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Abstract — This study offers a new method for estimating High-
Frequency (HF) radar surface current velocity error in data
comparisons with other types of instrumentation. A new method is
needed in order to remove the zero-mean random spatial and
temporal fluctuations present in surface-current measurements
from all sensors. Conventional methods for calculating radar
error when comparing with another instrument have included
their root mean square differences and scatter plots that provide
correlation coefficient and slope/intercept of the regression line.
It seems that a meaningful estimate of radar error should attempt to
remove both sensors' zero mean random fluctuations, inasmuch
as possible. We offer and compare a method that does this. The
method was tested on data collected in the Central San Francisco
Bay, where GPS surface-drifter deployments were conducted
within the coverage of four 42 MHz radars over six days in October
of 2008. Drifters were continuously deployed in these areas over the
sampling days, providing 525 usable drifter measurements. Drifter
and radar measurements were averaged into thirty-minute time
bins. The three-day long-term averages from the sampling areas
were then subtracted from the thirtyminute averages to remove
biases associated with comparisons done with short, disjoint
time-sample periods. These were then used to develop methods
that give radar error or bias after the random fluctuations have been
removed. Results for error estimates in this study are commensurate
with others where random fluctuations have been filtered, suggesting
they are valid. The estimated error for the radars in the SF Bay
is low, ranging from -7.57 cm/s to 0.59 cm/s.

Key words — HF radar, remote sensing, surface currents, sensor
calibration, drifter, instrument bias

*Corresponding author. E-mail: don@codar.com

1. Introduction

The acceptance of HF radar as a valid instrument for
measuring surface currents has been achieved through
extensive validation studies (Paduan and Rosenfeld 1996;
Chapman et al. 1997; Ullman et al. 2003; Kaplan et al.
2005; Paduan et al. 2006; Ohlmann et al. 2007). Generally,
the validation studies involve comparing the measurements
of the HF radar to that of another instrument, most commonly,
the Acoustic Doppler Current Profiler (ADCP) or the surface
drifter. Over time, the methods used in these instrument-
toinstrument comparisons have evolved. This evolution is a
response to the unavoidable truth that trying to compare
measurements from different instruments in order to find
the error of one is nebulous, and — although straightforward
— is not well described as a root mean square difference
(RMSdiff) or correlation coefficient. The issue is that the
HF radar (HFR), ADCP, and surface drifter do not measure
the same processes over the same spatial or timescales.
Currents vary spatially across a given area due to turbulence
near the water’s surface. In addition, there is always sensor
noise to contend with. Some common causes of turbulence
include wind stress, breaking waves, and geographic influences
such as headlands and underwater sills. HFR does not have
the temporal or spatial resolution to determine details of the
small-scale turbulence. When relying on a correlation coefficient
or RMSdiff, differences in the measurements caused by
natural, zero-mean random short-term current variability,
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which we posit should not be considered instrument error,
are essentially incorporated into the estimation of error of
one instrument or the other, and generally tend to dominate
the desired comparison metrics.

This study takes a step forward in the instrument-to-
instrument comparison evolution by defining a method to
isolate the error in HF radar measurements when comparing
them to the measurements of GPS-tracked surface drifters
in the Central San Francisco (SF) Bay. We start in the next
section by examining the nature of sensor differences, based
on the desired sensor output. We will define a persistent,
long-term difference as a bias error, and that is the quantity
we seek here. Then one can focus on reducing or removing
this bias. The method devised here takes into account and
removes the natural random variability in the current field
that will be measured differently by the radar and drifter,
and then defines a bias error estimate for the radar. The
results of the new bias error estimate are presented alongside
the results from conventional statistical comparison methods.
The error estimates for the HF radars used in this study are
low, and vary minimally between the individual radar stations
The major objective of this manuscript is to present,
exemplify, and justify our new metric for HF radar error.

2. Meaning of Sensor Differences and Bias

A basic approach to establishing sensor accuracy is to
compare the output of one instrument to another’s, with the
assumption that one is more accurate than the other one
under examination, and therefore serves as the “standard.”
Tools that are used for this purpose have been: (i) The
difference between the outputs of the two sensors at the
same points in space and time; (ii) A scatter plot of these
points where the vertical and horizontal axes are the measured
values from each sensor; (iii) The correlation coefficient
between these points, which often accompanies the scatter
plot. If the measurements agree perfectly, then: (i) Their
difference is zero; (ii) The scatter-plot points fall on a
straight 45° line; (iii) Their correlation coefficient is unity.

Before examining and evaluating these three comparison
metrics, let’s consider why the measured output data points
may not agree, in order to guide discussion of what we
mean by sensor accuracy.

Random fluctuations in sensor measurements
Considering as our example HF surface current measurements,
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there are two sources of zero-mean random errors in sensor
measurements: (i) Turbulence at the surface induced by wind
gustiness / wave breaking, and the random nature of the
heights of the scattering waves themselves. These are
sometimes referred to as sub-grid-scale random variability.
(i1) Noise that gets added to the sensor signals, e.g. external
atmospheric and/or radio noise, or receiver thermal noise.
In nearly all cases, these fluctuations in each sensor’s signals
are uncorrelated with each other, because of the different
natures of the two instruments.

Such random fluctuations are not desired by the user, and
contaminate the geophysical quantity that the sensor was
intended to measure. Ocean observers using HF radar and
other current sensors are concerned about processes with
time scales greater than a half hour, and space scales of a
kilometer or larger. Although random fluctuations can be
reduced by averaging over space and time, tradeoffs dictate
upper limits to such averaging, otherwise required geophysical
information is filtered out. Hence, there will be some level
of random fluctuations remaining in the sensor outputs.
Any comparison will be imperfect due to these residual,
uncorrelated, small-scale sensor fluctuations.

Long-term bias or error in the sensor measurement

Comparisons that are meant to establish accuracy in the
ability to observe a geophysical quantity of interest normally
focus on assessing a bias or persistent error in the sensor’s
output. The present manuscript focuses on this type of error.
For example, does imperfection in or deterioration of the
instrument introduce a bias in its output, so that the sensed
quantity consistently differs from the true value? In order to
make this assessment, the comparison method must remove
as much of the random fluctuations as possible, which are
not desired nor are part of the long-term bias.

‘Which metrics capture the desired bias?

The correlation coefficient is almost meaningless in
capturing the bias. When considering the scatter plot, it is a
measure of the “point scatter” or dispersion about the best-
fit regression line. Consider an example. Two instruments
measure tidal currents, with no random fluctuations in
either signal. One sensor is biased so that it measures the
same tidal temporal pattern, but its amplitude is low by
50%. The correlation coefficient will be unity (perfect), but
the bias is unacceptable, i.e. 100% error by one measure.
Likewise, the scatter plot will show no point dispersion
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because they all fall along a single line. Here, however, the
line will not lie along the unbiased 45° position, but its slope
departure from this (as well as its non-zero intercept) is a
measure of the bias. Sensor data difference metrics will also
capture the bias; a long-term mean difference sees only the
bias, whereas RMS difference (RMSDifY) sees bias as well
as the turbulent fluctuations that are not part of the bias. The
main reason for this is that the zero-mean random fluctuations
are squared along with the bias in the RMSDiff before the
averaging, making it harder for them to be averaged out.

As another example, if there is zero-mean random variability
in the sensor outputs but no bias between them, then the
correlation coefficient may be poor, and RMS difference
may be large, but these poor metrics will have nothing to do with
sensor bias, which is zero. Based on these considerations
and examples, we develop two metrics in this paper that
separate the instrument bias from the random signal components
that may be present and are “noise” as far as the desired
geophysical quantity, but that must be dealt with in another
way (spatial and/or temporal averaging/filtering).

Sources of bias in HF radar

The three observables in HF radars for surface current
measurement are range, radial velocity (from Doppler), and
echo bearing. The dominant source of error in HF radar
systems has long been recognized to be bearing measurement;
the other two observables are precisely determined. Estimating
bearing in HF radars is done one of two ways: phased-array
beam forming (BF) and scanning, and direction finding (DF)
among the signals from multiple receive antenna elements.
The source of bearing error for both is distortion of the
antenna pattern. Such distortion is caused by near-field
obstacles and imperfections near the receiving antenna
elements (e.g. buildings, poles, feedline cables not isolated
from the antennas, corroded cable connectors, etc.). When
this distortion is not measured, or it changes over time due
to system hardware degredadation, then errors creep in. An
error in echo bearing results in an error in current velocity,
because a correct vector is not placed in the proper position
on the map. All bearing determination methods are based
on an algorithm that assumes a known antenna pattern.

There has been an extensive literature on antenna pattern
measurement with DF types of HF radars (e.g. Kohut and
Glenn (2003), Paduan et al. (2006), Laws et al. (2010)). In
terms of outcomes for velocity errors, these are typically
shown to be reduced by several centimeters per second by

proper measurement of antenna patterns and its calibrated
use in bearing determination. The reader is referred to these
works, and we do not go into details here regarding this
subject.

There has been clear evidence that pattern distortions are
equally significant with phased-array beam forming (BF)
(Teague 1986). That community of users, however, is
considerably smaller than DF radar operators. As a result,
methods have not been tested or widely accepted for reducing
these biases in BF phased arrays, although significant
biases (Mariette et al. 2006) suggest this is a major source of
error for these systems also.

3. Instrumentation

HF radar

The HF radars used in this study are located in the Central
SF Bay. Due to the dynamic tidal current regime and short
distance scales involved, the 42 MHz short-range/high-
resolution SeaSonde® sensor manufactured by CODAR
(Coastal Ocean Dynamics Applications Radar) Ocean Sensors
was chosen for deployment in the Bay. The four radar
stations used in this study are located at Crissy Field, on a
National Oceanic Atmospheric Administration (NOAA)
pier (CRIS, center frequency = 43.69 MHz); at the Sausalito
water treatment facility (SAUS, center frequency = 44.21
MHz); on the Tiburon Peninsula at the Romberg Tiburon
Center for Environmental Studies (RTC1, center frequency
=41.48 MHz); and on the northwest side of Treasure Island
(TRES, center frequency =40.75 MHz) (see Fig. 1). Hereafter
the radars are referred to by their four letter site codes;
CRIS, SAUS, RTCI, and TRES.

Each HF radar station has an individual coverage area
within which radial currents are measured (Fig. 1). Radial
currents are observed traveling toward and away from the
radar, in a polar coordinate system. The radial measurements
provide near surface-current speeds that are representative
of current velocities in the top ~0.5 m of the water column.
The array in the San Francisco Bay has an approximate
coverage area of 10 km by 12 km, the typical range of 42
MHz systems being within 5-12 km. The 42 MHz radars
have a 400 m radar range-cell bin resolution where a radial
velocity is calculated every 30 minutes (fifty-five minute
average current velocity). The thirty minutes is centered on
fifty-five minutes of spectral data, which is standard data
averaging times for 42 MHz SeaSonde systems. The radial
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Fig. 1. Right side (a), Central San Francisco Bay. Black stars represent radar stations starting from the bottom at Crissy Field (CRIS),
then moving clockwise to Sausalito Water Treatment facility (SAUS), Romberg Tiburon Center for environmental studies (RTC1),
and Treasure Island (TRES). Grey filled areas represent radar measurement locations for each radar. Black boxes represent the two
areas of drifter sampling, Southampton Shoal (SHS) to the North and Harding Rock (HR) in front of the Golden Gate. Left side

(b), photograph of the radar antenna at Crissy Field

bins are spaced at 1° angular bearing steps around the antenna
over annuli that define range cells.

Surface drifters

The drifters used in this study are Microstar® surface
drifters from Pacific Gyre. They were outfitted with a GPS
receiver that recorded latitude and longitude every 10
minutes. During the SF Bay deployments the drifters were
tethered to a diamond shaped nylon or canvas drogue that
was suspended at one meter depth. With the drogue at this
depth, the drifters are thought to accurately portray the
movement of a water parcel near the surface similar to the
radar measurements, as discussed in Ohlmann et al. (2005).

4. Methods

SF Bay is a busy commercial estuary with large ships
using the major deep-water channels and high-speed ferries
crossing the Bay on multiple routes. Drifter deployment
was constrained in order to avoid ferry and commercial
shipping routes. As a result, sampling boxes were positioned
around Southampton Shoal (SHS) and Harding Rock (HR)
(see Fig. 1). The SHS sampling box location includes the
radial coverage areas of the RTC1 and TRES radars, while
the HR sampling box includes the CRIS and SAUS radar
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coverage areas. TRES and RTC1 had 20 and 41 radial bins
within the SHS sampling box respectively (see Fig. 2). The
HR sampling box contained 52 radial bins from the CRIS
radar and 87 bins from the SAUS radar.

In October of 2008, up to 17 drifters were deployed over
six separate days from three San Francisco State University
research vessels. During the six days of sampling, a total of
525 10-minute drifter velocity observations were used from
the total collected. Each site was sampled for three days;
sampling days at SHS were October 8, 9, and 21; and
October 15, 16, and 22 for HR.

One of the main goals for drifter deployment was to
obtain as many measurements across the same group of
radar radial bins as possible in order to understand better the
statistical relationships between the two measurements. To
achieve this goal, drifters were deployed so that the current
would move them through the sampling boxes; when drifters
exited the sampling box, they were captured by the research
vessels and redeployed along the up-current boundary of
the sampling box, as described in Ohlmann et al. (2007). To
account for the multiple radar bins that the drifter movement
covered within the sampling boxes, the midpoint between
two drifter track readings was paired with the closest radial
bin center point.

Individual drifter tracks were visually inspected for
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2. Radar bins used for comparison within the sampling boxes. Clockwise from top left; (a) RTC1 (SHS sampling box), (b) TRES

(SHS sampling box), (¢) SAUS (HR sampling box), and (d) CRIS(HR sampling box). Black arrows in the boxes to the left (a
and d) represent the average current flow in both the ebb and flood phases of the tide during sampling times for each sampling
box. Average flows were taken as the top third of currents during the flood and ebb phases during the study days

measurements made within the sampling box. Suspect
drifter measurements were identified based on abrupt angle
changes, measurements with the opposing velocity, or
dramatically increased magnitude compared to the average
measurement. Measurements with these attributes meant
that the drifter was most likely being transported on a boat
while still logging position. During the experiment, the
upper limit set for radial current measurements on the Bay
radars is 200 cm/s; drifter speeds above this limit were
discarded. A first level of quality control on the radar data
happens within the software. No post-processing quality
control was done on the radar data for this comparison,

and all radar measurements that were paired with a drifter
measurement meeting the criteria outlined above were
used.

Drifter velocities were decomposed into v+, the radial
component corresponding to the radar bin measurement
with which the drifter track was being compared. Drifter
velocity u (east-west) and v (north-south) components
were transformed into the radial velocities using

()

where u and v are the original east-west and north-south

v = usin6+veos @
velocity components of the drifter movement, and &
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Table 1. Drifter comparison results for CRIS. Statistics in the table are calculated from the half-hour averages over the three-day deployment
periods: slope of the best-fit line; y-intercept; r’; root-mean-square difference; radar mean radial velocity and mean standard
deviation (mean standard deviations were calculated over entire sampling day for both radar and drifter); radar maximum
radial velocity; radar minimum radial velocity; drifter mean radial velocity and mean standard deviation; drifter max radial
velocity; drifter minimum radial velocity; and number of paired observations. All radial velocities are in cm/s

Due Bey Yintercept o RMSDifT FG AR e min DG O ek i halihe toial
Fit Line cm/s cm/s cm/s cm/s cm/s cm/s cm/s cm/s  avgs.  obs.
10/15/08 1.2 17.71 1.0 17.03 -8.63+£17.43 7394 -106.3 -22.03+7.11 50.09 -99.26 6 41
10/16/08  1.05 1032  0.84 16.18 66.78+12.48 031 -116.4 -73.69+7.68 -12.28 -122.73 11 76
10/22/08  1.03 2.45 0.75  9.06 24.13£8.53  55.12 -1.23  21.15+154 454  0.36 9 98
3-Day Total 1.03 7.84 095 1436  -21.89+12.23 73.94 -116.4 -28.94+7.93 50.09 -122.73 26 215
Table 2. Drifter comparison results for SAUS. Statistics are the same as Table 1
Slope qf y-inter- , RMS- HF Mean & HF max HF min Drifter Mean Drifter Drifter No. of No. of
Date Best Fit cept cm/s Diff Std. Dev. cm/s cm/s & Std. Dev.  max min  half-hr total
Line cm/s cm/s cm/s cm/s cm/s  avgs.  obs.
10/15/08  1.18 339 098 9.28 -12.71+12.43 4484 -91.72 -13.6£596 3441 -79..09 6 42
10/16/08 1.03 -4.11  0.81 13.89 -55.89+11.21 3.04 -102.05 -50.42+591 349  -76.68 10 81
10/22/08  0.70 997 088 877 37.64+10.27 59.89 9.17 39.57+7.81 69.74 11.24 10 109
3-Day Total 1.03 -242 096 11.12 -995+11.16 59.89 -102.05 -7.31+6.74 69.74 -79.09 26 232
Table 3. Drifter comparison results for TRES. Statistics are the same as Table 1
Slope Qf y-inter- , RMS- HF Mean & HF max HF min Drifter Mean Drifter Drifter No. of No. of
Date  BestFit cept r Diff Std. Dev. & Std. Dev.  max min  half-hr  total
Line  cm/s cm/s cm/s cm/s cm/s cm/s cm/s cm/s  avgs.  obs.
10/8/08 1.53 -464 089 6.62 18.7+7.79 3227  -8.63 15.26£3.89 2475  0.71 9 63
10/9/08 0.89 386 095 638 4.75+4.72 339 2771 1.0£5.03 32.87 -35.61 7 94
10/21/08  0.76 63 088 1049 1543£3.99 3796 -3048 12.01£3.65 39.87 -41.14 14 136
3-Day Total 0.83 526 088 8.67 13.92+5.31 3796 -3048 10.41+4.06 39.87 -41.14 30 293

Table 4. Drifter comparison results for RTCI. Statistics are the same as Table 1. * Indicates a low value due to an abnormal outlier in the HF
data. To stay consistent and not bias the results all HF data points that were matched with a drifter point were used in the analysis

RMS- HF Mean & . Drifter Mean Drifter Drifter No. of No. of
HF max HF min

Slope of y-inter-

Date Best Fit  cept r Diff  Std. Dev. & Std. Dev.  max min  half-hr total
Line cm/s cm/s cm/s cm/s cm/s cm/s cm/s cm/s  avgs.  obs.
10/8/08 1.38 -3.03 0.82 347 538+7.77 1227 -8.72 6.11+4.74 109  -3.09 8 60
10/9/08 0.56 129 0.67 698 8.1449.60 18.71 -1.33  12.15#3.51 24.23 -7.1 7 90
10/21/08 0.21 3.54  0.02* 13.57 4.05£6.56 3544 -11.68 2.39+£3.60 1343 -1541 14 136
3-Day Total 0.44 2.87 0.16 9.89 54+7.63 3544 -11.68 5.77£3.90 2423 -15.41 29 286

represents the radial direction measured clockwise from 0°
north (this radial direction corresponds directly to the radar
bin at that location). Due to the mixed semi-diurnal tides of
the area, radial current velocities were sampled both in the
negative (moving away from the radar) and positive (moving
towards the radar) direction for all the radars in the study.
Linear regressions along with basic statistics between the
drifter half-hourly velocity means and radar half-hourly
velocity means were calculated on a day-to-day basis as
well as for the entire sampling period at each individual
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radar site (Tables 1-5). Fig. 3 shows all the drifter velocities
captured on October 22 for the CRIS radar and the
corresponding radar bins used for comparison, as well as a
time series of all the measurements from October 22 before
they were averaged into half-hourly bins.

5. HF Radar Error Estimate Definitions

A fundamental difference between the drifter and radar
data is that the radar is measuring backscattered signals off



A New Method for Fstimating High-Frequency Radar Error 111

Table 5. Drifter comparison results for the entire experiment. Statistics are the same as Table 1

Slope of y-inter- ..~ HF Mean & . Drifter Mean Drifter Drifter No.of No. of
Date Best Fit  cept r Rl\friglff Std. Dev. H‘I:Hrl?:x Hfmr;zn & Std. Dev.  max min  half-hr total
Line cm/s cm/s cm/s cm/s cm/s avgs.  obs.
Entiresam- o g¢ g1 003 1117 220488 73.94 11642 4174544 69.74 -122.73 111 1026
pling period
Table 6. Results for MD1 and MD2 in cm/s assigned as error in one or the other instrument. This section
CRIS SAUS TRES RTC1 describes the process we propose for removing the natural
MD1 (cm/s) -7.05 2.64 -3.51 0.37 variability of the surface currents measured by the radar and
MD2 (em/s)  -7.57 -0.95 -4.55 0.59 drifter, thereby leaving an improved estimate of radar error

the ocean surface, while the drifter is measuring differences
of GPS positions. Another difference encountered between
the two measurements is the variability of the currents in a
given area due to turbulence caused by breaking waves,
wind stress, and geographic influences. This is where the
difference in time and space scales becomes apparent
between the two measurements, especially in a complex
tidally driven area like the San Francisco Bay. Since it is
impossible to align the drifter and radar data in space and
time so that they observe exactly the same current, these
two sets of measurements will have different variations around
their means, the variations in this case being produced by
the currents of the Bay. When analyzing the measurements
of one instrument independently, these variations are not
normally separated from the mean, and are considered to be
part of the measured current. However, if left in the
equation when determining the error of one instrument
based on the measurements of the other, they have been

or bias when compared to the drifter. Two methods outlined
below are based on the idea that a portion of the
measurements from the drifter and radar reflect the short-
term variations of the flow field over time.

The mean of the radar measurements and the mean of the
drifter measurements within the sampling box for each 30-
minute sampling interval over the three-day period is given
by:

1 I
Mnff = 72 vrj 2

i=1

J

Ml = 5/21 v 3)
where [ represents the number of drifter estimates of radial
velocity and J represents the number of radar estimates of
radial velocity in each sampling box during each half-
hourly time interval. This provides a time-series of half-
hourly means over the three days of sampling, subscript #

. ‘///////W///W//ﬁ_ o o

T o iy
i, Ot T
w77 I

=-122.455 -=122.45
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2071600 1700 1800 1900 2000  21:00
Time GMT

Fig. 3. Left (a), locations of drifter radial velocity measurements locations (star) and corresponding radial bins (circles) used for
comparison at CRIS, in the HR sampling box on the 22nd. Right (b), time series of drifter radially directed measurements (star)
and radar radial measurements (circles) for the 22nd before averaging
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being the index for the specific half-hourly average. Here,
vr represents radial velocity, superscript d denotes the drifter
while superscript r denotes the radar.

‘We note that tides and other trends are normally removed
by performing a tidal analysis on a long, (e.g. several week)
continuous time series of measurements, using a technique
similarto T _TIDE (Pawlowicz et al. 2002). This is not possible
in comparisons such as this, where drifter deployments are
conducted for a few daytime hours, and then only over
several days. In fact, what one ends up with are disjoint
pieces of three time-series sections of perhaps five hours
each over this period. An example is shown in Fig. 3(b). As
a result, we have devised the method below to remove bias
inherent from analysis of the three short disjoint pieces,
which do not even comprise one complete tidal cycle.

To deal with the bias introduced by needing to deal with
these piecewise disjoint data samples, we define an average
of the half-hour samples over the entire three-day period.
We then subtract these means from the individual half-
hourly samples, defined in Eq. (4) below. To verify that this
reduces the piecewise disjoint bias, we show a scatter plot
in Fig. 4 of radar vs. drifter data from CRIS: (a) represents
all points before half-hour averaging. Panel (b) is the reduced
data-sample set after the half-hour averaging of Eq. (2) and
(3). Finally, (c) shows the scatter after we subtract the three-
day mean, defined in Eq. (4) below, from the half-hour
samples. Note that for (c), the regression (dash) line is closest
to the ideal, no-bias 45° solid line, meaning the piecewise
bias of (b) has been minimized. We represent this bias

removal as:
N N
Pl M= 2> M =M, Mo, )

Again, the running index every half hour is #, and the total
number of half-hour intervals in the three-day measurement
period is N. Note that the tidal variations, along with the
zero-mean half-hour fluctuations, are still inherent to our
S, above.

Let us now decompose the fluctuating components, 3°, 3

into a common time-varying portion g, (e.g. tides) and a
zero-mean departure from this common term 5%

Bl=0u: B=00+u,. (5)

Next, let us express the difference between our two sets of
measurements for every interval (e.g. one-half hour here):
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Fig. 4. Comparisons for the entire three days of sampling at CRIS.
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solid. Top (a), scatterplot and best fit line for raw unaveraged
drifter and HF radar radial velocity pairs. Middle, scatterplot
and best fit line for the drifter and HF radar half-hourly
averages. Bottom, scatterplot and best fit line for the drifter
and radar half-hourly values that are de-biased using Eq. (4)
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D,=f—p,+Md\) =5'"—5 +Md . (6)

or
D, = A,+Mdy (7)

where we define a zero-mean random component including
both drifter and radar contributions to be:

An=po—p, = 8a—5,, ®)

and Md\" is the mean difference — or bias — between the
two measurements, independent of time. The superscript /
will denote one of two methods that we will define below to
estimate this mean bias.

Method 1. Definition for mean bias

Our first definition of bias error is merely the mean
difference between all of the NV half-hourly points over a
long time, which here is the three-day period measurement
span —a rather obvious estimate by considering Egs. (2) and
(3) and simply subtracting.

Md V=13 (n -
N ZZT]Z( n,— nn) (9)

Squaring and averaging the difference between Egs. (2) and
(3), 1.e. the parenthetical expression in the summation of Eq.
(9) above, defines the mean-square difference of these half-
hourly points. This is given below in Eq. (10).

N
M%ﬁF%ZMMﬂMﬁf. (10)

This will be used in subsequent calculations. It has been the
conventional metric for sensor error that we want to replace
because it inherently contains the zero-mean random fluctuations
that we argue should not be included as an instrument bias.

Method 2. Definition for mean bias

As a second estimator of mean error or bias, we start with
the textbook definition of mean-square difference, which
we will then equate to Eq. (10) above. This is based on
simply partitioning any random variable into two parts: a
zero-mean fluctuating quantity A, and a mean over the N
samples. The latter mean is in fact our second definition of
mean error or bias, which we denote as superscripted with
(2). This partitioned random variable is the quantity in square
brackets of Eq. (11) below. Thus the known quantity on the

left side, i.e. the mean-square difference, is known from
Eq. (10).

MSDiffy =<3°1A + Md®T 11
i = 1518, + MY (an

Thus the mean-square difference on the left side of Eq. (11)
above is a known quantity that we get from applying Eq.
(10) to the N half-hourly data samples. The zero-mean
random fluctuations are also known, and defined in Egs.
(4) through (8). The unknown is our second definition of
mean error or bias, denoted by the Md\? term within square
brackets of Eq. (11). Its solution is developed below into a
quadratic equation that is solved thusly by expanding the
square-bracket summation quantity to get:

2MdP N
YA+ (MY (12)

MSDiff, =~3 A2+
N&™™
which is a quadratic equation with the standard form:

X +bxte=0 (13)

the unknown, x, being our second estimator of mean
difference, Md?. All of the remaining quantities in Eq.
(12) have already been derived from the data. And so our
unknown mean-difference estimator can be solved with

_hEb —4c

x=Md} = 5 (14)
where

PR L2U

b= 52 Br=F1) = 3T b (15)
and

LA wspi 16
€= 5200~ MSDIffy. (16)

providing a solvable quadratic equation with two possible
outcomes. Because we have a separate, earlier definition of
mean/bias, Md.,, consistency suggests we select the outcome
closer to that result. We discuss next why our two estimates
of bias are in fact different from each other when dealing
with a finite number of samples, N.

6. Reconciling Different Sensor Bias Definitions

We raise and examine here some fundamental questions
related to our approach to examining mean error or bias.
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Question #1: Why have we derived two estimates for
mean error or bias?

Question #2: Why do the two definitions differ?

Question #3: A third method is possible if we express the
biases in terms of infinite ensemble averages rather than N-
sample averages, and they are much simpler. What are the
differences, and why don’t we use the simple infinite-
ensemble definition?

In answer to the first two questions, we note that in the
first case of Md{’, we used straight definitions of means
over different time periods, comprising N samples, to get
rid of the short-term, smaller-scale zero-mean fluctuations.
In the second case leading to the quadratic solution for
Md{P, we used the mean-square difference of the two
sensors’ N samples. Both of these methods are easy to apply to
the measured data, and both lead to bias estimates that
appear different. As we will show, this difference is due to
the N-finite-sample averaging we must do with a countable
set of measurements.

To understand the above statement, let us define mean
error or bias in terms of infinite-ensemble averages (rather
than N-sample averages). We will denote this infinite-
ensemble average of p using braces, as <p>. Then in place
of Eq. (11) we would write:

MSDiff, = (A, +Md)*) = co+o.+Md", (17)

where we use Eq. (8) and define infinite-ensemble variances
of the two zero-mean sensor fluctuations as: 0[2, = (53,} and
0'3 = (é'f) . Averages of cross-product terms in expanding
the squared quantity in Eq. (17) are zero, i.e. (5,0,) , because
the zero-mean random fluctuations observed by the two
sensors are uncorrelated when an infinite number of samples
are averaged, due to the different natures of their measurements.
Then we can define an infinite-ensemble mean error or bias
by solving Eq. (17) to get:

Md = JMSDiff, o>~ . (18)

So now we have yet another definition of mean error or
bias, valid when we have an infinite number of samples.
Why not use this, along with or instead of Md{’ and
MdP ? When we examined use of this for sample sets
where N was not that large, as in our cases here involving
data taken over several hours during three days, we found
that occasionally the argument of the radical in Eq. (18)

&) Springer

was negative, meaning the result was imaginary. This is a
consequence of using an expression for an infinite-ensemble
average when the number of samples is finite. It turns out
that the argument in the radical of Eq. (14) for Md{ can
never be negative for any number of samples, so this quandary
does not occur. Hence, we decided that it was more accurate
and appropriate to stay with the finite-ensemble-averaging
approach we introduced here.

With this background on infinite-ensemble averaging,
the relationship and commonality among our definitions
can now be clarified. Examining Eq. (15), we see that --
when considering an infinite number of samples -- b becomes
zero and ¢ becomes 0'5, + o-f —MSDiff,, . Therefore, we have
Mdﬁiw:Md , from consideration of Eq. (18). We see
that it is the finite number of samples, N, in our averaging
that leads to a small degree of uncertainty in these estimates of
bias, which disappears as the number of samples becomes
increasingly large. And finally, if the zero-mean random
fluctuations disappear so that o, = o, = 0 and MSDiff,~
(M af,(\,z))2 ,1.e. the mean-square difference is merely equal to
the mean difference squared, then comparison of Egs. (10)
and (11) with (9) shows that Mdg\?) —>M Nl) . Hence, all of
our definitions of mean error or bias are mutually compatible,
and agree perfectly in the limit as N— 0.

7. Results

We observe that HF radar error -- or mean bias -- for this
study is low. This is true when the error is either calculated
with both the traditional mean difference, Eq. (9), as Mdﬁvl),
or as the one introduced in this paper, Mdg\?), in Eq. (11).
Table 6 -- which is the principal result of this study --
summarizes the traditional mean difference; CRIS = -7.05,
SAUS = 2.64, TRES =-3.51, and RTC1 = 0.37; while the
quadratic method of determining error gives: CRIS =-7.57,
SAUS =-0.95, TRES = -4.55, and RTC1 = 0.59. Although
these mean differences or biases could potentially be due to
either radar or drifter, let’s assume here it is due entirely to
radar (worst case for radar); a rationale might be that the
mean velocity of the drifters (after removal of their associated
zero-mean randomness) is a more true, acceptable measure
ofactual current flow. The results in Table 6 cover the three-
day sampling periods at each radar. Of the two radars
positioned to look just inside of the Golden Gate (HR),
SAUS has the lower error. At the SHS sampling area RTC1
has the better results for radar error. These slight differences
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in the measured error between the different radar stations
suggest better radar antenna patterns due to a cleaner near-
field environment around the radars.

In addition to our new HF radar error estimations in Table
6, statistics for daily sampling periods are shown in Tables
1-5 for the individual radar stations. Note the traditional
RMSdiff values previously used for estimating instrument
error in Tables 1-5 for the entire three-day sampling periods
are significantly higher than our new error/bias estimates.
This is to be expected because our new method for determining
error has removed the random zero-mean short-term fluctuations
which we maintain are not really sensor errors. As previously
stated, this allows us to focus on the real mean bias or
difference between currents measured by the individual
instruments.

8. Conclusions

A new, more meaningful estimate of HF radar error is
defined herein. The motivation for such a method is the fact
that local short-term zero-mean random fluctuations due to
small-scale non-relevant upper-ocean turbulence measured
independently by two different sensors is not an error in
either instrument, and should be excluded from any attempt
at meansuring error or bias. Our metrics for mean differences or
biases based on the methods outlined above fall between -
7.57 cm/s and 0.59 cm/s for all of the radars used in this
study (Table 1). This is based on radial current speeds with a
range of approximately -140 cm/s to +80 cm/s (Table 5).
The bias for CRIS (-7.57 cm/s) is nearly twice that of the
remaining three radars. We feel this larger bias is explained
by its highly distorted antenna pattern caused by the nearby
obstructions necessitated by the very small space permitted
by authorities for the antenna mounting (Fig. 1); even though
transponder pattern measurements remove most of this
error, severe distortion will always leave a residual bias,
which we are seeing in this case.

This suggests that the SF Bay radars are functioning
properly and that their geometry and measured patterns at
the time of the study were acceptable, with that at CRIS
known and shown to be the worst of the three. The fact that
both mean differences or biases in Table 6 come out to be
nearly the same indicates that the new method works well.
The small differences are due to the finite ensemble averaging
employed, in contrast to an infinite ensemble. Future work
lies ahead in understanding better and improving the HF

radar error, the work presented here being just one more step in
the evolution of instrument-to-instrument comparisons.

In general, radial velocity bias errors depend on bearing
angle. In this study, different bearing angle sectors were
viewed among the four sites. However, a full bearing span
for each radar's field of view was not analyzed here; this
constitutes a more extensive measurement campaign. That
should be a future goal. The present study offers perhaps a
representative sampling over bearing among the four radars
inside San Franciso Bay and discusses physical reasons for
the larger biases.
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