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Abstract: 
 

Accurate short-term prediction of surface currents can improve efficiency of 

search-and-rescue operations, oil-spill response, and marine operations. We developed a 

linear statistical model for predicting surface currents (up to 48 hours in the future) based 

on a short time-history of past HF-radar observations (past 48 hours) and a forecast of 

surface winds. Our model used empirical orthogonal functions (EOFs) to capture spatial 

correlations in the HF-radar data and used linear autoregression model to predict the 

temporal dynamics of the EOF coefficients. We tested the developed statistical model 

using historical observation of surface currents in Monterey Bay, California. The 

predicted particle trajectories separated from particles advected with HF-radar data at a 

rate of 4.4 km/day. The developed model was more accurate than existing statistical 

model (drifter separation of 5.5 km/day) and circulation model (drifter separation of 8.9 

km/day) for the same area.  When the wind forecast was not available, the accuracy of 

our model degraded slightly (drifter separation of 4.9 km/day), but was still better than 

existing models. We found that the minimal length of the HF-radar data required to train 

an accurate statistical model was one to two years, depending on the accuracy desired. 

Our evaluation showed that the developed model is accurate, is easier to implement and 
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maintain than existing statistical and circulation models, and can be relocated to other 

coastal systems that have a sufficient history of HF-radar observations.  

Keywords: Surface current prediction, HF-Radar, search and rescue, Monterey 

Bay, CA 

 
 

1 Introduction 
Knowledge of surface currents is essential in search and rescues operations, oil 

spill response, and marine operations. Several observing and modeling systems provide 

such capability. These include: measurements of surface currents using High Frequency 

(HF) coastal radars (Barrick et al. 1977), prediction of surface currents using primitive 

equation models (Breivick and Sætra 2001; Shulman and Paduan 2009), current 

prediction based on tidal harmonics (Egbert and Erofeeva 2010), and current prediction 

based on geostrophic balance between wind stress and the Coriolis force (Lagerloef et al. 

1999).  Of these systems, HF-Radar is the only system that can directly measure surface 

currents over a large portion of the coastal ocean (up to 200 km offshore).  

HF-Radar estimates radial surface current velocities by measuring Doppler shift 

in the gravity waves that move towards or away from the radar antenna. Using an array of 

antennas with overlapping lines of sights these radial velocities are combined into a field 

of vector current. The measured surface velocity is an average velocity over the surface 

layer of the ocean that varies, depending on the frequency of the radar system, between 

0.3 to 2.5 meters. Extensive comparisons of the HF-Radar current measurements against 

drifting buoys and upward looking ADCP estimated that 50% of the  time the radar 

measurement errors are lower than 7 cm/s (Paduan and Rosenfeld 1996).  
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One disadvantage of HF-Radar application is that it can only provide information 

about past conditions. In contrast, marine operations, search and rescue operations, and 

oil spill response often require forecast of future currents. Two fundamental approaches 

to such forecasts exist: (1) assimilating HF-Radar currents into physics-based models of 

the ocean circulation (Paduan and Shulman 2004; Breivick and Sætra 2001; Shulman and 

Paduan 2009), or (2) using empirical models to forecast future currents based on a short 

time history of past observations (O�’Donnell et al. 2012; Garfield and Paduan 2009; 

Almeida 2008). In this paper, we present an empirical method for predicting HF-Radar 

currents.  

The proposed prediction method is an extension of our previous work on 

statistical emulators of physics-based models (Frolov 2007; Frolov et al. 2009; van der 

Merwe et al. 2007). In this paper, we train the emulators not on simulations of the ocean 

circulation, but on historical HF-Radar observations of the surface currents. We will 

further refer to emulators as empirical models in this paper. Our method operates in two 

steps: (1) we capture the spatial complexity of the field of interest (surface currents) using 

empirical orthogonal function (EOF) decomposition of a long historic dataset, and (2) we 

train a compact statistical model that emulates the dynamics of EOF coefficients.  In 

addition to initial conditions from HF-Radar observations, our model incorporates 

predicted wind stress from the regional atmospheric model.  

Several important differences exist between our prediction method and the 

empirical prediction methods of O�’Donnell et.al. (2012), and Garfield  and Paduan 

(2009). Both O�’Donnell et.al. (2012), and Garfield  and Paduan (2009) developed their 

methods for predicting currents at each individual grid point, without taking into account 
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information about surface currents at neighboring grid points that can inform the 

prediction about propagating ocean fronts and eddies. In contrast, our method 

incorporates spatial correlations during the EOF pre-processing step. Both O�’Donnell 

et.al. (2012) and Garfield  and Paduan (2009) developed their models as a two-step 

process, where the predicted currents are a combination of tidal currents, predicted with 

the harmonic model, and low-pass currents, predicted using weighted averages of low-

pass signal during the last few days.  In contrast, our model directly learns the tidal 

signal, low-pass signal, and their interactions from data. Finally, the prediction system by 

O�’Donnell et.al. (2012) requires weekly re-training of the model. In contrast, our model 

is trained only once.  

We test the developed prediction system using a five-year-long dataset 

(01/01/2006-10/30/2010) of HF-radar observations in Monterey Bay, CA. To evaluate the 

predictive skill of the developed system, we used two error statistics: root mean square 

(RMS) error between the predicted and observed currents, and separation between 

drifters advected with predicted and observed currents. To understand how the accuracy 

of the developed system compares to the accuracy of existing operational systems in 

Monterey Bay, we compared the error statistics of our model with the error statics of the 

empirically-based prediction model of Garfield  and Paduan (2009) and with the data-

assimilative JPL-ROMS circulation model (Chao et al. 2009).            

2 Background on the circulation in Monterey Bay 
Several authors (Paduan and Cook 1997; Paduan and Rosenfeld 1996) used HF-

radar data to provide an extensive description of circulation patterns in Monterey Bay. 

Paduan and Cook (1997) showed that the circulation can be divided into three equally 
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important parts: (1) low-frequency (days to weeks) circulation due to changes in regional 

wind patterns, (2) semi-diurnal tidal circulation, and (3) circulation due to diurnal sea 

breeze.  

The low-frequency circulation is driven by intensification, relaxation, and reversal 

of predominant equator-ward winds. (See Figure 1.e for the timeseries of along-shore 

winds and Figure 1.a for the mean circulation field). When upwelling winds dominate, a 

strong (~0.1-0.2 m/s) equator-ward jet develops across the mouth of the Monterey Bay 

(Figure 1.b). During upwelling, circulation inside of the Bay is characterized by 

weakening of the circulation leeway of Santa Cruz Mountains and a bay-wide counter-

clockwise retentive eddy. When upwelling winds relax, circulation over the entire region 

becomes weak and confused (Figure 1.c). The only remaining coherent pattern is the 

offshore expansion of the counter-clockwise eddy that was previously trapped inside of 

the Monterey Bay by a strong upwelling jet. During infrequent periods of strong winter 

storms, the direction of the flow inside and outside of the bay becomes pole-ward, with a 

strong coastal jet developing inside of the Monterey Bay (Figure 1.d).  

Tidal circulation in Monterey Bay is dominated by barcolinic tides (Paduan and 

Cook 1997; Rosenfeld et al. 2009). Intensity of surface currents associated with 

baroclinic (internal) tides depends on the time-varying density structure of the ocean and 

on the bathymetry. The map of tidal ellipses computed from the HF-radar data (Figure 4 

in Paduan and Cook  (1997)) shows that M2 tidal velocities vary from almost zero over 

the deep-waters of the canyon to 0.25 m/s at the head of the canyon. 

The diurnal circulation in the Bay is dominated by the sea breeze (Paduan and 

Cook 1997). Figure 4 in Paduan and Cook  (1997) shows high coherence of the diurnal 
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currents across the entire bay. The circulation ellipses are oriented consistent with 

direction of the Salinas valley that serves as conduit for marine air entering inland. The 

diurnal circulation is strongest in the middle of the bay (~0.20 m/s), and decays offshore 

and in proximity of the land boundary.  

3 Methods 

3.1 Training and testing datasets 
To train and test the developed surface current prediction system, we used a five-

year-long dataset (01/01/2006-10/30/2010) of HF-radar currents in Monterey Bay 

California. Figure 2 shows the configuration of the standard-range HF-Radar network in 

Monterey Bay. The spatial resolution of the dataset was 3 km and the temporal resolution 

was 1 hour. To fill-in gaps in the current field due to poor radar returns, the HF-Radar 

currents were interpolated using Objective Mapping Analysis (OMA; (Kaplan and Lekien 

2007)).  

To improve the predictive skill of the forecast, we experimented with 

incorporating the following extraneous forcing variables as an input to the prediction 

system: 

1) Wind stress from the Navy�’s Coupled Ocean/Atmosphere Mesoscale 

Prediction System (COAMPS; (Doyle et al. 2009)). The dataset covered the 

period from January 2006 to December 2010 and had 3 km resolution in 

Monterey Bay. The temporal resolution was hourly, with the 48-hour forecast 

issued twice daily.  
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2) Harmonic prediction of tidal elevations with the regional tidal model of 

Egbert and Erofeeva  (2010). Tidal elevations were predicted based on 8 tidal 

constituents for 133 points evenly distributed through the HF-Radar domain.  

Similar to surface current vectors, we used the EOF pre-processing before incorporating 

wind stress and tidal data into our empirical model of surface currents. 

3.2 Linear autoregressive prediction model 
Consider the following linear system that describes the evolution of the surface 

currents in the ocean: 

1k k kx x wA B  (1), 
where xlx  is the state variable consisting of the vertically concatenated uHF and vHF 

components of the surface currents at each grid point of the domain; wlw  is the 

forcing vector consisting of extraneous forcings, such as uwind and vwind components of the 

wind stress; A and B are the state and input matrices; and k is the time index.  

Using a least-square training procedure, we are interested in finding such A  and 

B  that will minimize the mismatch error  between observed x  and predicted x  surface 

currents: 

1 1

2 2

2 2
1 1

( , )

k k k k
N N

i i i
i i

x x x w

J x x

A B

A B
 (2), 

where N is the number of training samples.  

Our previous work (Frolov 2007; Frolov et al. 2009; van der Merwe et al. 2007) 

showed that it is possible to improve the accuracy of the prediction system (Eq. 1) and 

the numerical properties of the least-square training algorithm (Eq. 2) by incorporating 

the following modifications to (Eqs. 1 and 2). 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 8

1. To reduce the dimensionality of the training problem, we used an EOF dimension 

reduction technique: 

( )

( )

s
x

s
w

x x x
w w w

 (3), 

where xrsx  and wrsw are the reduced state and forcings vectors (vectors of 

EOF coefficients); x xr xl
x  and w wr xl

w  are the EOF dimension-reduction 

operators with rx and rw modes retained; and x and w  are the mean state and forcing 

vectors. We computed the dimension reduction operators x and w based on the 

training data. Prior to the computation, we dimensionalized the state and the forcing 

vectors by dividing the u and v components by their standard deviations: 

windHF

HF wind

windHF

HF wind

; uu

v u

uu
x w

v v
  (4). 

One normalization coefficient  was computed across all spatial locations.  

2. To better capture the temporal evolution of the system and, hence, to improve the 

prediction accuracy, we introduce augmented vectors X, W, and X for initial 

conditions, forcings, and predicted states. 

1

1

; ;

s s s
k k m k m

k k k
s s s
k n k n k

x w x
X W X

x w x
 (5). 

For past states and forcings, we used 9 lags: -48, -36, -24, -18, -12, -6, -3, -1, and 0 

hours. For predicted states and future forcings, we used 4 lags: 1, 3, 6, and 12 hours. 

Including more time-embedded states did not significantly improve the prediction 

accuracy.  

3. To capture temporal correlations in each of the time-embedded vectors X, W, and X , 

we used a second EOF decomposition:  
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2 2

2 2

( )

( )

s
x x

s
w w

X X X
W W W

T

T
 (6), 

where x2 xr x(n r )
2x  and w2 wr x(n+m) r

w  are the EOF dimension-reduction 

operators with rx2 and rw2 modes retained to capture 99.9% of the variance, and 2xT  

and 2wT  are the diagonal matrices that normalize each component of the time 

embedded vectors X and W to have unit variance. We use this normalization to 

improve the numerical properties of the training algorithm. We do not normalize or 

apply the secondary dimension reduction to the output vector X .  

4. Finally, to reduce over-fitting of the matrices A  and B  to training data, we 

introduced a regularized cost function that penalizes large weights in matrices A  and 

B : 

2
2

2
1

2

(:)
( , )

(:)

N
s s
i i

i
J X X

A
A B

B
 (7), 

  where  is the regularization parameter that is fit using a cross validation procedure 

(Frolov et al. 2009).  

Using the dimension reduction operators (Eq. 3), time-embedded vectors (Eq. 5), 

and secondary dimension reduction operators (Eq. 6), we can expand the prediction 

system (Eq. 2) as follows: 

2 2 2 2

1

( ) ( )

( ) ( )

s
k m x k w k m

x x w w
s
k x k n w k n

x x x w w

x x x w w
A B   (8). 

The output of the prediction system can then be reconstructed as: 

1 1
T s

k x kx x x  (9). 
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We implement the prediction system (Eq. 8) and the least square fitting procedure 

(Eq. 7) using the Netlab© package (Nabney 2004)�—an open source network training 

package for Matlab©.  

3.3 Error metrics 

4 Results 
To characterize the accuracy of the developed system, we trained a series of 

empirical models with varying inputs. The parameters of each model are summarized in 

Table 1.  

[Table 1 here] 

We used two error metrics to evaluate the accuracy of the trained models. (1) An 

Eulerian RMS error between predicted and observed velocity fields. (2) A separation 

error between two Lagrangian particles that were advected with predicted and observed 

currents. Lagrangian particles were seeded every 3 days at each grid-point of the domain. 

We used an Euler integration method with a timestep of one hour. Reducing the timestep 

by the factor of 4 did not alter the results significantly.  

We evaluated the prediction accuracy for forecast horizons up to 48 hours in the 

future. The 48-hour forecast was generated as a sequence of hourly forecasts, where the 

output of the previous forecast was fed back as initial conditions for the next forecast 

cycle.  

4.1 Prediction accuracy 
To evaluate the prediction accuracy of the developed system, we trained the 

empirical model E-HF-W on four years of data (1/1/2006-12/31/2009) and evaluated its 

performance on ten months of data that were not seen in training (1/1/2010-11/1/2010). 
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The statistics of the errors are shown in Figure 3. In the first 6 hours, the Eulerian RMS 

error increased sharply to 0.09 m/s and leveled off at ~0.1 m/s for the 48-hour prediction. 

The Lagrangian drifter separation increased continuously at a rate of 180 m per hour. The 

separation between simulated drifters was 4.4 km after 24 hours and, 8.8 km after 48 

hours. The timeseries of RMS and drifter separation errors (Figure 4) showed weak 

correlation (~0.5) with the mean flow speed, indicating an increase in prediction error 

during periods of energetic flows. Correlations with the along-shore winds were lower 

(~0.2). However, visual inspection (Figure 4) suggested that periods of increased error 

coincided with the periods of stronger winds.  

To illustrate the behavior of simulated drifters, we plotted trajectories of virtual 

drifters deployed at the location of M0, M1, and M2 moorings. We plotted these 

trajectories for a period of high (January 21 and April 22, 2010) and low (February 22 

and August 05, 2010) RMS error (Figure 5).  

4.2 Sensitivity to the forcing functions 
To study how the prediction accuracy changes as a function of forcing inputs to 

the empirical model, we trained two new models:  

 In E-HF-W-Tide, we added tidal elevations predicted by the regional model of 

Egbert and Erofeeva  (2010) as an additional input to our base empirical model E-

HF-W.  

 In E-HF, we removed wind stress forcing from the base empirical model E-HF-

W. Model E-HF was essentially an unforced system that predicts future surface 

currents based on past conditions. 

See Table 1 for further details on the configuration of each empirical model.  
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When we compared the error statistics of the three empirical models (Figure 6), 

we found that our base model E-HF-W (line marked with dots) performed similarly to the 

model E-HF-W-Tide (line marked with circles). In fact, the two lines were almost 

indistinguishable on Figure 6. This finding suggests that our autoregressive model was 

able to independently learn the tidal variability in the system and did not require an 

external tidal prediction model.   

When we compared the performance of the base empirical model E-HF-W with 

the empirical model E-HW, we found that including wind stress forecast improved 

surface current prediction for longer forecast times (greater than 6 hours for the RMS 

error criterion and greater than 12 hours for the drifter separation criterion). For 24 hour 

prediction the RMS error decreased from 0.1 m/s (E-HW) to 0.09 m/s (E-HF-W) and the 

Lagrangian separation error decreased from 4.9 km to 4.4 km.  

4.3 Sensitivity to the length of the training set 
To determine the minimum training length for the empirical model, we trained 

our base model on a sequence of progressively longer training sets (from 0.25 years to 4 

years). We tested these empirical models on the same time interval (1/1/2010-11/1/2010). 

The test interval was independent of the training data. Figure 7 shows that errors were 

lower for the longer training sets. A one to two year dataset was required to train an 

empirical model with accuracy comparable or better than the model of Garfield and 

Paduan  (2009) (see section 4.4).   

4.4 Comparisons with existing operational models 
How does the prediction accuracy of our base surrogate E-HF-W compare to the 

accuracy of existing surface current prediction systems? At the time of this publication, 
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two such systems provided operational forecasts of surface currents in the Monterey Bay 

area:  

1) A JPL-ROMS circulation model (Chao et al. 2009) that assimilated 

observations of satellite surface temperature, some HF-Radar observations, 

and profiles of salinity and temperature from moorings and gliders.  

2) And an empirical surface current model of Garfield and Paduan  (2009) that 

was trained on the HF-Radar observations for Monterey Bay.  

We computed simulated drifter separation errors for all three models for the 

month of October 2010, when the outputs of the models overlapped. The results of the 

comparison (Figure 8) show that our empirical model E-HF-W had the lowest error of all 

three models. After 24 hours, the separation errors were 3.8 km/day for the empirical 

model E-HF-W, 5.5 km/day for the empirical model of Garfield and Paduan  (2009), and 

8.9 km/day for the JPL-ROMS circulation model.  

Comparisons of the prediction errors between empirical models and the JPL-

ROMS circulation model should be taken with a note of caution. This comparison is 

likely to slightly favor empirical models that were trained to mimic HF-Radar currents 

exactly. In reality, HF-radar measurements are not error free, and a more fair comparison 

would compare predicted currents with independent measurement of the surface 

circulation, such as surface drifters. Unfortunately no surface drifters were deployed in 

Monterey Bay during the period of this study.  

5 Summary and discussion 
A novel empirical modeling framework was developed that enabled prediction of 

ocean surface currents based on the past history of HF-Radar observations and an 
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optional forecast of wind stress. The developed system was trained on a historic dataset 

of HF-Radar observations and provides forecasts of surface currents up to 48 hours in the 

future.   

We tested the developed system in Monterey Bay, CA. Surface currents in 

Monterey Bay are equally driven by low-pass variation in offshore winds, daily sea 

breeze, and semi-diurnal baroclinic tides.  We trained our empirical model using four 

years of hourly HF-Radar data, and tested the performance of the model on 10 months of 

data that was not seen in training. The Eulerian RMS errors rose sharply to 0.09 m/s for 

the 6-hour-prediction and leveled off at 0.1 m/s for the 48-hour-prediction. The 

Lagrangian drifter separation increased continuously at a rate of 180 m per hour. After 24 

hours the separation between simulated drifters was 4.4 km and, 8.8 km after 48 hours. 

The timeseries of errors showed that the errors were higher during periods of energetic 

flow.  

Through a series of sensitivity studies, we determined that incorporation of the 

wind stress improved prediction of the surface currents beyond the 12 hour forecast 

horizon. However, incorporating an external tidal model did not improve the forecast, 

suggesting that the autoregressive formulation of our model is capable of learning the 

tidal variability directly. We found that a dataset of at least 1 to 2 years in duration was 

required to train a prediction system with accuracy exceeding existing empirical 

prediction systems.  

The developed model compared favorably to existing operational forecasts of 

surface currents in Monterey Bay. For the one month when data for all models were 

available, the divergence between the simulated drifters was lowest for the developed 
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empirical model (3.8 km in 24 hours), higher (5.5 km in 24 hours) for the existing 

empirical model of Garfield and Paduan (2009), and highest (8.9 km in 24 hours) for the 

data-assimilative JPL-ROMS circulation model. We attribute improved accuracy of our 

model, as compared to the empirical model of Garfield and Paduan (2009), to (a) 

incorporating wind stress prediction in our model and (b) better capability to capture 

spatial and temporal correlations in the data using the two EOF pre-processing steps in 

our model. We explain the low accuracy of the circulation model because it (a) 

assimilated only four daily HF-Radar snapshots, as compared to hourly snapshots in our 

empirical model and (b) it was fitting the HF-Radar data as a least-square compromise 

between fitting the model forecast, observations of salinity and temperature profiles, and 

observations of sea surface temperature from the satellite. These results suggest that 

empirical models may provide a better forecast of surface current conditions than the 

circulation models that are designed to predict the entire three-dimensional circulation 

and the hydrography field.  
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Tables 
Table 1: Description of trained empirical models. 

Figures 
Figure 1: Climatology of HF-Radar currents. (a) Mean flow-field for all data 
(01/01/2006-10/30/2010). (b) Mean flow field during upwelling-favorable winds 
(Valongshore <-0.5 m/s). (c) Mean flow field during relaxation-favorable winds (Valongshore 
between -0.5 and 0.5 m/s). (d) Mean flow field during downwelling-favorable winds 
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(Valongshore>0.5 m/s). (e) Timeseries of along shore winds (positive north) that were used 
to segment the flow field in panels (b-d). Winds were rotated 30 degrees to the left to 
orient wind direction with the shoreline direction.  

Figure 2: Configuration of the HF-radar installation for Monterey Bay and locations of 
M1 and M2 moorings.  

Figure 3: Average error for empirical model E-HF-W. (a) Eulerian RMS error averaged 
over the entire domain. (b) Separation error between simulated drifters. Errors were 
computed for a test period (1/1/2010-11/1/2010).  

Figure 4: Time series of 24-hour ahead prediction errors (a-b), average water speed (c), 
and (d) wind speeds at mooring M1. All time series are for a test period (1/1/2010-
11/1/2010). Vertical lines marked with roman numerals mark the periods shown in Figure 
5. 

Figure 5: Trajectories of drifters advected with HF-Radar currents (blue) and with the 
currents predicted by E-HF-W model. Selected period correspond to vertical lines marked 
with roman numerals in Figure 4.   

Figure 6: Average errors for empirical models forced with different inputs. (a) Eulerian 
RMS error. (b) Separation error between simulated drifters. Errors were computed for a 
test period (1/1/2010-11/1/2010).  

Figure 7: Dependence of average errors on the length of the training set. (a) Eulerian 
RMS error. (b) Separation error between simulated drifters. Errors were computed for the 
test period from 1/1/2010 to 11/1/2010.  

Figure 8: Average separation between simulated drifters for three models. Errors were 
computed for the test period from 10/4/2010 to 10/30/2010. 
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Figure 1: Climatology of HF-Radar currents. (a) Mean flow-field for all data (01/01/2006-10/30/2010). (b) 
Mean flow field during upwelling-favorable winds (V alongshore <-0.5 m/s). (c) Mean flow field during 
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relaxation-favorable winds (V alongshore between -0.5 and 0.5 m/s). (d) Mean flow field during downwelling-
favorable winds (V alongshore >0.5 m/s). (e) Timeseries of along shore winds (positive north) that were used 
to segment the flow field in panels (b-d). Winds were rotated 30 degrees to the left to orient wind direction 
with the shoreline direction. 
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Figure 3: Average error for empirical model E-HW-W. (a) Eulerian RMS error averaged over 
the entire domain. (b) Separation error between simulated drifters. Errors were computed for the ( ) p p
test period from 1/1/2010 to 11/1/2010.
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Figure 4: Time series of 24-hour ahead prediction errors (a-b), average water speed (c), and (d) 
wind speed at mooring M1. All time series are daily-averages and are computed for a test period p g y g p p
(1/1/2010-11/1/2010). Vertical lines marked with roman numerals mark the periods shown in 
Figure 5. 
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Figure 6: Average errors for empirical models forced with different inputs. (a) Eulerian RMS 
error. (b) Separation error between simulated drifters. Errors were computed for the test period ( ) p p p
from 1/1/2010 to 11/1/2010.
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Figure 8: Dependence of average errors on the length of the training set. (a) Eulerian RMS error. 
(b) Separation error between simulated drifters. Errors were computed for the test period from ( ) p p p
1/1/2010 to 11/1/2010. 
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Figure 7: Average separation between simulated drifters for three models. Errors were 
computed for the test period from 10/4/2010 to 10/30/2010.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Table 1: Description of trained empirical models 
Experiment ID Emulator inputs: # of EOFS (% variance) 
 HF-radar Wind stress Tide 
E-HF-W 50 (94%) 40 (99%) --- 
E-HF 50 (94%) --- --- 
E-HF-Tide 50 (94%) 40 (99%) 3 (97%) 
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