
A short-term predictive system for surface currents
from a rapidly deployed coastal HF radar network

Donald Barrick & Vicente Fernandez & Maria I. Ferrer &

Chad Whelan & Øyvind Breivik

Received: 12 September 2011 /Accepted: 3 January 2012 /Published online: 22 January 2012
# Springer-Verlag 2012

Abstract In order to address the need for surface trajectory
forecasts following deployment of coastal HF radar systems
during emergency-response situations (e.g., search and rescue,
oil spill), a short-term predictive system (STPS) based on only
a few hours data background is presented. First, open-modal
analysis (OMA) coefficients are fitted to 1-D surface currents
from all available radar stations at each time interval. OMA
has the effect of applying a spatial low-pass filter to the data,
fills gaps, and can extend coverage to areas where radial
vectors are available from a single radar only. Then, a set of
temporal modes is fitted to the time series of OMA coeffi-
cients, typically over a short 12-h trailing period. Thesemodes
include tidal and inertial harmonics, as well as constant and
linear trends. This temporal model is the STPS basis for
producing up to a 12-h current vector forecast from which a

trajectory forecast can be derived. We show results of this
method applied to data gathered during the September 2010
rapid-response demonstration in northern Norway. Forecasted
coefficients, currents, and trajectories are compared with the
same measured quantities, and statistics of skill are assessed
employing 16 24-h data sets. Forecasted and measured kinetic
variances of the OMA coefficients typically agreed to within
10–15%. In one case where errors were larger, strong wind
changes are suspected and examined as the cause. Sudden
wind variability is not included properly within the STPS
attack we presently employ and will be a subject for future
improvement.

Keywords HF radar . Ocean forecasting . Search and
rescue . Oil spill

1 Introduction

HF coastal radars have evolved over the past 40 years into
worldwide operational networks that provide real-time data to
a variety of end users. Over 450 such radars are operating
today, of which about 400 are CODAR SeaSondes®. The
primary data products are 2-D surface current vector maps,
which require two or more radars with overlapping coverage
(Barrick et al. 1977; Lipa and Barrick 1983). In addition to
surface currents, secondary outputs include wave parameters
(Lipa and Barrick 1986), tsunami detections (Barrick 1979;
Lipa et al. 2011), and vessel detections (Roarty et al. 2011).
The fate of anything floating on the surface, such as vessels
adrift or oil/pollutant spills, are highly, if not completely,
dependent on surface currents. While the ability of HF radar
to provide surface current maps in near real time is of great
value, the ability to forecast the currents and, thus, the fate of
material floating on the surface is an evenmore important tool.
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Efforts to assimilate HF radar-derived currents into coastal
ocean models (Breivik and Sætra 2001; Oke et al. 2002;
Paduan and Shulman 2004) that can provide forecasts have
been successful, but at the current state, full assimilation of
surface current maps into hydrodynamic models can be a
laborious process that requires archives and other sources of
data. Efforts have also been made to use longer time series of
surface current maps to make short-term forecasts (Zelenke
2005; Frolov et al. 2011). As these efforts to produce surface
current model forecasts progressed, the U.S. East Coast be-
came populated with a contiguous HF radar ocean monitoring
network and the U.S. Coast Guard (USCG) began a program
to evaluate SeaSonde data products for use in search and
rescue (SAR) operations. Comparisons were performed over
many years with self-locating datum marker buoys (Ullman et
al. 2003; O’Donnell et al. 2005; Ullman et al. 2006). These
evaluations have established conclusively that, in all cases,
incorporating radar-derived current fields into short-term pre-
dictive systems (STPS) significantly improves SAR capabili-
ty, efficacy, and reduces costs of search operations. The STPS
methods employed in the USCG SAR operations are Monte
Carlo random-walk or random-flight models to forecast the
advected drift areas. After nearly a decade of such careful test
and evaluation, these methods were incorporated into the U.S.
Coast Guard operations first beginning 2 years ago for the
region from Massachusetts to North Carolina’s Cape Hatteras
with HF radar surface current data supplied by regions the
Mid-Atlantic Regional Association Coastal Ocean Observing
System (http//www.maracoos.org). The West Coast is being
brought online for SAR operations, from the Mexican border
nearly to Canada. Presently, with sparse radar measurements
in Gulf ofMexico, southeastern USA, Alaska, Hawaii, and the
Caribbean, HF radar in these regions is not included in Coast
Guard plans for SAR operations.

A similar emergency application with a need for STPS
forecasts is oil spill response. SeaSondes have recently been
in place and operating for two separate incidents involving
spilled oil. At the time of the 2010 Deepwater Horizon incident
in the Gulf of Mexico, during which oil spilled continuously
for 5 months, as well as during the 2007 Cosco Busan tanker
incident in California’s San Francisco Bay, SeaSondes mea-
sured surface currents in the affected areas in near real time.
These fortuitousmeasurements proved highly useful to NOAA
and other groups managing cleanup operations. In fact, four
decades ago, it was the motivation of oil spill environmental
assessment that led to funding at NOAA under which HF
radar/CODAR was developed into a useful current-mapping
tool in the early 1970s.

Norway has evolved an active offshore oil/gas production
industry in their sector of the North Sea and has been a leader
in application of the latest and best technologies to manage the
inevitable spills that accompany such operations. Although a
small network of SeaSondes operate near Fedje, the gateway

to the Mongstad refinery, nearly the entire Norwegian coast
has no radar coverage and is mostly inaccessible by road and
land vehicles. In 2010, with funding from the Norwegian
Clean Seas Association for Operating Companies (NOFO;
http://www.nofo.no) and Innovation Norway, a rapid-
response capability was developed in which a SeaSonde pair
could be deployed and provide surface currents within hours
of a spill (Kjelaas et al. 2011). This culminated in a month-
long exercise in Finnmark during September 2010. Figure 1
shows photos of this deployment. The Rapidly Deployable
SeaSonde operated in the 13-MHz band, which provided a
useful range of about 80 km at 2-km range resolution. Tem-
poral resolution for the averaged cross spectra and, therefore,
unaveraged radial vector output was 10 min, and the averaged
radial vector output interval was 60 min. The Finnmark exer-
cise demonstrated that such an approach could provide maps
of offshore surface currents quickly during an emergency,
thereby offering improved information for cleanup operations.

Whereas the USCG and other forecast methods using Sea-
Sonde data employed methodologies that relied on a month or
more of historic data to forecast tides and background, this will
not be possible in a rapid deployment to a new area. The
challenge, therefore, is to draw upon data collected during
the first few hours after radar startup to initialize the STPS
forecast method. For example, after 8–12 h, enough data
should be available to capture the semidiurnal and inertial
harmonics, as well as a constant and perhaps linear trend.
One might not expect this to be adequate for predictions
extending more than an equivalent period into the future.

Fig. 1 Photos of self-contained SeaSonde HF radar being helicopter-
deployed in Finnmark region of northern Norway during September
2010, during NOFO emergency-response exercise. Radar antenna is
mounted alongside the weatherproof container and portable generator
powers the system for up to a week
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However, this is considered highly useful in directing opera-
tions, either for SAR or spill mitigation.

It is the purpose of this paper to investigate the utility and
accuracy of this concept by selecting 16 24-h periods during
the NOFO deployment beginning September 14, 2010, 21:00
UTC through September 30, 2010, 22:00 UTC in order to
assess the forecast skill of our STPS method. The first 12 h of
each period is used as the history/background. The STPS then
forecasts currents and derived trajectories ahead for the next
12 h. The latter are then compared with actual observations
over the second 12 h and statistics of differences calculated to
reveal accuracy. In our first attempts here, wind effects are
included only to lowest order. A constant wind as well as a
linear variation over the 12-h period is in fact included in our
STPS model. However, any shorter-period change—perhaps
due to a frontal passage—is not. Expected effects of short-
period wind changes are discussed, and a method suggested
for dealing with this is proposed.

Section 2 describes the open-mode analysis (OMA) spa-
tial fitting that is applied to the data every hour to obtain
modal coefficients that vary with time. Section 3 derives our
STPS temporal modal methodology that is applied to the
OMA time-varying coefficients. Following this, Section 4
analyzes the forecasted OMA coefficients, current patterns,
error statistics, and trajectories with actual measured values
based on radar observations with estimations of trajectory
displacement differences as a function of time into the future.
A case study of short-period wind changes is discussed, and a
method suggested for dealing with this is proposed in Sec-
tion 5. Finally, a discussion of results is provided in Section 6
including additional studies and the possibility of improving
predictions by including forecasted winds.

2 Open-mode analysis principles and fitting to NOFO
currents

OMA as advanced by Lekien and Coulliette (2004) is an
outgrowth of normal mode analysis (NMA), first introduced
for SeaSonde HF radar measurements by Lipphardt et al.
(2000). Both are based on representing flow near the surface
in terms of a divergence-free stream function and vorticity-
free velocity potential. Both the stream function and velocity
potential are scalar fields depending on x, y that are defined
within a horizontal domain that roughly describes the radar
coverage area:

(a) Stream function: This scalar field satisfies the following
Laplace second-order partial differential equation (PDE):

r2y x; yð Þ ¼ 0 ð1Þ
where the Dirichlet condition applies to the boundary, i.e.,
y400 where4 denotes the boundary of the region to be fitted.

(b) Velocity potential: This scalar field satisfies the following
Laplace second-order PDE:

r2f x; yð Þ ¼ 0 ð2Þ

where the Neumann condition applies to the boundary, i.e.,bn � rf4 ¼ 0 where bn denotes the unit vector normal to the
boundary 4.

(c) Boundary function: The main departure of OMA by
Lekien and Coulliette (2004) from NMA of Lipphardt
et al. (2000) has to do with how the open boundary
region is treated. A portion of the boundary is “closed,”
comprised of relevant coastlines where the Dirichlet and
Neumann conditions apply. The remainder is an open
boundary where neither of the above conditions can be
expected to apply. NMA suggested two somewhat arbi-
trary ways to deal with the open boundary (including use
of data from a model, which may not always be avail-
able). In OMA, a third function, and resulting set of
modes, was demonstrated that defined a new functional
“boundary” field

r2fb x; yð Þ ¼ 0 ð3Þ
that is to be specified on the open boundary in place of the
Neumann condition, i.e., by bn � rf4 ¼ gfðsÞ � bn � u40 ,
where 40 is the open portion of the boundary 4 and s
denotes arc-length distance along the boundary.

(d) Eigenfunction solutions for the three Laplace Eqs. 1, 2,
and 3:

r2y i þ lyi y i ¼ 0; r2fi þ lfi fi ¼ 0; r2fbi þ lbi f
b
i ¼ 0

ð4Þ
Here, the subscripted quantities define eigenfunctions, which
we call OMA modes. These modes are functions of x, y; they
need to be calculated only once using finite element methods
for a given radar geometry and then stored for subsequent use.
The subscripted parameters 1i are the eigenvalues
corresponding to that respective set of modes; the latter are
always positive, usually arranged in ascending order. The
lowest-order modes have the largest spatial extent, fitting to
the interior of the boundary domain, with the higher modes
capturing the finer spatial details of the current variations.

(e) Surface current expansions in terms of eigen modes:
Understanding that x, y are the Cartesian coordinates
within the locally planar ocean surface—generally rep-
resenting east and north, respectively—the expression
for the surface current vector along these directions in
terms of stream function and velocity potential is:

u x; yð Þ ¼ r � y x; yð Þbzð Þ þ rf x; yð Þ þ rfb x; yð Þ ð5Þ
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This can now be written in terms of our eigenfunction modal
expansion as:

u x; y; tð Þ ¼
X1
i¼1

ay
i tj
� �r� y i x; yð Þbz

þ
X1
i¼1

af
i tj
� �rfi x; yð Þ

þ
X1
i¼1

ab
i tj
� �rfbi x; yð Þ ð6Þ

where we now include time of the measurement (e.g., hourly)
as tj. Thus, every time interval we understand that a new set of
OMA coefficients, αi, are to be fitted (in a linear least-squares
(LS) sense) to the radar-observed current fields. It is these
sequential time-dependent mode coefficients that are to be
used in the STPS method we develop next (rigorous justifica-
tion for the OMA mathematics summarized above is found in
Lipphardt et al. (2000) and Lekien and Coulliette (2004))
These modes can either be fitted to the 2D vectors where
measurements of two or more radars overlap and combined
prior to modal analysis or they can be fitted to the 1-D
measurements (radial velocities) of individual radar sites in
their inherent polar coordinate systems (Kaplan and Lekien
2007). We have chosen to fit to the 1-D radial velocities in our
investigation, as it has been found to bemore robust. The three
sets of coefficients in the triple summations above are often
referred to as Dirichlet, Neumann, and boundary modes,
respectively. Kaplan and Lekien (2007) also show how to
calculate errors in the OMA-fitted currents based on errors
estimated in the original radial velocities.

(f) Number of modes to use: In the above modal expansions,
we show an infinite number of terms/modes in the series.
In practice, we must terminate each of these series at
some upper limit (not necessarily the same for each set
of modes). Although one is often tempted to include all
consecutive terms in ascending order of their eigenvalues
(which are indexed by subscript i), this is not necessarily
the best criterion of selecting which modes to retain. A
more robust measure may be the kinetic energy contained
in the velocities for each fitted mode for the area of
interest, in this case the NOFO coverage region; we
examine this further below. Other measures have been
studied, such as the scale size of the mode area (Lekien
and Gildor 2009), which has led to suggestions of
hundreds of modes and series terms. We are somewhat
wary of this approach because higher-order terms re-
spond to noise, outliers, and gaps in the data, which the
OMA concept is meant to filter out. Lekien and Gildor
(2009) found, for example, that although many hundred
modes appear useful for overall OMA-fitted current
maps, divergence and vorticity derived therefrom were

unacceptably unstable and noisy when the total mode
number exceeded 20 or so; this is a subject that needs
further investigation. Experience to date suggests that
fewer modes rather than too many may be preferred.

2.1 NOFO case study of OMA domain

The study area (Finnmark, northern Norway) where we have
tested the STPS methodology presented in this paper is shown
in Fig. 2. For this area, we have defined a fixed domain where
modes are computed, shown in Fig. 2, illustrating the open
and closed boundaries. Note that the coastline is a natural
closed boundary (no normal flow through the shoreline), and
we allow flow through the straits between the islands.

2.2 Dominant modes fitted to NOFO OMA domain

In deciding the construction and the number of modes to be
used in the OMA fit to the HF data, one limiting factor is the
spatial scale that is to be resolved, which should be the same or
more coarse resolution than the measurement grid (Lekien and
Gildor 2009). In this case, our Cartesian measurement grid
spacing was 3 km. Ocean features of 15 km are well resolved

22oE 30’ 23oE 30’ 24oE 30’ 25oE

30’

45’

71oN

15’

30’

Tarhalsen

Fruholmen

Longitude

La
tit

ud
e

Fig. 2 Domain where the current modes are computed and the surface
currents are obtained during the period of the study. The dashed line
represents the open boundary and the continuous lines are the closed
lines. The triangles represent the two SeaSonde Stations. Tarhalsen
station is the mobile unit shown in Fig. 1 and Fruholmen is a fixed
station
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with the actual horizontal measurement grid resolution of
3 km for the total currents and with the goal in this study of
reproducing the modes with the most inertia the choice was
made to analyze modes with spatial scales 15 km or larger.
With this configuration, we arrive at a total of 34 modes (7

free-divergence, 15 irrotational modes, and 12 boundary
modes). In Fig. 3, the two most energetic modes for each type
derived from the fit to the radial data are illustrated (see
Section 4.1 for a detailed examination of an energy analysis
of the modes).
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Fig. 3 The two most energetic
currents modes for each type
(see Section 4.1 for a detailed
analysis of the energy of the
modes). The first row shows the
incompressible modes, the
second row shows the
irrotational modes, and the last
row contains the boundary
modes. The colorbar is the
magnitude of the velocity in
centimeters per second
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During the duration of the field experiment, the radial
data output every hour from the mobile unit at Tarhalsen and
from the fixed station at Fruholmen were fitted to an optimal
combination of the 34 spatial modes that give a better
estimation of the surface current nowcast in the predefined
domain. The OMA nowcast fields have the advantage of
being free of spatial gaps and with currents only tangent to
the coast.

In this fitting process, Kaplan and Lekien (2007) intro-
duce and demonstrate in their Section 3.2 a “homogeniza-
tion smoothing term,” defined by the parameter k, that
enters the least-squares cost function; this serves to con-
strain the fitting so that mode amplitudes that would pro-
duce unacceptably large velocities are not allowed. They
demonstrate that values for this parameter of 10−2 and lower
appear optimal, in the sense that they better fit the actual
total vector field before application of OMA. We tried both
10−1 and 10−2 for this parameter and found that indeed,
10−2, produced closer fits to the conventional total vectors
in terms of least RMS differences and so have used this
value throughout our analysis.

It is instructive to compare graphically the OMA nowcast
fields versus total surface vectors obtained by the conven-
tional LS local interpolation method (Lipa and Barrick
1983). This conventional approach draws a circle of user-
selected radius around each Cartesian point on the current
map grid. It collects all radial velocity vectors from both
sites that fall within this circle. Then, it does a straightfor-
ward, over-determined least-squares fit of these radials to
estimate the u/v components of the total vector for that grid
point. Being a local combining method, the LS method
detailed in Lipa and Barrick 1983 is not gap-free and has
no kinematic constraints to prevent normal flow through the
shoreline. Figure 4 shows the RMS differences between the
two methods (OMA-radial-fitted vs. LS) for both compo-
nents U and V and show how the differences are smaller in
the middle of the domain where the radials give in areas
where two radials give more independent information.

Figure 4 was based on an analysis of all 16 periods
covering the NOFO data set, each comprising 24 h of data.
The overall RMS difference summaries for these figures are

8.6 and 7.8 cm/s for U and V, respectively. Although we do
not show a similar figure for the constraint parameter k00.1
(the above figure used k00.01), the corresponding RMS
difference summaries for that case were 13.2 and 9.5 cm/s
for U and V, respectively. The lower RMS values justified
our selection for k00.01 for our analyses.

3 STPS modal methodology applied to OMA modes
for NOFO

We present and analyze a methodology to operate on a very
short time history of measured, OMA-fitted surface current
coefficients. We note that success was obtained by Zelenke
(2005) to predict up to 48 h in the future, by fitting to annual,
seasonal, tidal, and wind forcing components using time series
analysis over multiple years of continuous data. In case of an
emergency, however, where a SeaSonde is set up at a location
without access to a detailed history of tidal and other current
climatology, it is desired to have a method to begin providing
short-term forecasts after a few hours of data have been
collected. We restrict expectation of good forecast accuracy
to approximately the same span in the future as the length of
the past period on which the forecast is to be based. In
particular, because most locations are dominated by semidi-
urnal, diurnal, and inertial harmonics, as well as constant and
linear trend, a ∼12-h history set followed by a 12-h forecast
seemed like a reasonable goal to seek in our first analyses
here. Forecasts farther into the future are possible, perhaps, but
certain assumptions and approximations as described in our
method below, particularly in relation to the linear trend and
simple treatment of tides, will clearly require a different anal-
ysis. Additionally, the occurrence of multiple wind or other
episodic events becomes much more likely. We are essentially
doing a temporal modal expansion of the data set history, in
contrast with the OMA spatial modal representation we de-
scribed above. We selected 16 24-h periods from the NOFO
surface currents as a test/evaluation basis.

One might ask why develop a STPS methodology based
on OMA-based coefficients over time rather than on some
other representation of the surface currents? The OMA
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Fig. 4 Root mean square
(RMS) of the differences in
centimeters per second between
the OMA-radial-fitted vector
fields and the LS method for all
of the aforementioned 16 24-
h periods. The U and the V
components of the velocity are
shown separately
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modes, especially the lower-order most energetic ones, rep-
resent larger areas with greater kinetic energy. Therefore,
they should have some reasonable degree of inertia, i.e.,
they are more noise free over short periods of time such as
an hour or 2. Higher OMA modes representing shorter
spatial scales might be expected to exhibit short-term noise
that would not follow the slowly varying temporal modes
we discussed above. This is also another reason to restrict
the number of modes: so that finer-scale spatial variability is
not propagated through to the higher-order modes:

(a) OMA coefficient vector: Assume OMA-fitted coeffi-
cients have been determined as outlined in the section
above, for a short time period for 8–12 h. We can
append all three sets of mode coefficients (Neumann,
Dirichlet, and boundary) to obtain a single coefficient
vector, leaving off the superscript notation. These are:

AðiÞ tj
� �h i

¼ AðiÞ
j

h i
ð7Þ

where we used AðiÞ
j to represent af

i tj
� �

; ay
i tj
� �

; ab
i tj
� �� �

from the previous section.

(b) The STPS modal temporal representation: For each
OMA coefficient designated with superscript i, start with
a model containing a constant, linear trend, semidiurnal
(f2 for M2) and diurnal (f1 for K1) tidal constituents, as
well as an inertial harmonic fo ¼ 24 sin ϑð Þ, where fo is
the inertial frequency (all frequencies are understood to
be radians/second). Here, ϑ is the latitude of the radar
area, and 4 is the earth angular rotation rate in radians/
second. In this case, we used the latitude at the midpoint
between northernmost and southernmost edges of the
OMA domain.

Then we can write the eight-term temporal model we
propose as follows:

AðiÞ
j ¼ BðiÞ

1 þ BðiÞ
2 tj þ BðiÞ

3 cos f1tj
� �þ BðiÞ

4 sin f1tj
� �þ

þBðiÞ
5 cos f2tj

� �þ BðiÞ
6 sin f2tj

� �þ BðiÞ
7 cos fotj

� �þ BðiÞ
8 sin fotj

� �

ð8Þ

The temporal modal coefficients BðiÞ
n are considered to be

unknown for each of the i OMA modes. These relations can
be expressed more compactly in matrix form as:

AðiÞ
j

h izfflffl}|fflffl{J�1

¼ Mj;n

� �zfflffl}|fflffl{J�N

BðiÞ
n

h izfflffl}|fflffl{N�1

ð9Þ

where the dimensions of the respective matrices are given
above the upper brackets. As Eq. 9 represents an over-
determined least-squares system of equations, it is amenable
to later direct inversion using simplematrix algebra.We assume
there are J time samples total, running over the subscript j; there
can be time gaps (much as there often are in tidal analyses), but
the total number of samples should be equal to or greater than
the number of unknown temporal coefficients, N; thus, the
problem will be over-determined. The goal is to calculate the

unknown temporal modal coefficients BðiÞ
n from the J time

samples of OMA coefficients AðiÞ
j based on immediately past

data and then use these to forecast into the future. The solution

for BðiÞ
n above is done using a linear least-squares fitting.

The method described above in Eq. 9 resembles in some
of the terms the well-known and accepted T_TIDE method-
ology for tidal analysis used by oceanographers (Pawlowicz
et al. 2002). So a question: Why not use T_TIDE to extract
tidal constituents? Firstly, there are other terms that are
important on a short-time basis not included in T_TIDE
capability (constant, linear trend, inertial oscillations). Sec-
ondly, over a short time history of 12 h, it is impossible to
resolve the 37 individual tidal constituents in T_TIDE that is
normally applied to months of time series data. For example,
one cannot possibly resolve the closely spaced M2 from the
S2 (semidiurnal) nor the K1 from the O1 (diurnal) frequen-
cies. Therefore, a single semidiurnal and diurnal is adequate.
Asking for too much poorly resolved modal data (as with
OMA discussed earlier) will lead to instabilities in the fitted
coefficients, making things worse than better.

For the model hypothesized above with N08 modal coef-
ficients, the elements of the rectangular model matrix can be
represented as follows:

Mj;n

� � �

1 t1 cos f1t1ð Þ sin f1t1ð Þ cos f2t1ð Þ sin f2t1ð Þ cos fot1ð Þ sin fot1ð Þ
1 t2 cos f1t2ð Þ sin f1t2ð Þ cos f2t2ð Þ sin f2t2ð Þ cos fot2ð Þ sin fot2ð Þ
::: ::: ::: ::: ::: ::: ::: :::
1 tj cos f1tj

� �
sin f1tj

� �
cos f2tj

� �
sin f2tj

� �
cos fotj

� �
sin fotj

� �
::: ::: ::: ::: ::: ::: ::: :::
1 tJ cos f1tJð Þ sin f1tJð Þ cos f2tJð Þ sin f2tJð Þ cos fotJð Þ sin fotJð Þ

2
6666664

3
7777775

ð10Þ

We may find that not all of the eight modal terms are
needed or are in fact helpful for short time series. In fact,

this is the case for our study here, which is examined
subsequently. If not all of the modal terms are needed,
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columns of the model matrix 10 above should be
omitted.

(c) Solving for the STPS modal temporal coefficients:
With the model matrix represented in Eq. 10 above
determined at each of the time points from the known

OMA coefficients AðiÞ
j , the over-determined system of

equations is solved using any standard approach. We
choose MATLAB where the solution is denoted by the
backslash operator as follows:

BðiÞ
n

h i
¼ Mj;n

� �n AðiÞ
j

h i
ð11Þ

(d) Forecasting ahead a few hours: Except for rapidly chang-
ing winds and their effects on the surface currents, the

coefficients for the N temporal modes, BðiÞ
n , that we have

determined above will allow us to forecast ahead, per-
haps for as long as the database period used to calculate
the coefficients. Let us assume we want to forecast ahead
starting at our last time observation, tJ, going up through
tJ+k. One does this by constructing the newmodel matrix
for times up through time k and performing a forward
matrix multiply:

AðiÞ
Jþk

h i
¼ MJþk;n

� �
BðiÞ
n

h i
ð12Þ

Then, from these new “forecasted” OMA coefficients as a
function of time, one creates the total vector fields at these
future times tJ+k. From these consecutive OMA-forecasted
current fields, one can determine mathematical surface trajec-
tories starting at present time tJ up through any future time tJ+k.

4 Performance of the STPS methodology

In order to test the above STPS methodology, we use the
data for the period from September 14, 2010, 21:00 UTC
through September 30, 2010, 22:00 UTC gathered during
the NOFO rapid-response field trial (NOFO final report).
This overall period is divided in 16 24-h sub-periods (12 h
of fitting analysis and 12 h of forecast), for which we
perform statistical accuracy estimates of the “forecast skill”
presented in the subsequent sections.

4.1 Forecast skill applied to OMA mode coefficients

A measure of forecast accuracy or skill is the departure of
the OMA coefficients over time from the forecasted coef-
ficients. We present this analysis here for the 16 24-h NOFO
data periods. These are summarized in the subsequent tables
for the three sets of OMA modes, where each set of OMA

mode statistics has been averaged over the 12-h forecast
period. Here, 15 Neumann modes, 7 Dirichlet modes, and
12 boundary modes were selected, as discussed earlier (not
necessarily an optimum mode-set selection). The first col-
umn defines the mode number as represented by the index
of its eigenvalue. The OMA coefficient, A, is directly pro-
portional to velocity, and therefore, the square of the coef-
ficient, A2, is directly proportional to the kinetic energy in
each mode given that all other constants and factors are the
same for all modes. This provides a convenient method for
evaluating the portion of total kinetic energy present in each
mode without carrying unnecessary factors or units. The
rows and modes have been sorted in importance according
to this relative kinetic energy, labeled “A2 Energy,” that has
been averaged over 12 forecast hours and 16 such periods;
this is found in the second column. Then the mean square
difference of OMA coefficients (forecasted vs. actual) is
given in the third column. Finally, the mean square differ-
ence ratio is listed as the fourth column (i.e., it is the
quotient of the third column divided by the second). The
latter perhaps is more meaningful because it is based on the
energy in that mode; sometimes this is referred to as the
coefficient of variation (Tables 1, 2, and 3).

Energy in modes as a criterion for how many are important
With a vast number of possible modes, one must make a
choice of how many to include in the analysis to reproduce
the current field. There is not a cost of computing power, but
including too many modes makes the higher ones much more
sensitive to small spatial scale noise or gaps. This in turn
begins to affect the accuracy of the lower-order mode

Table 1 Energy and forecasted OMA coefficient difference variances
in the 15 Neumann modes, averaged over 16 24-h time periods

Mode number A2 energy Mean square difference Mean square
difference ratio

2 60.3999 14.4505 0.2392

1 19.5738 0.7129 0.0364

3 14.2121 1.7104 0.1203

15 11.2430 5.3935 0.4797

9 10.4539 5.4348 0.5199

10 9.5369 5.2894 0.5546

6 9.0137 5.3626 0.5949

4 8.5229 1.7724 0.2080

8 7.8340 3.5327 0.4509

7 7.0914 3.4014 0.4797

11 6.4449 3.7293 0.5786

5 5.6445 6.6702 1.1817

12 5.5679 2.7968 0.5023

14 5.0982 2.8441 0.5579

13 3.7792 2.2429 0.5935
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coefficients when attempting to extract too many (Lekien and
Gildor 2009). As one follows down the second columns of the
above tables, one gains an appreciation for the cumulative
total energy to that point and estimate howmuchmight be lost
by dropping everything below that row from consideration.
Before settling on the somewhat arbitrary selection of 34
modes done earlier, we decided to examine a truncated num-
ber of modes based on cumulative energy, i.e., selecting the
most energetic. We tried the following, leading to 13 total
instead of 34.

Neumann modes: Cut off below the sixth row, so that
modes [2, 1, 3, 15, 9, 10] are included. This set contains
nearly 70% of the total energy (i.e., sum of first six
divided by sum of total).
Dirichlet modes: Cut off below the second row, so that
modes [1, 2] are included. As in the case of the Neumann
modes, this set contains about 70% of the total energy.
Boundary modes: Here we cut off everything below the
fifth row, including modes [7, 3, 2, 9, 8]. This set
contains about 75% of the total energy.

As a quality measure and basis for a decision whether this
reduced mode set is a better choice, we compared the OMA
mode fit to total currents with the conventional LS total currents
over all 16 NOFO time periods of 24 h each, exactly as we did
to calculate and plot Fig. 4. This is shown below as Fig. 5.

The overall RMS difference summaries for these Fig. 5 plots
are 11.0 and 9.7 cm/s for U and V, respectively. This compares
to 8.0 and 7.6 cm/s when all 34 modes were used for the Fig. 4
comparisons. Although the differences are not large, they are
significant. Therefore, we stayed with our original selection of
34 modes for all subsequent analyses and comparisons.

4.2 Surface current forecast skill

In this section, we show a statistical analysis of the differences
between the forecasted currents obtained from the above
STPS versus the actual (nowcast) OMA fits to HF radial
current observations. The later are considered as the bench-
mark for quantifying the skill of the forecast. Keep in mind
that, for statistical consistency, we perform that analysis for all
the 16 24-h selected periods, but we show here examples for
certain periods. As explained in Section 3, the first 12 h for
each set is the analysis period where the OMA coefficients are
fitted, and the subsequent 12 h is the forecast period.

In Fig. 6, we present the temporal evolution of the
mapped-average RMS difference between the OMA now-
cast current field and the STPS currents for the 16 24-
h periods used in the study. This comparison is performed
for both U and V components, separately. Note that the
RMSE stays low during the first 12 h since this is the
analysis period where the OMA temporal mode coefficients
are fitted to the observed hourly OMA coefficients. Follow-
ing the transition to the forecast period, the RMS error tends
to increase over the next 12 h as expected.

There are three periods that stand out as worse than
others: #3 (green), #15 (blue), and #16 (red). We examine
period #3 later, as a case of a wind reversal that is not
accounted for in the present STPS methodology. Otherwise,
forecast RMS errors are less than 10 cm/s, which is reason-
able in light of overall NOFO current magnitudes and results
that would be incorrectly predicted by persistence.

As all time periods have similar behaviors, we focus here
in one particular example from 15th September 13:00 to
16th September 12:00 (period #2). We can see in Fig. 7 how
the forecasted currents fields are very similar, after 12 h of
prediction, to the OMA nowcast currents.

4.3 Comparison with persistence

In meteorology and occasionally in oceanography, “persis-
tence” is suggested for short-term forecasts. This simply
consists of continuing the latest nowcast condition into the
future, as a constant term. Because of its popularity, we

Table 2 Energy and forecasted OMA coefficient difference variances
in the seven Dirichlet modes, averaged over 16 24-h time periods

Mode number A2 energy Mean square difference Mean square
difference ratio

1 56.4645 1.8979 0.0336

2 21.0345 6.0414 0.2872

4 20.6288 3.7860 0.1835

5 4.7870 2.4480 0.5114

7 4.0265 3.7171 0.9232

6 3.0259 1.4542 0.4806

3 2.5634 0.9501 0.3706

Table 3 Energy and forecasted OMA coefficient difference variances
in the 12 boundary modes, averaged over 16 24-h time periods

Mode number A2 energy Mean square difference Mean square
difference ratio

7 17.5808 0.8093 0.0460

3 15.2467 5.0625 0.3320

2 15.0909 4.1015 0.2718

9 11.9052 1.6728 0.1405

8 11.7794 1.1856 0.1007

4 6.1820 3.0168 0.4880

10 4.0599 1.4688 0.3618

12 3.7742 0.6723 0.1781

5 3.3561 1.5423 0.4596

11 2.7091 2.1722 0.8018

6 2.4491 1.0804 0.4412

1 1.6209 0.9934 0.6128
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show below in Fig. 8 the error results based on persistence
(red curve) for the period #2 example we have been examining
above. This is compared with currents from our nowcasted
(first 12 h) and STPS-forecasted (second 12 h) currents (blue
curve). Both represent the RMSE between the actual OMA
coefficients for each hour and the respective time model for
period #2: OMA+STPS (blue) vs. persistence (red). For the
first 12 h, persistence error is zero because this is the actual
current before persistence of the last point projects it into the
future. As one advances into the second 12-h half, represent-
ing the forecast period, RMSE for persistence becomes very
large as expected because it misses the tidal variation. It drops
at the end of the period after 12 h because the semidiurnal tidal
cycle returns to nearly its value at the beginning.

The error in using persistence for the other 15 time periods
is always larger than the STPS forecast errors, as expected. For
some cases, it is much worse than it is in Fig. 8 while for other
cases better. Therefore, persistence cannot be recommended
over periods extending more than a couple hours at most into
the future for ocean current forecasting.

4.4 Trajectory forecast skill

As another measure of forecast skill for the STPS technique,
we computed the trajectories followed by multiple virtual
particles released in the NOFO domain area and being trans-
ported by the ocean currents derived from the HF observa-
tions.We then compared the trajectories of the virtual particles
forced by the OMA nowcast currents and by the STPS-
derived currents. Thirty-three particles were released, one
each third grid point (9 km). We show in Fig. 9 the simulated
trajectories for period #2, whose current predictions we ex-
amined above (14th September 21:00 to 15th September
20:00). We observe good behavior for the short-term forecast
trajectories, in that the nowcasted (black) and forecasted (blue)
curves visibly nearly overlay each other after starting at the
same initial point (red dot).

For the sake of comparison, we present also in Fig. 10 the
trajectories for period #3, where a wind event caused a large
RMSE of the currents, the worst scenario in Fig. 6 (green).
One sees that although the forecasted (black) and nowcasted
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OMA trajectories follow the same general paths, they depart
from each other to a greater extent toward the end of their
trajectories.

To quantify the forecast skill shown in the trajectory maps,
we calculated the average distance divergence between trajec-
tories from actual vs. forecasted OMAs for all particle trajec-
tories represented in Fig. 9 (corresponding to period #2). As

expected, the distance divergence increases with time in the
forecasted period (after 12 h of initial analysis). However, the
distance divergence is less than 1.5 km (Fig. 11), which is
considered good agreement for a 12-h forecast. Compare this
to the trajectory divergences for the worst period that was
influenced by a wind change, period #3, in Fig. 12, where final
separation distances cluster around 3–4 km.

b)

a)

Fig. 7 OMA surface velocity
field for the NOFO area for
period #2 (15th September
13:00 to 16th September
12:00). a Predicted field at the
end of the 12-h forecast; b
OMA-fitted currents nowcast
surface current field at the same
time
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5 A case study of wind influences

The STPS methodology that we presented in Section 3 and
tested against NOFO data assumed a temporal model over
12-h periods that included effects that are predicable from
the immediate past: tides, inertial harmonics, constant, linear
trend. Wind also influences surface currents seen by the
radars. A changing wind, however, is not predictable from

past surface current behavior. Future work must augment the
present STPS based on estimates of wind forecasts in the
local area of radar measurement. This should improve the
current forecasts.

We highlight here period #3 (16th September 09:00 to 17th
September 08:00, 2010) as an example suggesting that a
changing wind was responsible for the worst forecast agree-
ment of the 16 periods we examined. From the hindcast
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Fig. 8 Comparison of RMS
current vector errors over area
for period #2 (14th September
21:00 to 15th September
20:00). This compares simple
persistence error (red) with
nowcasted (first 12 h) and
STPS-forecasted (second 12 h)
time history (blue)
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Fig. 9 Simulated trajectories followed by virtual particles (initial
positions are the red points) being forced by actual OMA-fitted cur-
rents (blue lines) and by forecasted OMA currents (black lines). The
trajectories are from period #2 from 14th September 21:00 to 15th
September 20:00, 2010
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Fig. 10 Simulated trajectories followed by virtual particles (initial
positions are the red points) being forced by actual OMA-fitted cur-
rents (blue lines) and forecasted OMA currents (black lines). The
trajectories are from period #3 from 16th September 09:00 to 17th
September 08:00, 2010
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archive NORA10 provided by the Norwegian Meteorological
Institute (Reistad et al. 2011), we have an estimate of the wind
behavior over the radar area. The general direction and speed
of the wind over this region during September was typically in
the range of 4–8 m/s from a northwesterly direction. However,
a frontal passage or storm system caused a wind reversal to a
direction from the east during the period between the 15th and
early 16th of September, with speed increasing to 10–11 m/s.

During the NOFO period, the most energetic OMA modes
that best fitted the radial surface current data were: Neumann
mode #2, Dirichlet mode #1, and boundary mode #7. Refer to
Fig. 3 (left columns) to observe the current patterns represented
by these three energy-dominant modes. The normal temporal
behavior of the dominant OMA coefficients reflects the semi-
diurnal tidal nature of the flows, plus a constant (persistence)
term over these 24-h periods under consideration. However,
Neumann Mode #2 saw an anomaly during the beginning of
this period. We illustrate this by showing the modal coefficient
history during this period #3 in Fig. 13. The green and black
curves are the dominant Dirichlet and boundary modal coef-
ficients, respectively. They clearly exhibit the constant and
semidiurnal behavior expected of tides. The red curve is the
Neumann dominant mode coefficient, which is missing the
first tidal period that would have shown a downward dip.

How is this behavior explained in terms of the wind change?
Thewind direction during this initial part of the 24-h period had
reversed so that it came from the east (with increased strength
to ∼11 m/s). This would have driven a current flowing to the
northwest, following the expected Ekman rotation to the right.
But this is precisely the positive direction of the dominant
Neumann mode shown in the upper right of Fig. 3. This
explains the canceling of the negative cycle of the red curve

of Fig. 13 above that would have followed the tide. The wind-
induced current flowing NWwould not have affected either the
dominant Dirichlet or the boundary modes shown in the left
columns of Fig. 3 because their current directions have no
significant overall orientations in this direction. Thus, their tidal
nature is unperturbed by the wind-induced drift.

So now, our STPS formulation that models only tides and
constant behavior tries to fit the semidiurnal harmonics and
constant to the red curve of Fig. 13 over the first 12 h, in order
to forecast it into the second 12-h period. Clearly the strong
tidal behavior will be missing and contribute to an erroneous
forecast for the second half of the 24-h period. To demonstrate
and confirm these forecasted behaviors, we show in Fig. 14
the actual and the forecasted OMA coefficient behaviors.
Green is the time forecast for the three dominant modes, while
red is the actual. In the leftmost Neumann mode #2, one sees
that the green forecasted behavior has little variation, based on
the fact that the wind had canceled nearly all of the tidal
variation during the first 12 h used to create the forecast; the
red actual behavior had a strong negative tidal swing because
the wind had relaxed, and the error between these two is very
significant. On the other hand, the other two dominant modes
(Dirichlet and boundary) that are not oriented so that they
responded to this Easterly wind therefore did not have their
forecasted behavior influenced negatively by the wind; their
actual (red) and forecasted (green) behaviors follow each other
nicely. Because this dominant Neumann mode had such high
tidal energy during the forecasted period that was missed in
our STPS prediction itself, this was sufficient to cause the
departure of the forecasted current patterns and trajectories
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that were observed in earlier sections from the good prediction
that one would have hoped for.

The rationale explained above also suggests a mode-
based approach for including surface wind stress forecasts
into our STPS model that will be implemented in future
work. This is discussed further below.

6 Discussion

HF radar surface current nowcasts have been widely demon-
strated to be very useful in practical oceanographic applica-
tions (e.g., Abascal et al. 2009). However, a STPS of surface
currents based on HF radar data will be an even more useful
extension for many practical applications, from SAR to oil
spill operations. In this paper, we have introduced a simple,
novel STPS methodology based on the prediction of the
coefficients of OMA modes obtained after fitting the radial
currents to a prior short set of hourly OMA coefficients
(Kaplan and Lekien 2007; Lekien and Gildor 2009).

The methodology has been tested using the time history
of HF data gathered in a rapid-deployment experiment in
Finnmark (northern coast of Norway), during the execution of
a NOFO funded project. For 16 sub-periods selected, a detailed
statistical analysis of the RMS differences between the actual
data (nowcast) and the forecasted data is presented for: (1)
OMA representations of the mode coefficients, (2) the surface
currents themselves before and after OMA fitting, as well as (3)
for the surface trajectories determined from the OMA currents.
Results show a good agreement between the forecasted and the
actual fields. Three periods exhibit worse agreement; for the
worst case, we discussed and showed that a wind reversal was
responsible, which is not accounted for in our present STPS
methodology.

We examined a number of tradeoffs in our OMA+STPS
approach that have not been fully resolved within this short
study and need further investigation. There are questions of:
(1) an optimum setting for the homogenization smoothing
parameter, k, that constrains the least-squares cost function
so as to suppress spurious, large OMA coefficient velocities
and (2) the choice of number of modes to be used and how
the mode energy may play a role in this optimization. In our
studies here, we have arrived at a selection for both, based
on the fit of OMA total velocities to the conventional LS
total velocities, using the minimization of RMSE between
the two as a criterion. However, for both questions above,
we find that STPS-forecasted currents—and especially tra-
jectories—departed more from the OMA actual fits during
the forecasted period when we optimized OMA parameters
based on RMSE between actual LS and OMA-fitted totals.
One can ask the question: Which is better, parameters that
produce better OMA fits to the totals or parameters that give
better forecasts because these two outcomes are somewhat

different? Because we are determining the forecasts and their
quality based on the OMA fits themselves, this leads to a
somewhat circular argument. It will be resolved by further
investigations involving validation exercises in which surface
drifters are deployed and tracked for trajectory comparisons
with OMA nowcast and forecast trajectories.

A second important future extension involves the few
situations where changing wind over the analysis period
(e.g., 24 h in our case) calls into question the simple tem-
poral model based on past current history that we used here
and will lead to the inclusion of wind forecasts. How might
this be done? Our case study for period #3 here suggests the
methodology we intend to develop. It will employ the OMA
modes as described above for currents as its basis, leading to
a straightforward blending of wind effects into our existing
OMA+STPS methodology, with a set of forecasted OMA
modes that will add in a special wind-produced set in the
following way.

Wind imparts surface current momentum via the wind
stress tensor, which is proportional to the square of the wind
speed and has the direction of the wind vector. The domi-
nant OMA modes (six of which are shown in Fig. 3) have
distinctive vector patterns that will be more or less effective
in coupling current flow to wind stress, depending on the
wind direction over the radar-observed OMA domain and
the mode pattern. Assuming to the lowest order that the
wind field is uniform over these radar time and space scales,
a table can be produced of the coupling between the wind
from a given direction and a given OMA mode as the “dot-
product” of the wind direction unit vector and each OMA
mode pattern, over a direction grid of, say, every 15°. The
expected Ekman rotation will be included in the wind-to-
current directions. This results in a coupling or correlation
matrix database, for which some modes are strongly coupled
for given directions and others minimally. The strength of
this coupling is related to assumed wind stress magnitude
values, and we expect it will be directly proportional to the
values of kinetic energy within the given mode, obtained as
the squares of the vectors shown for each mode (as exem-
plified in Fig. 3), through a proportionality constant to be
determined.

Tuning the above physics-based analytical foundation will
be undertaken with measurements of winds over selected
areas and supported by drifter measurements of the contem-
porary currents. We presently plan to study this for 5-MHz
SeaSonde systems installed in Galicia, Spain and 13 MHz
systems intended for future NOFO follow-up operations in
Norway.
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