continuously westward and one turns north-
ward to form a cyclonic circulation in the RIS. To the
southeast of Block Island, the two branches of the current
join to move toward the southwest. To the northeast of
Montauk Point, there is a relatively large amplitude east-
ward current in excess of 5 cm/s. When encountering Block
Island, the current bifurcates with its southern branch
reflected to the southwest, and its northern branch flowing
into the RIS. The residual current forms an anticyclonic cir-
culation pattern around Block Island. This is an important
feature that our model captures, which is also observed in
the modeling work of Edwards et al. [2004]. Another im-
portant feature captured by our model is an anticyclonic
circulation to the southeast of Montauk Point, which is gen-
erally believed to be a headland eddy that is generated
when strong currents pass the headland [e.g., Pingree and
Maddock, 1979].

4. Model Validation

[21] Before presenting our model results on seasonal and
interannual time scales, model solutions are first compared
with the limited observations. Figure 5 shows a direct com-

parison of mean depth-averaged shelf currents at 15 loca-
tions over the MAB between the model and the
observations. The observations are from Lentz [2008a] in
which he obtains the depth-averaged currents by analyzing
current time series longer than 200 days. The model results
are from Experiment REAL in which the mean currents are
obtained by averaging the model integration period from
2004 to 2009. Both the observations and the model show
that the mean velocities at all 15 sites are equatorward and
approximately along-isobath, with larger speed of �10 cm/
s on the outer shelf and smaller speed of about a few centi-
meter per second on the mid and inner shelf. While differ-
ences in both speed and direction are present for each pair
of comparisons, the model overall does a good job, with
the RMSEs of the speed and the direction being about 1
cm/s and 10�, respectively. These differences could be due
to the model resolution and topographic smoothing.
Another comparison we have made between the model and
the observations is the alongshelf volume transport at three
cross-shelf transects within the MAB (Table 3). It is found
that the model captures the alongshelf transport at the
Georges Bank and Cape Cop transects reasonably well, but
underestimates the transport at the Long Island transect. On
average, the modeled transport appears to be �11% weaker
compared with the observations.

[22] To further verify the modeled simulations we com-
pare them with the observations at the central site of the
Coastal Mixing and Optics Study (CMO) mooring array
[Dickey and Williams, 2001]. Deployed on the New Eng-
land shelf south of Cape Cop from August 1996 through
June 1997, the CMO mooring observations span the sea-
sonal stratification cycle and are the only long time series
of conductivity throughout the water column with both
along- and cross-isobath resolution on the New England
shelf [Shearman and Lentz, 2003]. The CMO mooring
array consist of four sites that are separated by about
10 km. Here we choose the observations of currents from
the densely instrumented central site (located at 40�

29.50N, 70� 30.50W with water depth of 70 m) to validate
our model results. Figure 6 shows seasonal mean currents
at this site from the observations and the model. The mean
currents are described in term of their along- and cross-
isobath components. The isobath angle is defined as a line
running along 110/290�T in accordance with CMO publica-
tion convention. Positive along-isobath flow is roughly
eastward and positive cross-isobath flow is roughly north-
ward (on-shelf). In both the observations and the model,
the mean along-isobath flow is westward at all depth and
for all seasons, and its magnitude is largest in the fall and
smallest in the spring and is the principal seasonal varia-
tion. In agreement with the observations, in addition, the
modeled seasonal mean along-isobath currents reach their
maxima at a depth of about 10–20 m but the cross-isobath
flow is slightly stronger near the surface during winter
resulting from a stronger wind stress [Shearman and Lentz,
2003]. Compared to the observations, however, the model
has some discrepancies especially near the bottom in which
the modeled currents appear to be weaker particularly dur-
ing fall when the bottom cross-isobath flow moves on-shelf
in the model while it is off-shelf in the observations. This is
due in part to a relatively coarse vertical resolution near the
bottom in the model. Table 4 presents the mean currents

Table 2. Comparison between Modeled and Observed Amplitude
and Phase of the M2 Tidal Elevation at Stations Around the RIS

Longitude
(�W)

Latitude
(�N)

Amplitude (m) Phase (�)

Observed Modeled Observed Modeled

70.67 41.63 0.54 0.52 8 0
70.77 41.33 0.45 0.37 2 �9
71.05 41.15 0.44 0.42 1 �3
71.32 40.72 0.44 0.43 �11 �7
71.33 41.50 0.51 0.49 1 0
71.87 40.25 0.47 0.45 �12 �10
71.82 41.08 0.34 0.34 11 1
72.00 40.20 0.47 0.45 �11 �10
72.25 40.65 0.50 0.47 �14 �12
72.32 40.57 0.48 0.48 �13 �12
72.92 40.12 0.53 0.52 �12 �11
73.23 40.00 0.55 0.54 �9 �9
73.57 40.13 0.59 0.58 �10 �9
73.50 40.47 0.65 0.60 �7 �11
72.09 41.36 0.37 0.36 58 44
73.18 41.17 0.99 0.86 110 116
73.77 40.81 1.14 1.12 116 125
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over the CMO period from the observations and the model.
Again, it can be seen that the model has a better perform-
ance at the surface and middepth but significantly underes-
timates the magnitude of the flow near the bottom, leading
to an underestimation of the depth-averaged flow at the
location.

[23] On the New England inner shelf, our model results
also show a reasonable agreement with the observations.
Figure 7 compares the depth-averaged velocity fields in May
in an area south of Block Island between the observations
and the model. The velocity profile observations were
obtained for the 2000–2001 period from the Front-Resolving
Observational Network with Telemetry project [Ullman and
Codiga, 2004]. The comparison shows that the model cap-
tures the southwestward motions at 9 out of 10 mooring sta-
tions, and the currents increase down-shelf (southwestward)
from about 5 cm/s to 10–15 cm/s in both the observations
and the model. The flow originating from the RIS strength-
ens southeast of Montauk Point because the outflow from
the LIS joins it there [Ullman and Codiga, 2004].

[24] Mooring observations used to validate our model
results on interannual time scales come from the Northeast-

ern Regional Association of Coastal and Ocean Observing
Systems (NERACOOS; http://neracoos.org/datatools/his-
torical/graphing_download). In order to fit the model tem-
poral coverage and to ensure the best availability of the
observations in each depth, we select the mooring station
B01 (located at 43�10.80N, 70�25.60W in the Western
Maine shelf). In addition, a 30 day low-pass filter is applied
to both modeled results and mooring observations. A com-
parison of observed and modeled velocity at a depth of 10
m is shown in Figure 8, where it can be seen that the model
captures the seasonal and interannual variability of the ve-
locity reasonably well. The model discrepancy is partly due
to the model resolution and topographic smoothing. Figure
9 shows good agreement between the modeled and
observed temperature with correlation coefficients over 0.9
at all three depths. While the implementation of the surface
heat flux relaxation scheme effectively constrains surface
temperature from drifting, the fact that the model generally
tracks subsurface temperatures (i.e., 20 and 50 m) suggests
that the turbulence and advection processes are realistically
simulated by the model. In addition to the model resolution,
the discrepancy may be also due to the surface forcing

Figure 3. Comparison of tidal ellipses between the model (blue ellipses) and observations (red ellip-
ses) from (a) current meter and (b–f) CODAR.
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where we have used monthly means instead of daily values.
For salinity comparisons (not shown), we find that, while
the model generally captures the observed 2004–2009 sa-
linity variations, the discrepancy for salinity is more nota-
ble than that for temperature, with the largest difference
being �3 psu near the surface. Too coarse model resolution
has been recognized as a problem for accurate salinity sim-
ulation [Fong and Geyer, 2002]. In addition, the model dis-

crepancy is also due to the climatological river discharge
that we have used for the simulation, because salinity at the
mooring station B01 is tightly associated with river runoff,
particularly the occasional strong rainfall. Such caveats
leave room for future model improvement.

[25] Finally, we examine the model skill in reproducing
the sea surface height. For model validation purposes, we
obtain 1/3� � 1/3� along-track sea surface height anomaly

Table 3. Alongshelf Volume Transport at Three Cross-Shelf Transects Within the MABa

Transect Latitude (�N) Longitude (�W) Shelfbreak Depth (m) Observed Transport (106 m3 s�1) Modeled Transport (106 m3 s�1)

Georges Bank 41�170 67�430 95 0.44 0.42
Cape Cod 41�200 70�330 125 0.64 0.61
Long Island 40�450 72�490 90 0.41 0.30

aThe position of the coastal end of each transect and the water depth at the shelf break are also listed. The modeled results are from Experiment REAL
with the regional-scale ROMS, and the observations are from Lentz [2008a].

Figure 5. Comparison of mean depth-averaged currents between the model (blue arrows) and observa-
tions (red arrows). The modeled results are from Experiment REAL with the regional-scale ROMS, and
the observations are from Lentz [2008a]. The thick gray line is the satellite track, along which the SSHA
data were sampled. The 50, 100, and 1000 m isobaths are also shown.

Figure 4. Depth-averaged tidal residual currents from Experiment TIDE.
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(SSHA) from the Archiving, Validation, and Interpretation
of Satellite Oceanographic data (AVISO) [Rio and Herna-
dez, 2004]. Three satellite tracks fall inside our regional-

scale model domain. Among these, we select a cross-shelf
track (thick gray line in Figure 5) that has the most cover-
age over the model domain and data available through the

Figure 6. Profiles of the fall, winter, and spring along-isobath and cross-isobath mean currents at the
CMO central site from: (a) observations [Shearman and Lentz, 2003] and (b) model (Experiment
REAL).
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model integration period. In addition, because the along-
track satellite data are only available every 9.9 days, for
direct comparison we sample our modeled subtidal SSHA
at the same time when altimeter observations are available.
The Hovm}oller diagrams of the satellite-observed and
model-simulated SSHA along the selected track are shown
in Figure 10. Along the track, both AVISO and ROMS
indicate that large SSHA with a magnitude of up to 0.5 m
occurs offshore near the Slope Sea, where energetic mean-
ders and eddies often exert strong spatial-temporal influ-
ence on the shelf circulation. Although the model misses
some of the fine-scale sea level structures, it captures the

seasonal and interannual variability of the sea level reason-
ably well.

[26] These favorable model-observation comparisons
discussed above suggest that the model is reliable for
understanding the mean circulation and its seasonal and
interannual variability (especially for the upper ocean)
over the southern New England shelf and coastal
regions.

Table 4. Subtidal Currents at the CMO Central Mooring Sitea

Data

Mean

Magnitude (cm/s) Direction (oT)

Surface
Observed 8.66 246
Modeled 9.72 260
30 m
Observed 8.40 275
Modeled 8.23 276
60 m
Observed 5.35 270
Modeled 1.96 285
Vertical Average
Observed 7.74 270
Modeled 6.26 276

aThe modeled results are from Experiment REAL with the regional-
scale ROMS, and the observations are from Cowles et al. [2008].

Figure 7. Comparison of the depth-averaged velocity
fields in May between the model (blue arrows) and obser-
vations (red arrows). The modeled results are from Experi-
ment REAL with the local-scale ROMS, and the
observations are from Ullman and Codiga [2004].

Figure 8. Comparison of observed and simulated velocity time series at NERACOOS mooring station
B01.
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5. Seasonal Variability of the Circulation

[27] Monthly and annual mean velocity fields are
obtained from the output of the REAL experiment. Figures
11 and 12 show the annual mean surface circulation as well
as its seasonal variability from the regional-scale and local-
scale model simulations, respectively. Consistent with pre-
vious studies, regional features of the surface annual mean
circulation over the US Northeastern Continental Shelf
(Figure 11a) include a flow entering the Gulf of Maine
from the Scotia shelf, a cyclonic circulation in the Gulf of
Maine, an anticyclonic circulation on the Georges Bank,
and a southwestward alongshelf flow on the southern New
England shelf. This alongshelf mean flow over the outer
shelf (at depths greater than �50 m) appears to increase
with increasing depth and reaches �10 cm/s around the
100 m isobath. On the inner shelf off southern New Eng-
land (Figure 12a), the alongshelf mean flow is generally a
few centimeters per second with a maximum of �20 cm/s
to the southeast of Montauk Point. This local increased
alongshore circulation could be caused by the strong tidal
residual currents there as discussed above (see Figure 4)
and/or the freshwater discharge from the Connecticut
River, and will be investigated later in this section. In addi-
tion, the surface mean flow also features a weak cyclonic
circulation within the RIS and a strong anticyclonic circula-
tion around Block Island.

[28] Seasonal variations of the surface circulation appear
to be significant over the entire US Northeastern Continen-
tal Shelf (Figures 11b–11e). In the Gulf of Maine, the cy-
clonic circulation is present throughout the year but

appears to be stronger during winter. On the Georges Bank,
the anticyclonic circulation is weaker during winter and
spring and is stronger during summer and fall, with more
significant changes over the northern flank of Georges
Bank. Over the southern New England shelf region, the
weak southwestward flow is strengthened during spring
and summer, and becomes strongest in early fall, and is
then weakened in winter. At the New England continental
slope, the modeled southwestward jet appears strongest in
March; this jet is believed to be dominated by relatively
low-frequency processes originating in the open ocean such
as GS warm core rings and topographic Rossby waves
[e.g., Houghton et al., 1988; Beardsley et al., 1985; Linder
and Gawarkiewicz, 1998; Fratantoni and Picket, 2003]. In
the RIS (Figures 12b–12e), after a rapid intensification in
spring, the cyclonic circulation becomes very strong (with
a maximum of �10 cm/s) during summer and early fall,
and then gradually weakens and disappears in winter when
the surface currents appear offshore and southeastward. In
addition, during late spring and early summer the south-
westward currents to the southeast of Montauk Point reach
a maximum (�25 cm/s), which may be associated with the
freshwater discharge from the Connecticut River reaching
a maximum then.

[29] To understand the seasonal variations of the circula-
tion, a series of process-oriented numerical experiments
with both the regional-scale and local-scale models are
implemented to investigate the roles of various forcing
mechanisms in shaping the seasonal changes to the circula-
tion in and around the RIS. Removing the river discharge

Figure 9. Comparison of observed and simulated temperature time series at NERACOOS mooring sta-
tion B01.
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along the coast (Experiment ‘‘REAL_NoR’’; see Table 1),
it is found (comparing Figure 13 with Figure 12) that while
the cyclonic circulation in the RIS has changed little, the
anticyclonic circulation around Block Island as well as the
alongshore flow southeast of Montauk Point is significantly
weakened, with the most significant weakening in spring
thus confirming that the large flows observed there are
indeed induced by the river discharge which reaches its
maximum during spring. However, the influence of the
river discharge is confined to the inner shelf area; there is
no significant change in the circulation over the outer shelf
region in the experiments without the river discharge (not
shown).

[30] Further removing the tidal forcing from the experi-
ments (Experiment ‘‘REAL_NoRT’’; see Table 1), we find
(comparing Figure 14 with Figures 12 and 13) that the gen-
eral circulation signatures in and around the RIS disappear
for all seasons. Instead, the surface flow is very sluggish in
both spring and fall, and it appears offshore with its direc-
tion tending toward the east-southeast during summer and
toward the south-southeast during winter. These circulation
patterns are due mainly to wind forcing that is weak in
spring and fall, and predominantly northeastward in
summer and southeastward in winter. According to Ekman
dynamics, a steady wind blowing across an unstratified
ocean of unlimited depth and extent causes surface waters
to move at an angle of 45� to the right of the wind in the
Northern Hemisphere. When the water depth is shallower
than the Ekman depth, however, the surface flow steers to
the right of the wind direction with a much smaller angle
and even appears downwind near the coast. Based upon the

definition of the Ekman layer depth DE ¼ 7:6
ffiffiffiffiffiffiffiffi

sinj’j
p U10 [Stew-

ard, 2008], we find DE¼ 47m (here ’¼ 41�N is the lati-
tude and U10¼ 5 m/s is the wind speed at 10 m above the
sea) and that is larger than the water depth over the south-
ern New England inner shelf.

[31] During summer, however, the effect of wind forcing
near the Rhode Island coast is opposed by the geostrophic
currents that are in balance with density difference between
coastal and interior regions. Figure 15 shows the density
and u-component of velocity (the velocity component per-
pendicular to the transect) fields in July along a section
near the northern RIS coast (red line in Figure 12a) from
the above three experiments. Consistent with observations
[Kincaid et al., 2003], isopycnals dig downward from south
to north across the northern RIS coastal region (Figures 15a
and 15b), which results in a westward geostrophic current
along the coast [e.g., Brooks, 1985]. Comparing Figure 15c
with Figures 15a and 15b, it is clear that the tidal forcing is
responsible for the strong westward velocity across the sec-
tion during summer, with its volume transport being 1.48 �
104 m3/s in REAL and 1.35 � 104 m3/s in REAL_NoR, but
only 0.58 � 104 m3/s in REAL_NoRT.

[32] Based upon our model simulations, we plot a
schematic diagram in Figure 16 illustrating the surface
circulation during summer in and around the RIS. A
branch of the westward currents southwest of Martha’s
Vineyard turns northward and flows around the periphery
of RIS to form a cyclonic circulation within the RIS. To
the southeast of Block Island, the flow moves toward the
southwest. In the BIS, an eastward current bifurcates

Figure 10. Hovm}oller diagrams of satellite-observed and model-simulated SSHA along the cross-shelf
transect for the period from January 2004 to October 2008.
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before encountering Block Island; one branch continues
to flow eastward into the RIS and forms an anticyclonic
circulation around Block Island while another branch
turns southward to flow out of the BLS and then moves
southwestward alongshore. We note that this schematic

is supported by the limited observations [Codiga, 2009;
Codiga and Ullman, 2010].

[33] The process-oriented experiments above suggest
that the cyclonic circulation within the RIS during
summer is attributed to a combination of tidal forcing

Figure 11. Surface velocity from Experiment REAL with the regional-scale ROMS: (a) Annual mean,
(b) March, (c) June, (d) September, and (e) December. The thick red line in Figure 11a is the section ref-
erenced in Figure 17b. The 50, 100, and 1000 m isobaths are also shown.
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and density differences between coastal and interior
regions. The tidal forcing not only forms the residual
current which directly contributes to the cyclonic circu-

lation (see Figure 4), but also produces the mixing
which plays a more important role for the cyclonic cir-
culation (comparing Figure 14c with Figures 12c and
13c, and Figure 15c with Figures 15a and 15b). During
winter, the northwesterly winds turn the surface cur-
rents offshore. The freshwater discharge from the rivers

Figure 13. Same as Figure 12 but from Experiment
REAL-NoR.

Figure 12. Surface velocity from Experiment REAL
with the local-scale ROMS: (a) Annual mean, (b)
March, (c) June, (d) September, and (e) December. The
thick red line in Figure 12a is the section referenced in
Figure 15.
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along the coast (mostly from the Connecticut River)
does not play an important role for the RIS circulation,
but it does significantly influence the flow around Block
Island as well as on the inner shelf area south of Mon-
tauk Point.

6. Interannual Variability of the Circulation

[34] In addition to the seasonal variability, the regional
circulation has interannual changes that appear to be related
to the North Atlantic Oscillation (NAO). The NAO refers

Figure 14. Same as Figure 12 but from Experiment
REAL-NoRT.

Figure 15. July density (contour interval (CI)¼ 0.1 kg
m�3) and u-component velocity fields (color in cm s�1)
along a section near the northern RIS coast (see Figure
12a) from Experiments (a) REAL, (b) REAL-NoR, and (c)
REAL-NoRT.
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to a redistribution of atmospheric mass between the Arctic
and subtropical Atlantic. Swings from one phase to another
produce large changes to both the mean wind speed and
direction over the Atlantic, and the heat and moisture trans-
port between the Atlantic and the neighboring continents
[Hurrell et al., 2003]. A gyre-scale circulation response is
also likely associated with this atmospheric variability. The
strength of the NAO is quantified by an index based upon
the average atmospheric pressure difference between the
Azores and Iceland. High (low) values of the NAO index
reflect enhanced (diminished) midlatitude westerly and
trade winds, with related shifts in wind patterns and inten-
sities of air-sea exchanges of heat, freshwater, and momen-
tum. During the period of the model integration (2004–
2009), the NAO index fluctuated considerably (Figure
17a), with high NAO years of 2004 and 2007, and low
NAO years of 2005–2006 and 2008. In addition, the index
shows a falling trend during this period of time.

[35] In response to the change in surface forcing, the
ocean circulation changes accordingly. There have been a
number of studies investigating the circulation change in
the northwestern Atlantic Ocean with different NAO
phases. For example, southwestward flow along the shelf
edge from the Scotian shelf to Georges Bank is observed to
increase by 1–2 Sv during the low NAO in the 1960s com-
pared to the high NAO in the 1970s [Loder et al., 2001].
The Labrador Current (LC) is found to be reduced by �0.4
Sv south of Newfoundland over a period of high NAO in
the 1990s [Luo et al., 2006]. Effects of the NAO are also
observed in the position of the north wall of the GS, which
moves northward during positive phases and southward
during negatives with a lag of about 1–2 years [e.g., Taylor
and Stephens, 1998; Rossby and Benway, 2000; Dong and
Kelly, 2003]. In addition, recent studies reveal that there is
a significant correlation between near-surface transport in
the GS and the NAO index [Rossby et al., 2010], as well as
between GS warm-core rings and the state of the NAO
[Chaudhuri et al., 2009].

[36] In this section, we focus on how the circulation over
the southern New England shelf as well as the RIS
responds to associated changes in surface forcing during
2004–2009. First, we select a section near the shelf break

Figure 16. Schematic of the surface circulation during summer in and around the RIS.

Figure 17. (a) Five month low-pass NAO index from
2004 to 2009 (data from www.cpc.noaa.gov/products/pre-
cip/CWlink/pna/norm.nao.monthly.b5001.current.ascii) ;
(b) Five month low-pass alongshelf transport from 2004 to
2009 along a section over the southern New England shelf
break (see Figure 11a) from Experiment REAL with the
regional-scale ROMS; and (c) Standardized time series of
the NAO index and the alongshelf transport with peak-
correlation time lag¼ 13 applied and the sign of the second
time series reversed. The dashed lines in Figures 17a and
17b represent their trends, respectively.
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Figure 20. (a) Surface velocity in a present-day climate (CTRL) and (b) its change from a warming cli-
mate (WARM minus CTRL). The present-day climate is represented by an average over years 1991–
2000, and the future warming climate is that over years 2091–2100.

Figure 19. January wind stress fields: (a) 2005 and (b) 2007.

Figure 18. Velocity fields from Experiment REAL with the local-scale ROMS: (a) surface layer on
January 2005, (b) bottom layer on January 2005, (c) surface layer on January 2007, and (d) bottom layer
on January 2007.
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of southern New England (red line in Figure 11a), and cal-
culate volume fluxes across the section (positive toward the
southwest). From Figure 17b we see that there is significant
interannual variability in the alongshelf transport with rela-
tively smaller values during 2005 and 2008 (corresponding
to the high NAO years of 2004 and 2007; Figure 17a), and
larger values during 2006–2007 and 2009 (corresponding
to the low NAO years of 2005–2006 and 2008; Figure
17a). To further examine the relationship between the
alongshelf transport and the NAO index, after both time se-
ries are standardized by removing their mean values and
linear trends and then dividing by their standard deviations,
we estimate their lagged correlation. The result shows that
the correlation coefficient is highest (negatively) when the
transport lags behind the index by 13 months. Figure 17c
presents the two standardized time series in which the 13
month time lag is applied and the sign of time series of the
transport is reversed. We find that the two lines in Figure
17c overlay quite well, indicating more clearly that the cir-
culation near the shelf break intensifies (weakens) during
negative (positive) phases of the NAO with a lag of 13
months. Of equal interest, the alongshelf transport appears
to have a rising trend (Figure 17b), corresponding to the
falling trend in the NAO index (Figure 17a). This provides
additional evidence linking the response of the regional cir-
culation in the northwest Atlantic to the NAO.

[37] Since the circulation over the MAB is closely
related to the LC upstream and the GS to the south, the
relationship between the NAO and the alongshelf transport
can be explained by the lagged responses of the LC trans-
port and the GS shift to the NAO. For example, associated
with the low NAO index during the winter of 1996, the
Labrador Slope Water was observed to extend southward
along the edge of the Scotian shelf in the autumn of 1997
and reach the MAB by early 1998 [Drinkwater and Gilbert,
2004]. The presence of the Labrador Slope Water is related
to the volume transport of the LC [Petrie and Drinkwater,
1993], which in turn, is related to the NAO index [Marsh et
al., 1999; Drinkwater et al., 2003]. This is also demon-
strated by Han [2002], who presents interannual sea level
changes from the Laurentian Channel to the MAB in the
1990s from satellite altimetry and tide-gauge data. The sea
level falls rapidly in early 1997–1998 from the eastern Sco-
tian shelf to the MAB, which is attributed to an increase in
the LC transport and a southward shift in the GS position.

[38] However, such a relationship does not exist between
the RIS circulation and the NAO index. Instead, the model
results reveal that the circulation patterns and magnitudes
in the RIS are quite different between the low and high
NAO winters, and the difference is found throughout the
whole water column. For example, in the winter of 2005,
the surface flows (Figure 18a) are southward and relatively
sluggish (2�3 cm/s) ; in the bottom layer (Figure 18b),
there are westward currents originating from south of Mar-
tha’s Vineyard along the inner shelf to balance these sur-
face offshore transports. In the winter of 2007, however,
the surface flows in the RIS (Figure 18c) are southeastward
and very strong (8�10 cm/s), while the replenished water
in the bottom layer (Figure 18d) is largely coming from the
outer shelf and moving up-shelf northward. Another signifi-
cant difference is that the strong surface flow out of the BIS
turns southwestward along the shelf in the winter of 2005

(Figure 18a), different from that in the winter of 2007 that
turns southeastward across the shelf (Figure 18c). A look at
the atmospheric forcing reveals that these circulation dif-
ferences in and around the RIS can be attributed to a
change in the local wind stress from one NAO phase to
another according to Ekman layer dynamics. Figure 19
shows the wintertime wind stress fields for the low NAO
year of 2005 (Figure 19a) and the high NAO year of 2007
(Figure 19b). The latter shows that the wind is much inten-
sified and its direction turns to the east-southeast from the
south-southeast. This result further indicates the important
role of the wintertime winds for the local circulation in the
RIS, supporting an opinion by Lentz [2008b].

7. Response of the Circulation to Global
Warming

[39] Robust changes of global ocean circulation have
been projected based upon coupled climate models under
global warming scenarios [e.g., Meehl, et al., 2007; Vecchi
and Soden, 2007; Luo et al., 2009; Collins et al., 2010;
Luo and Rothstein, 2011]. However, it is less clear how the
regional ocean circulation responds to global warming. In
this section, a dynamical downscaling approach is adopted
in which global climate model outputs are used to provide
atmospheric forcing and ocean open boundary conditions
for both the present-day climate and the future warmer cli-
mate experiments with the ROMS models, and the differen-
ces between their solutions are identified as the response of
the regional ocean circulation to global warming. Note that,
since the global climate model has a relatively coarse reso-
lution in both its atmosphere and ocean components, we do
not expect that the ROMS model here will accurately
reproduce in as much detail as did the realistic simulations
from 2004 to 2009 (which used more highly resolved ocean
open boundary conditions and atmospheric fluxes). We
therefore focus attention on only the major features of the
regional ocean circulation and investigate how those circu-
lation features will change in a warmer climate.

[40] Figure 20 shows the surface circulation in the
present-day climate and its response to global warming. It
can be seen from Figure 20a that the model does capture
the important features of the circulation including the cy-
clonic circulation in the Gulf of Maine, the anticyclonic cir-
culation around the Georges Bank, and the southwestward
alongshelf flow on the southern New England shelf as well
as the GS although it appears further north than reality
which is common to models with coarse resolution [Smith
et al., 2000]. As the climate warms (Figure 20b), it is found
that the modeled changes in the regional ocean circulation
exhibit a spatial pattern that is suggestive of more negative
NAO-like conditions such as a strengthening or expanding
of the cyclonic circulation in the Gulf of Maine, a speedup
of the anticyclonic circulation around the Georges Bank, an
intensification of the southwestward currents over the
southern New England shelf and slope, and a weakening or
a southward movement of the GS.

[41] A closer look at the open boundary and surface forc-
ing suggests that these changes in the regional ocean circula-
tion can be attributed to a combination of changes in the
remote forcing from the open boundary and in the local sur-
face heat fluxes. Comparing the future climate (Figure 21b)
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to the present-day climate (Figure 21a), the southwestward
coastal flow across the eastern boundary of the regional-
scale model is found to be significantly stronger, with its vol-
ume transport increasing by 0.4 Sv or 18% from 2.2 Sv in
the present-day climate to 2.6 Sv in the future climate. This
intensified flow carries fresher water along the coast into the
region, with a minimum salinity of �29 psu in the present-
day climate but only �28 psu in the future climate. In the
warming climate, on the other hand, more heat released
from the ocean to the atmosphere around the center of the
Gulf of Maine (Figure 22a) will result in accelerating the
geostrophic current along the coast, i.e., strengthening the
cyclonic circulation in the Gulf of Maine. However, global
warming induces a roughly northward wind stress change
over the region (Figure 22b) that may not contribute directly
to the changes of those current systems described above.

[42] Under the warmer climate scenario, the cyclonic
gyre in the RIS is also found to be intensified, with the
maximum velocity near the northern RIS coast being

increased by �1 cm/s or 33% from �3 cm/s in 20C3M to
�4 cm/s in SRESA1B (not shown). Since there is no signif-
icant change in the local forcing (both wind stress and heat
flux) from 20C3M to SRESA1B, the stronger cyclonic cir-
culation in the RIS is believed to be caused by the remote
forcing, i.e., by the intensification of the larger-scale
coastal ocean circulation over the southern New England
shelf in the warming climate.

8. Summary

[43] It has been observed that there is a jet-like current
near the northern RIS coast that is stronger in summer and
disappears in winter. To investigate the variability of the
RIS circulation and to understand the processes that cause
that variability we have used ROMS with two configura-
tions for which a local-scale model with very fine resolu-
tion over the RIS is nested into a regional-scale model

Figure 22. Differences of (a) ocean-to-atmosphere heat flux (color in W m�2) and (b) wind stress
(N m�2) between the two scenarios (SRESA1B minus 20C3M).

Figure 21. Salinity (CI¼ 0.5 psu) and u-component velocity (color in cm s�1; negative toward the
southwest into the region) along the eastern boundary of the regional-scale ROMS in Experiments (a)
CTRL and (b) WARM.
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covering the entire US Northeastern Continental Shelf.
Model solutions are first compared to observations, sug-
gesting that the model is reliable for examining the mean
circulation and its variability over the southern New Eng-
land shelf and coastal regions.

[44] Results from our model experiment hierarchy indi-
cate that there exists a cyclonic circulation within the RIS
during summer, resulting from a combination of tidal forc-
ing and density differences between coastal and interior
regions that are balanced by a geostrophic flow. In winter,
the northwesterly winds turn the surface flows offshore.
The freshwater discharge from the rivers along the coast
does not play an important role for the RIS circulation, but
it does significantly influence the flows around Block Island
as well as on the inner shelf area south of Montauk Point.

[45] In addition to the seasonal variability, our simula-
tions also show that the RIS circulation has interannual
changes that appear to be related to the NAO. During the
low (high) NAO winter, the surface flows are weak
(strong) toward the south (southeast) while the replen-
ished water in the bottom layer is largely westward (north-
ward). These differences are primarily due to the
difference in the local winds between the two NAO
phases. In addition, the southwestward jet near the south-
ern New England shelf break intensifies (weakens) during
the low (high) phases of the NAO with a lag of about 1
year. From 2004 to 2009, meanwhile, its volume transport
is found to have a rising trend, corresponding to a falling
trend in the NAO index.

[46] We have extended our experiments to investigate
the changes in the circulation under a warming climate. For
these experiments we have used atmospheric forcing and
open boundary conditions from global climate model out-
puts. We find that global warming will induce a stronger
cyclonic circulation in the RIS that is the result of an inten-
sification of the larger-scale coastal ocean circulation over
the southern New England shelf. In addition, as the climate
warms significant changes of the regional circulation also
consists of a speedup of both the cyclonic circulation in the
Gulf of Maine and the anticyclonic circulation around the
Georges Bank. These can be traced to an intensified coastal
inflow from the eastern open boundary of the regional-
scale model as well as an enhanced ocean-to-atmosphere
heat release around the center of the Gulf of Maine associ-
ated with a warming climate.
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