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Abstract In this work, the benefits of high-frequency (HF)
radar ocean observation technology for backtracking drift-
ing objects are analysed. The HF radar performance is
evaluated by comparison of trajectories between drifter
buoys versus numerical simulations using a Lagrangian
trajectory model. High-resolution currents measured by a
coastal HF radar network combined with atmospheric fields
provided by numerical models are used to backtrack the
trajectory of two dataset of surface-drifting buoys: group I
(with drogue) and group II (without drogue). A methodolo-
gy based on optimization methods is applied to estimate the
uncertainty in the trajectory simulations and to optimize the
search area of the backtracked positions. The results show
that, to backtrack the trajectory of the buoys in group II,
both currents and wind fields were required. However, wind
fields could be practically discarded when simulating the
trajectories of group I. In this case, the optimal backtracked
trajectories were obtained using only HF radar currents as
forcing. Based on the radar availability data, two periods
ranging between 8 and 10 h were selected to backtrack the
buoy trajectories. The root mean squared error (RMSE) was

found to be 1.01 km for group I and 0.82 km for group II.
Taking into account these values, a search area was calcu-
lated using circles of RMSE radii, obtaining 3.2 and
2.11 km2 for groups I and II, respectively. These results
show the positive contribution of HF radar currents for
backtracking drifting objects and demonstrate that these data
combined with atmospheric models are of value to perform
backtracking analysis of drifting objects.

Keywords HF radar currents . Backtracking . Drifting
buoys . Lagrangian trajectory model . Search and rescue
(SAR)

1 Introduction

The recent development of high-frequency (HF) coastal
radar technology has motivated its use for many oceano-
graphic practical applications, such as oil spill response and
maritime search and rescue (SAR) operations (e.g. Hodgins
1991; Ullman et al. 2003; O’Donnell et al. 2005). One of
these activities is the estimation of the origin of an object in
the sea, a complex process that could be improved by the
use of data obtained from this new ocean observing tech-
nology. Backtracking drifting objects trajectories is of great
importance for a number of marine operations. For example,
in oil spill response preparedness, the simulation back in
time of an oil slick could be crucial for detecting likely
release sites and illegal discharges and to identify potential
polluters. For marine safety and SAR activities, this back
drift estimation technique could be useful for multiple pur-
poses, for instance, to locate the origin of a debris field, to
identify the origin of uncontrolled drift floating objects, to
locate the origin of a marine accident if a shipwreck appears
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in the sea or even in the search of the wreckage area in the
case of an aircraft accident.

During the last years, Lagrangian trajectory models based
on hydrodynamic and atmospheric models have been widely
used to predict the trajectory of floating objects, mainly for oil
spill response (e.g. Spaulding et al. 1992; Miranda et al. 2000;
Beegle-Krause 2001; Daniel et al. 2003; Castanedo et al.
2006). For SAR activities, several operational forecast models
have been developed recently to predict the evolution of
search and rescue objects and objects containing hazardous
material (Hackett et al. 2006; Breivik and Allen 2008;
Davidson et al. 2009). Besides forecast applications, Lagrang-
ian trajectory models have been recently used and incorporat-
ed in operational systems for backtracking purposes (Ambjörn
2008; Christiansen 2003). The challenge of backtracking is to
simulate back in time the path followed by a floating object
given its final location and the evolution of the atmospheric
and oceanographic fields. However, the estimation of the
origin of drifting objects is a difficult task due to the uncer-
tainties in drift properties and environmental conditions. The
success of the simulation depends on the formulation of the
Lagrangian model itself and also on the accuracy of the
forcing data (wind, waves and currents), usually provided by
numerical models (Sebastiao and Soares 2006). These atmo-
spheric and oceanographic models have their own intrinsic
errors, which may affect the accuracy of the simulations
(Edwards et al. 2006; Price et al. 2006). The uncertainty in
the forcing becomes more important in coastal areas, where
the complex pattern that characterizes the slope currents and
the highmesoscale activity complicate an accurate forecasting
of the current field. Moreover, even small errors in the esti-
mation of ocean currents can drastically change particle tra-
jectories (Griffa et al. 2004).

In order to address this problem, HF coastal radar obser-
vation systems have become an alternative to provide accu-
rate current surface maps in real time in near-coastal
environments. HF radar surface currents have been validat-
ed with many different types of in situ current measure-
ments, including surface drifters and subsurface current
meters (e.g. Kohut et al. 2006). A general review of the
validation studies can be found in Chapman et al. (1997)
and Chapman and Graber (1997). These works show that
the remote sensing of surface currents in coastal areas using
HF radar systems is an accurate technology (Chapman et al.
1997), being therefore suitable for oceanographic practical
applications as forcing for Lagrangian trajectory models in
an emergency response at sea (Abascal et al. 2009b).

Due to the new potential capabilities offered by this
observation technology, several studies have been carried
out to assess the effectiveness of trajectory analysis using
currents derived from HF radar (Ullman et al. 2003, 2006;
O’Donnell et al. 2005; Abascal et al. 2009b). In order to use
this technology for forecasting, some authors have

developed forecasting algorithms to use HF radar data to
make short-term surface current predictions (O’Donnell et
al. 2005; Barrick et al., manuscript submitted for publica-
tion). However, HF radar systems provide actual measure-
ments of surface currents and, consequently, it presents a
great potential for backtracking purposes.

In this work, the benefits of HF radar currents for back-
tracking drifting objects are analysed. To achieve this objec-
tive, high-resolution currents measured by a coastal HF radar
network are used together with a Lagrangian trajectory model
for backtracking purposes. HF radar currents combined with
atmospheric fields provided by numerical models are used
with a Lagrangian trajectory model to backtrack the trajectory
of two datasets of different drifting buoys collected during an
exercise of the DRIFTER project (ERA-net AMPERA, VI
European Framework Programme). In order to provide accu-
rate results, a methodology based on optimization methods is
applied to estimate the uncertainty in the trajectory simula-
tions and to define the probability density distribution of the
backtracked positions. In this methodology, the transport
model is calibrated by means of a global optimization algo-
rithm in order to obtain the optimal model parameters and
their corresponding 95 % confidence interval for each buoys
dataset. Subsequently, the calibration results are used to com-
pute the buoy trajectories using Monte Carlo approach. Final-
ly, the 95 % confidence areas are determined by means of a
bivariate kernel estimator. The accuracy of the backtracked
trajectories is evaluated by comparison of actual buoy trajec-
tories with the simulations performed. It is worth to mention
that the present study represents one of the first attempts to
analyse the benefit of using HF radar technology for back-
tracking purposes on the Spanish coast.

The remainder of this article is organized as follows:
“Section 2” presents a review of the data used for this study,
“Section 3” describes the methodology used for the back-
tracking, “Section 4” presents the results and “Section 5”
summarizes the main conclusions of the study.

2 Data

The drifter data used in this work was collected during an
exercise developed within the framework of the project
DRIFTER: “HNS, oil and inert pollution: Trajectory mod-
elling and monitoring” (AMPERA, ERA-net VI European
Framework Programme). One of the issues of this project
was the testing and application of drifting buoys to follow
oil spills (Allen-Perkins et al. 2010). As part of the project,
several sets of experiments were carried out by INTECMAR
(Instituto Tecnológico para el Control del Medio Marino de
Galicia) in order to study the influence of ocean–meteoro-
logical conditions and buoy features on the drifting trajec-
tory (http://www.intecmar.org/drifter/).
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During one of these aforementioned exercises (further re-
ferred to as DRIFTER Exercise), a set of 13 buoys was
released in the Bay of Vigo (Galicia, Spain) between Septem-
ber 14, 2010 and September 15, 2010 (Allen-Perkins et al.
2010). To study the influence of the buoy features on the
drifting trajectory, two datasets of drifting buoys were used.
Moreover, an operational system was established to simulate
the trajectories of the buoys. As part of this operational sys-
tem, surface currents from radar HF and wind provided by
numerical models were available in real time and were used to
simulate the trajectory of the buoys (Fernández et al. 2010).

After the operational exercise, all the ocean and meteoro-
logical data collected during the exercise were used to simu-
late the buoy trajectories and more specifically to study the
benefits of using radar currents for backtracking purposes. A
description of this database is provided in this section.

2.1 Buoy data

As mentioned previously, in order to study the influence of
buoy features on drifting trajectory, two datasets of drifting
buoys were used in the DRIFTER exercise. The buoys in the
first group (model MD02, http://www.albatrosmt.com/) con-
sist of a cylinder 25 cm in height and 10 cm in diameter with
a 60-cm flexible drogue (see Fig. 1a). The transmission of
the buoy location was performed via GSM modem technol-
ogy. On the other hand, the second group was made up of
six small buoys of 31 cm in height and 45 cm in diameter
without drogue (model MLi, http://www.marineinstruments.
es/) (see Fig. 1b). In this case, the transmission was done by
satellite through the Iridium network. All the buoys provid-
ed a 15-min sampling rate of their positions. Unfortunately,
some of the buoys ceased to emit some hours after their
deployment and were discarded for the present study.

For the sake of clarity, MD02 and MLi buoys have been
included in two different groups, hereinafter called group I
and group II, respectively. A summary of the buoy dataset
used in this study is presented in Table 1, including drifter

model, group, name of the institution in charge of the buoy
deployment, date of the first and final record and temporal
resolution of the data.

Figure 2 shows the study area, the Bay of Vigo in north-
western Spain, and the path followed by the buoys during
the study period, which spans from September 14 10:30
UTC to September 15 (see Table 1). The buoys deployment
is indicated by a black circle. As can be seen in Fig. 2, the
drifters moved towards the west and south during Septem-
ber 14 and reversed their direction and started to move
towards the northeast on September 15, drifting into the
Bay of Vigo. The path followed by the buoys shows the
great variability in the transport of drifting objects. Al-
though all the buoys were released at the same place and
time, they followed different trajectories and present a dif-
ferent final position.

2.2 HF radar currents

A HF radar system is a land-based technology capable of
measuring ocean surface currents from the backscattered
radar signal given by ocean surface gravity waves (Barrick
et al. 1977). HF radar system works on the principle of
Bragg scattering where the transmitted electromagnetic ra-
dio waves were reflected by resonant ocean surface waves
of one half the incident radar wavelength. A HF radar
system consists of a transmitter antenna capable of transmit-
ting high-frequency (3–50 MHz) electromagnetic waves
over a conductive ocean surface and receiver antennas ca-
pable of capturing the signal backscattered and with a
Doppler frequency shift by moving ocean surface due to
waves and underlying (surface) currents.

HF radar surface currents employed in this study were
provided by the high-resolution HF radar network at the Bay
of Vigo owned and operated by University of Vigo (Varela
2010). The HF radar network consists of two CODAR
systems, one located at Punta Subrido (SUBR) in the north-
ern entrance of the Bay and the other at Isla de Toralla

Fig. 1 MD02 (a) and MLi (b)
drifting buoys (taken from
Allen-Perkins et al. (2010))
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(TORA) in the southern part of the Bay (Fig. 3). The TORA
system operates at a central frequency of 46.2 MHz with a
bandwidth of 400 kHz and a sweep rate of 4 Hz, while
SUBR system operates at a central frequency of 46.8 MHz
with a bandwidth of 400 kHz and a sweep rate of 4 Hz. With
these specifications, each radar system measures radial com-
ponents of the surface current with an average range of
15 km and a range resolution of 375 m. The radial vector
files generated by the two CODAR systems at 30-min

intervals were combined with respect to a predefined surface
grid of 0.4×0.4-km horizontal resolution using the method
of least squares (Lipa and Barrick 1983) to generate the total
vector field. A typical total vector plot for this system is
shown in Fig. 3. It is important to note here that, due to the
technical characteristics of the radar system, the effective
depth is of the order of 0.25 m (Stewart and Joy 1974).

During the radar exercise period, the HF network has
been running operationally and providing surface current

Table 1 Buoys deployed during the “DRIFTER Exercise”. The periods of the simulated trajectories are also shown

Drifter
model

Group Buoy’s
number
(ID)

Institution Buoys trajectories Δt (min) Periods of simulation

Period 1 Period 2

Initial date
(UTC)

Final date
(UTC)

Initial date
(UCT)

Final date
(UTC)

Initial date
(UCT)

Final date
(UTC)

MD02 I 1 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 17:00

MD02 I 2 INTECMAR 09/14/2010
10:30

09/15/2010
10:00

15 09/14/2010
10:30

09/14/2010
22:00

MD02 I 3 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 17:00

MD02 I 4 INTECMAR 09/14/2010
10:30

09/15/2010
15:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 15:00

MLi II 5 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 14:00

MLi II 6 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 14:00

MLi II 7 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 14:00

MLi II 8 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 13:00

MLi II 9 INTECMAR 09/14/2010
10:30

09/15/2010
17:00

15 09/14/2010
10:30

09/14/2010
22:00

09/15/2010 08:30 09/15/2010 12:00

Fig. 2 Study area and buoy trajectories. The black circle represents the
buoys deployment. Dashed and solid lines represent the MD02 (with
drogue) and MLi (without drogue) buoys. The buoy trajectories span

from September 14 10:30 UTC to September 15 (see Table 1 for more
details). Locations of the ocean–meteorological stations (red asterisks)
used for atmospheric validation are also shown
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data in real time. There was, however, a problem with the
power supply of the SUBR system which led to a gap in the
total surface currents for the period between September 14,
2010 22:30 and September 15, 2010 08:00 UTC.

2.3 Atmospheric data

The atmospheric forcing fields were provided by the opera-
tional systems of the regional meteorological agency in Gali-
cia (MeteoGalicia). The wind fields are the output of theWRF
model (Weather Research and Forecasting) (Skamarock et al.
2005). The data consist of 10 m wind speed and direction,
provided with a 4-km spatial resolution and with a 1-h time
interval.

Operational models running in MeteoGalicia are validated
using data provided by the network of ocean variables in the
Galician coast (Balseiro 2008). Figure 2 shows the location
of two met-ocean stations in the Ria de Vigo (indicated by
red asterisks). One of these stations is located in the strait of
Rande and the other one is mounted on an oceanic buoy,
located south of the Cies Islands. These stations, which
collect meteorological data, such as temperature, humidity
and wind, were deployed and used to carry out the atmo-
spheric validation during EASY project (Balseiro 2008).

3 Methodology

A Lagrangian trajectory model forced with HF radar cur-
rents and wind numerical data was used to backtrack the
trajectories of drifting buoys and to study the benefits of
using HF current fields for backtracking analysis. The un-
certainty in the trajectory simulations was calculated

following the methodology proposed by Abascal et al.
(2009b). Based on this methodology, model parameters
and uncertainty were estimated by means of optimization
methods and used to calculate the probable distribution of
the backtracked trajectories.

For each dataset of drifting buoys, the Lagrangian trajec-
tory model was calibrated to minimize the global differences
regarding the actual buoy trajectories. As a result of the
calibration process, the optimum mean value and the
corresponding 95 % confidence interval for each model
parameter was obtained. Once calibrated, the model was
used to perform the final simulations. This procedure has
the following two advantages: (a) the calibration process
includes the sources of uncertainty into the model calibra-
tion coefficients, providing the optimal backtracked trajec-
tory and (b) the values of the coefficients provide additional
information regarding the relevance of each forcing (wind
and currents) in the trajectory simulation.

Each backtracked trajectory was computed by means of a
Monte Carlo approach using the results obtained in the
calibration process. The 95 % confidence areas were deter-
mined and used to calculate the distance between the actual
and numerical trajectories. The accuracy of the simulations
was evaluated by comparison with actual buoy trajectories
and quantified by means of key statistical parameters.

In this section, the Lagrangian trajectory model and the
calibration methodology are described.

3.1 Lagrangian trajectory model

The model used in this work is the operational oil spill
model called TESEO (Abascal et al. 2007). The numerical
model consists of a transport and a weathering module to

Fig. 3 Typical surface current
map provided by the high-
resolution Bay of Vigo coastal
HF radar system of the Univer-
sity of Vigo. The radar site
locations are indicated by solid
black circles
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represent the evolution of oil spilled in the marine environ-
ment. This work focuses on the use of the transport module
to analyse the motion of the drifters deployed in the DRIFT-
ER Exercise. The transport application derives from the
two-dimensional Lagrangian transport model PICHI, devel-
oped by the University of Cantabria as part of the opera-
tional forecasting system created in response to the Prestige
oil spill (Castanedo et al. 2006). The drift process of the
spilled oil is described by tracking a cloud of numerical
particles equivalent to the oil slicks. The position of the
particles is computed by the superposition of the transport
induced by currents, wind and turbulent dispersion. The
numerical model solves by means of the Euler method the
following vector equation:

d x!

dt
¼ u!a x!i; t

! "
þ u!d x!i; t

! "
ð1Þ

where x!i is the particle position and u!a and u!d are the
advective and diffusive velocities, respectively, in x!i . The
advective velocity, u!a, is calculated as the linear combina-
tion of currents and wind velocity expressed as:

u!a ¼ CC u!c þ CD u!w ð2Þ

where u!c is the surface current velocity, u!w is the wind
velocity at a height of 10 m over the sea surface and CD is
the wind drag coefficient.

Note that Eq. (2) includes a coefficient in the current term
CC. Usually in Lagrangian models, the current term is not
affected by any coefficient. However, to take into account
the uncertainty in the radar measurements, it was decided to
include this coefficient to minimize the differences between
actual and numerical trajectories.

The turbulent diffusive velocity is obtained using Monte
Carlo sampling in the range of velocities % u!d; u!d

# $
that are

assumed proportional to the diffusion coefficients (Maier-
Reimer 1982; Hunter et al. 1993). The velocity fluctuation
for each time step, Δt, is defined as:

ud!
%% %% ¼

ffiffiffiffiffiffiffi
6D
Δt

r
ð3Þ

where D is the diffusion coefficient, typically in the range of
1–100 m2/s (ASCE 1996).

Backtracking simulation is done by considering forcing
data in reverse time and direction. Instead of going forward,
the particles move backwards. By means of the backtrack-
ing, the model is able to simulate oil spills and drifting
objects back in time, with the purpose of detecting the origin
of the object.

The Lagrangian transport model has been calibrated and
validated using data from drifting buoys (Abascal et al.
2007, 2009a). Moreover, it has been successfully tested
during several operational oil spill exercises organized by

the Spanish Maritime Safety and Rescue Agency (SASE-
MAR) with the collaboration of the ESEOO group (Abascal
et al. 2007; Sotillo et al. 2008).

3.2 Transport model calibration

To apply Eq. (1), the model coefficients, CD and CC, have to
be determined. The value of the wind drag coefficient, CD,
varies from 2.5 to 4.4 % of the wind speed, with a mean
value of 3–3.5 % (ASCE 1996). Reed et al. (1994) suggests
that, in light winds without breaking waves, 3.5 % of the
wind speed in the direction of the wind provides a good
simulation of the oil slick drift in offshore areas. Although it
is possible to use coefficients that range between those
reported in the literature, the work presented in Abascal et
al. (2009a) shows the importance of obtaining the best-
agreement model coefficients for the region of interest.

Therefore, the model calibration aims to find the optimal
values of the model coefficients so as to minimize the global
differences between numerical and actual trajectories pro-
vided by drifter observations.

In this study, the optimal coefficients of the model were
obtained by means of the global optimization algorithm
Shuffled Complex Evolution Metropolis (SCEM-UA) de-
veloped by the University of Arizona and the University of
Amsterdam (Vrugt et al. 2003a, b). The SCEM-UA method
is a general-purpose global optimization algorithm designed
to infer the probability density function of the model param-
eters within a single optimization run (Vrugt et al. 2003a, b).
This algorithm is a modified version of the original SCE-UA
global optimization algorithm developed by Duan et al.
(1992). The goal of the original SCE-UA algorithm is to
find a single best parameter set in the feasible space. How-
ever, the SCEM-UA is able to infer both the most likely
parameter set and its underlying posterior probability distri-
bution. The SCEM-UA algorithm operates by merging the
strengths of the Metropolis algorithm, controlled random
search, competitive evolution and complex shuffling in or-
der to continuously update the proposal distribution and
evolve the sampler to the posterior target distribution (Vrugt
et al. 2003a, b).

Following this methodology, the calibration of the trans-
port model was formulated as an optimization problem,
where an objective function, J, has to be minimized. In this
case, the objective function was defined as:

J θð Þ ¼
XT

j¼1

UBx x!; t
! "

% UMx x!; t; θ
! "! "2

þ
UBy x!; t

! "
% UMy x!; t; θ

! "! "2

2

4

3

5 ð4Þ

Equation (4) represents the difference between the pre-
dicted trajectory and the buoy path. UBx and UBy are the
buoy velocity components in the x (W–E) and y (N–S)
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direction, respectively; UMx and UMy are the model velocity
components in the x and y direction, respectively; x! is the
location of the buoys; T is the time period with buoy data;
and θ 0 (CD, CC) is the vector of parameters to be obtained.

Previous tests were performed including D in the calibra-
tion process as a parameter of θ. However, the best results
were obtained without this coefficient. This is due to the fact
that the random behaviour of the diffusive velocity is in-
cluded in the confidence intervals of the advective model
parameters (CD and CC).

The buoy velocity, U
!

B , was obtained from the tracked
satellite positions, which have a temporal resolution of

15 min. The advective model velocity, U
!

M, was calculated
using Eq. (2) by means of the numerical data provided by
the atmospheric model (wind data) and the radar currents
collected during the exercise.

The SCEM-UA algorithm provides N combinations of
model parameters θif ¼ CDi;CCið Þ; i ¼ 1:::Ng that mini-
mize the function J(θ). For each model parameter, the N
values obtained in the calibration process were used to
calculate the corresponding histogram and the cumulative
distribution function. Based on this statistical information,

the mean values bθ ¼ bCD; bCC

' (
and the confidence interval

at 95 % confidence level were estimated.
It is important to highlight that the calibration not

only takes into account the physical processes but also
includes the sources of uncertainty into the model cali-
bration coefficients in order to provide the optimal sim-
ulated trajectories.

3.3 Estimation of confidence intervals for backtracked
trajectories

To evaluate the curve that limits the 95 % confidence area of
simulated trajectories, a bivariate kernel estimator (Martinez
and Martinez 2002) was applied to calculate the two-
dimensional density distribution for the N simulated posi-
tions. For a sample of size n, where each observation is a d-
dimensional vector, Xi, i01, …, n, the kernel density esti-
mate is defined as (Martinez and Martinez 2002):

fKerðX Þ ¼ 1
nh1:::hd

Xn

i¼1

Yd

j¼1

K
xj % Xij

hj

) *( )

ð5Þ

where Xij is the j-th component of the i-th observation, K is
the kernel function and h is the smoothing parameter or
window width. The parameter h is defined as:

hjKer ¼
4

nðd þ 2Þ

) * 1
dþ4

σj; j ¼ 1; . . . ; d; ð6Þ

where σj is the standard deviation of the j-th component.

The kernel equation for density estimation was consid-
ered as a Gaussian function:

KðxÞ ¼ 1ffiffiffiffiffi
2p

p exp
%x2

2

) *
ð7Þ

4 Results

4.1 Calibration results

As mentioned previously, the transport model calibration

was performed to obtain the optimal bCD; bCC

' (
combination

of coefficients for the two buoy datasets. Given the lack of
HF current data from 09/14/2010 22:30 to 09/15/2010 08:00
UTC, the calibration focused on the larger period with
continuous data (09/14/2010 10:30 UTC–09/14/2010
22:00 UTC).

The empirical probability density function of the model
parameters obtained for groups I and II is presented in
Fig. 4. The 95 % confidence interval limits are also shown.

With a 95 % confidence level, the wind drag coefficient

minimizing Eq. (4) was found to be bCD ¼ 0:0004 included
in the interval (0, 0.0013) for group I. This value close to 0
shows that, for buoys in group I (buoys with 60-cm drogue),
the contribution of atmospheric fields to the simulation of
the buoy trajectories is practically negligible. In this case,
the effect of the wind data could practically be discarded.
These results could be influenced by the wind conditions
during this period. On September 14, wind velocity was
approximately 1.8 m/s. These calm wind conditions could
contribute to reduce the direct effect of wind forcing on the
buoy trajectories.

Regarding group II (buoys without drogue), with 95 %
confidence level, the wind drag coefficient minimizing Eq.

(4) was found to be bCD ¼ 0:015 included in the interval
(0.008, 0.022). This value is smaller than the most common
value (3 % of the wind speed) used in Lagrangian trajectory
models. This result is consistent with previous studies
(Abascal et al. 2009b) and suggests that CD accounts only
for the wind-driven component resulting from the direct
wind stress (sailing effect), whereas the HF radar currents
contain the wind-induced component of the ocean surface
current.

The comparison of the results obtained for groups I and II
shows that wind forcing presents a higher relevance in the
motion of the buoys belonging to Group II. This is not
surprising given the features of this type of buoys (surface
buoys without drogue). However, it shows the importance
of properly determining the relative importance of each
forcing in the transport and the appropriate coefficients in
order to optimize the model results.
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Regarding the current coefficient results for groups I and II,

the optimal current coefficient was found to be bCC ¼ 0:919

included in the interval (0.835, 0.994) and bCC ¼ 0:990 in-

cluded in the interval (0.926, 1.075). Since bCC represents the
effect of the current on a trajectory of a floating drifter, a value
close to 1, such as the one obtained with the radar, is desired.
In contrast, using currents from global circulation models,

Abascal et al. (2009a) found a value as low as bCC ¼ 0:266,
suggesting discrepancies between the real and numerical cur-
rent fields. Sotillo et al. (2008), using currents from higher-

resolution nested regional circulation models, obtained bCC

¼ 0:52. These results show that the CC value improves when
using current data provided by regional circulation models.
However, discrepancies between the real and numerical cur-
rent fields are still present. In a later study, using currents
measured by a long-range HF radar network, Abascal et al.

(2009b) found a value of bCC ¼ 0:787 showing the improve-
ment of using observed HF currents radar instead of numerical

model data. As shown above, this result is improved on this
work using high-resolution coastal radar systems. The high
CC value obtained in the present study (close to 1) indicates a
good agreement between the real current field and the radar
HF current measurements and shows the improvement of
using high-resolution observed HF currents radar. A summary
of the aforementioned studies, including the data used and the
results obtained, is presented in Table 2.

4.2 Trajectory analysis

The previously described TESEO transport model was used
to backtrack the trajectories of the buoys. Based on the radar
availability data, two different periods were considered (see
Fig. 5):

1. From 09/14/2010 10:30 UTC to 09/14/2010 22:00
UTC, hereinafter called period 1. Note that this period
was used for the calibration of the model.

Fig. 4 Empirical probability
density function for group I
(upper) and group II (lower)
obtained in the calibration
process. CD and CC are shown
in the left and right panels,
respectively. The 95 %
confidence interval limits are
represented by the dashed line

Table 2 A summary of previous studies related to the calibration of the transport model

References Buoy model HF Radar data Oceanographic models Atmospheric model Study region bCC

Abascal et al. (2009a) SC40 NO NRLPOM HIRLAM Gulf of Biscay 0.266
PTR MERCATOR

Sotillo et al. (2008) SC40 NO ESEOAT HIRLAM Gulf of Biscay 0.520
PTR

Abascal et al. (2009b) PTR YES NO HIRLAM Galician coast 0.787
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2. From 09/15/2010 08:30 UTC to the final position of
each buoy (see Table 1), hereinafter called period 2.
Note that this period represents a dataset which is inde-
pendent of the calibration process.

The final time of the simulations in period 2 was selected
taking into account the end time of the buoy trajectories and
the coverage area of the radar (see Table 1 and Fig. 3). The
starting and end time for each buoy and period are shown in
Table 1. Note that the trajectory of buoy number 2 has been
discarded of the second period because of the short avail-
ability data (this buoy ended at 10:00 UTC).

Simulations were carried out for all the buoys in groups I
and II starting at the final point of the selected periods (see
Fig. 5). For each buoy, the backtracked trajectory was sim-
ulated using Monte Carlo approach based on the calibration
results. The SCEM-UA algorithm provided N (N01,000)
optimal sets of parameters calculated by means of Markov
Chain Monte Carlo process. To include this information in
the trajectory analysis, a high number of simulations (N)
were performed considering the N set of optimal model

parameters {(CDi, CCi) … (CDN, CCN)}. Each simulated
trajectory was calculated as the mass centre of a cloud of
1,000 independent numerical particles. Simulations were
performed using a 60-s time step. Taking into account the
natural dispersion of the buoy trajectories, the diffusion
coefficient was considered to be 2 m2/s, a value included
in the interval reported in the literature (ASCE 1996). The
final position of the N simulated trajectories was different as
a function of the combination of parameters used in the
transport model (see Eq. (2)), providing an ensemble of
numerical positions that define an area that represents the
possible origin of the initial buoy trajectories.

A comparison between the actual and simulated back-
ward trajectories for group I is shown in Fig. 6 (period 1)
and Fig. 7 (period 2). Regarding group II, the results are
shown in Fig. 8 (period 1) and Fig. 9 (period 2). In each
panel of Figs. 6, 7, 8 and 9, the black line shows the actual
buoy trajectory and the grey lines are the 1,000 simulated
backward trajectories for the study period. The black dots
show the numerical positions at the end of the simulation.
Note that some of the backtracked trajectories shown in

Fig. 5 Buoys trajectories for the first and second period are shown in
the upper and lower panel, respectively. Trajectories of group I and II
are presented on the left and right panels. The initial time of each buoy

trajectory is indicated by solid circles and the date. The final time is
indicated in Table 1

Ocean Dynamics (2012) 62:1073–1089 1081



Figs. 6, 7, 8 and 9 do not contain the actual trajectories. This
is one of the main drawbacks of Lagrangian simulations
both for forecasting and backtracking, which usually are
not able to reproduce the actual trajectories. This uncertainty

in Lagrangian simulations highlights the importance of ana-
lysing the accuracy of the simulated trajectories and taking it
into account for properly defining the search area of a
drifting object. As will be shown later, the separation found

Fig. 6 Observed (black) and simulated backward trajectories (grey)
computed for group I in the first period. The buoy trajectories span
from September 14 10:30 UTC to September 14 22:00 UTC. The

initial time and position of the simulations are indicated by the black
circles. The black dots stand for the final position of the backtracked
trajectories

Fig. 7 Observed (black) and simulated backward trajectories (grey)
computed for group I in the 2nd period. The initial time and position of
the simulations are indicated by the black circles. The black dots stand

for the final position of the backtracked trajectories. The initial and
final date of the buoy trajectories is also shown
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in this work between actual and simulated backward trajec-
tories for period 1 and period 2 has the same order of
magnitude or lower than previous studies reported in the
literature (Al-Rabeh et al. 2000; Sebastiao and Soares 2006;
Ullman et al. 2006; Sotillo et al. 2008; Rixen et al. 2008;
Abascal et al. 2009b), suggesting a good agreement between
actual and numerical trajectories.

The accuracy of the simulations was measured by the
distance (d) between the actual and the simulated trajectories,
defined as the minimum distance between the buoy position
and the curve that contains 95 % of the N-simulated positions
(95 % confidence area). This distance was computed for every
time step of the simulated periods. As previously mentioned,
to evaluate the curve that limits the 95 % confidence area, a
bivariate kernel estimator (Martinez and Martinez 2002) was
applied (see “Section 3.3”). As an illustrative example, Fig. 10
shows the kernel distribution function that corresponds to the
final position of the backtracked trajectory for one of the
buoys of group I (see upper left panel of Fig. 6). The black

dots indicate the final position of the N simulated trajectories
and the black line shows the curve which includes 95% of the
simulated data. The comparison between the buoy trajectory
and the numerical simulations for the selected period is shown
in Fig. 11. The curve that includes 95 % of the numerical
positions at the end of the simulation is indicated with a black
line. The positions outside of this curve are indicated with
black dots. At the end of the simulated period, the separation
between the origin of the buoy and the numerical position is
about 250 m.

In each group of buoys, the temporal evolution of d was
calculated for each buoy and averaged over the total number
of buoys, according to the following equation:

dmðtÞ ¼
1
NB

XNB

i¼1

dðtÞi ð8Þ

where dm is the average separation distance, t is the time and
NB is the number of buoys for each group.

Fig. 8 Observed (black) and simulated backward trajectories (grey)
computed for group II in the first period. The buoy trajectories span
from September 14 10:30 UTC to September 14 22:00 UTC. The

initial time and position of the simulations are indicated by the black
circles. The black dots stand for the final position of the backtracked
trajectories
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Fig. 9 Observed (black) and simulated backward trajectories (grey)
computed for group I in the second period. The initial time and position
of the simulations are indicated by the black circles. The black dots

stand for the final position of the backtracked trajectories. The initial
and final date of the buoy trajectories is also shown

Fig. 10 Kernel density
estimates for the final position
of the simulated period of buoy
number 1 of group I (see upper
left panel of Fig. 6). The grey
dots stand for the numerical
positions of the 1,000 simulated
backward trajectories. The
curve that includes 95 % of the
numerical data is represented by
the black line
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Figures 12 and 13 show the temporal evolution of dm
(black line) and the standard deviation (grey line) for the
first and second period. Results obtained for group I show
that the separation distance is mostly less than or equal to
1 km over each simulated period (see Figs. 12a and 13a).
The mean value of dm is 0.41 and 0.72 km for period 1 and
2, respectively. The maximum error of the simulations
ranges between 0.77 km (period 1) and 1.74 km (period
2). Note that the errors increase significantly at the end of

period 2 (see Fig. 13a). This result is in agreement with the
backtracked trajectories shown in Fig. 7, which shows that
the numerical backtracked trajectory for buoys 1 and 3
deviates from the actual trajectories at the end of the simu-
lation. These discrepancies could be related with inaccura-
cies in the forcing fields, which are highly affecting the
accuracy of the simulations performed.

For group II, the separation distance is less than 1.5 km
over each simulated period (see Figs. 12b and 13b). The
mean value of dm is 0.84 and 0.62 km for period 1 and 2,
respectively, showing a good agreement between numerical
and actual trajectories. In this case, the maximum error
obtained for the simulations performed is 1.4 km (period
1) and 1.15 km (period 2). It is important to highlight that
the accuracy of the simulations for the second period is of
the same order of magnitude as that of the first one. These
results show that the coefficients obtained in the first period
are appropriate to backtrack the trajectories of the second
one.

Regarding the comparison between the different behav-
iours of both groups of buoys, most backtracked trajectories
for group I in period 1 show lower errors than the simula-
tions for group II. This result is consistent with the paths
followed by the buoys. At the end of the fist period (14/09/
2010 22:00 UTC), buoys belonging to group I remained
closer than buoys of group II (see Fig. 5). Note that buoy
numbers 8 and 9 in group II (see Fig. 5) drifted southward
faster than the rest of the buoys. This variability shows the
complexity of the problem and the difficulty in calculating
the origin of a drifting object following an observation.

In order to take into account this natural variability, the
error in the numerical simulations was compared with the
dispersion of the buoys. To achieve this objective, the root
mean square error (RMSE) of the actual drifters from their
mean cluster position was determined (see Fig. 14) and com-
pared with the final separation between the actual and the
simulated backward trajectories (see Table 3). It is worth
mentioning that the uncertainty in the estimation of the origin
of the actual trajectories for the first period was of the same

Fig. 11 Comparison between the buoy path and the backtracked
trajectory of buoy number 1 of group I (see upper left panel of
Fig. 6). The curve that includes 95 % of the final numerical positions
is represented by the black line. The final separation (d) between the
buoy location and the numerical results is about 250 m

Fig. 12 Distance between the
actual and simulated backward
trajectories as a function of time
(averaged over all simulated
buoy trajectories) for period 1.
a Results for group I and b for
group II. The mean value and
the standard deviation are
represented by the black line
and the grey area, respectively.
The x-axis represents time
(hours) from the starting point
of the simulation
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order of magnitude as the dispersion of the buoy trajectories
(see Fig. 14 and Table 3). However, the uncertainty increases
in the second period and is highly affected by the discrepan-
cies observed in buoy numbers 1 and 3 (see Fig. 7).

For groups I and II, the error in the estimation of the
origin of the buoy trajectories was calculated by means of
the RMSE of the separation between actual and simulated
backtrack trajectories at the end of each simulated period
(Table 3) according to the following equation:

RG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i
d2

end

NS

vuuut
ð9Þ

where RG is the RMSE for each group, dend is the final
separation between the actual and simulated trajectories
and NS is the number of simulated trajectories. Taking into

account the values shown in Table 3, RG was found to be
1.01±0.85 km for group I and 0.82±0.26 km for group II.
Note that the value of RMSE for group I is highly influ-
enced by the discrepancies observed for buoys 1 and 3
during the second period (see Fig. 7).

For practical reasons, the squared difference between the
simulation and actual buoy position provides a better error
index than the simple linear distance. This is due to the fact
that the search and rescue operations are based within the
area of exploration. To take this into account, the search area
was calculated in terms of circles of RMSE radius (see Eq.
(9)), obtaining 3.2 and 2.11 km2 for groups I and II, respec-
tively. These circles represent the mean optimal search area
to be scanned to find the origin of the drifting buoys.
Figures 15 and 16 show examples of search areas to find
the origin of buoy number 1 (group I) and number 9 (group
II) for the first and second period, respectively.

Fig. 13 Distance between the
actual and simulated backward
trajectories as a function of time
(averaged over all simulated
buoy trajectories) for period 2.
a Results for group I and b for
group II. The mean value and
the standard deviation are
represented by the black line
and the grey area, respectively.
The x-axis represents time
(hours) from the starting point
of the simulation

Fig. 14 RMSE of the actual
drifters from their mean cluster
position
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5 Conclusions

In this paper, the contribution of the HF radar technology for
backtracking drifting objects was studied using a Lagrang-
ian trajectory model. High-resolution currents measured by
coastal HF radar systems combined with atmospheric fields
provided by numerical models were used to backtrack the
trajectory of two dataset of drifting buoys: (1) buoys with
60 cm drogue (group I) and (2) buoys without drogue (group
II). For each dataset of buoys, the transport model was cali-
brated using the SCEM-UA algorithm in order to obtain the
optimal value of the coefficients and to analyse their level of
significance in the transport model. Results of the calibration

show that for both groups the optimal mean bCD value is
smaller than the most common value (3 % of the wind speed).

For group I, bCD was found to be close to 0, suggesting that the
contribution of atmospheric fields to simulate the buoy trajec-
tories could be discarded for calmwind conditions. Regarding
group II, with 95 % confidence level, the optimal mean value

was found to be bCD ¼ 0:015. As stated before, this value is
smaller than the typical 3 % wind speed used in the literature

(ASCE 1996), suggesting that bCD accounts for the direct wind
stress (sailing effect) whereas the HF radar currents contain
the wind-induced component of the ocean surface current.

The high bCCvalues obtained for both groups suggest a quite
good agreement between the real current field and the radar
HF current measurements. These results represent an im-
provement with respect to a similar analysis performed using
numerical currents data (Abascal et al. 2009a) and currents
provided by long-range HF radar systems (Abascal et al.
2009b).

A comparison of the results obtained for groups I and II
shows that wind forcing presents a higher relevance in the
motion of the buoys belonging to group II, whereas it could be
practically discarded for simulating the trajectories of group I.

Taking into account that the average effective depth of short-
range HF (operating in the vicinity of 46Mhz) radar is 0.25m,
a strong influence of HF radar currents in the transport of this
kind of buoys could be expected. These results suggest that,
under calm wind conditions, HF radar currents could be used
as a unique forcing to simulate the trajectory of surface drift-
ing buoys with a small drogue (~60 cm). Moreover, these
results also suggest that, to simulate the trajectory of surface
drifting buoys without drogue, both currents and wind fields
are required. However, further study is required to study the
influence of different ocean–meteorological conditions on the
drifting trajectory and to analyse how these environmental
conditions affect the contribution of HF radar currents in the
transport of the buoys. Besides the influence of buoy features
on the drifting trajectory, these results show the importance of
properly determining the relative contribution of each forcing
in the transport and the appropriate coefficients in order to
optimize the model results.

Once calibrated, the model was used to backtrack the
trajectory of the buoys for two different periods: (1) the first
one corresponding to the period used for the calibration of the

Table 3 Final separation (km) between the actual and the simulated
backward trajectory for each computed buoy trajectory. Note that, for
period 2, the simulated trajectories have different lengths (see Table 1)

Group Buoy (ID) Final separation (km)

Period 1 Period 2

I 1 0.26 1.87

2 0.17

3 0.17 1.88

4 0.06 0.06

II 5 0.71 1.07

6 0.96 1.15

7 0.58 1.02

8 0.63 0.72

9 0.34 0.63

Fig. 15 Search area (grey circle) to find the origin of buoy number 1
(group I) in the first period (R01.01 km). Actual and simulated back-
ward trajectories are indicated by black and grey lines. The buoy
trajectory spans from September 14 10:30 UTC to September 14
22:00 UTC. The initial time and position of the simulation is indicated
by the black circle. The black dots stand for the final position of the
backtracked trajectories
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model and (2) the second one corresponding to the period after
the HF radar data gap, which represents an independent data-
set. The buoy trajectories were computed by means of Monte
Carlo simulation using the N optimal combination of model
parameters obtained in the calibration process.

The accuracy of the simulations performed was measured
by the distance between the actual and the simulated back-
ward trajectories. For group I, the temporal evolution of dm
presents a mean value of 0.41 km for period 1 and 0.72 km
for period 2. Regarding group II, this value increases to
0.84 km for period 1 and decreases to 0.62 km for period
2. Similar accuracy was found for both periods, suggesting
that the coefficients obtained in the first period are appro-
priate to backtrack the trajectories in the second one.

The RMSE of the simulated origin compared with the
real position was 1.01±0.85 km for group I and 0.82±
0.26 km for group II. Based on these results, a search area
was calculated in terms of circles of RMSE radius, obtaining
3.2 and 2.11 km2 for groups I and II, respectively. These
results represent the mean optimal search area to be scanned
to find the origin of the drifting buoys.

This study has demonstrated that measured data provided
by HF radar, combined with modelled winds, are of value for
backtracking of floating objects. It is important to highlight
the short period and calm conditions of the available dataset
for this study. Further studies are required using a large dataset
of buoys that represent the ocean and meteorological charac-
teristics of the study area. The larger the database, the greater
the representativeness of the coefficients for the study area.

Moreover, longer and more continuous buoys and HF radar
data are required to study the accuracy of the simulations
using a longer simulation horizon. Note that, although a larger
database would be desirable, for SAR operations the first

hours could be crucial. Thus, to study the trajectory evolution
in a short period of time can be critical when, for example, a
person is in the water and there is a risk of hypothermia.

Although the validation has been performed using drifting
buoys, the results could be also applied for other floating
objects or floating substances such as oil slicks. Further stud-
ies are required to analyse the differences between different
floating objects and to establish the drift properties of different
objects (Allen and Plourde 1999; Breivik et al. 2011).

Acknowledgments This work has been partially funded by the Span-
ish Ministry for Science and Innovation under the research projects
PSE-310000-2009-03 (PSE PROMARES, OCTOPOS subproject) and
TRA2011-28900 (PLVMA project). The authors would like to thank
the Galician Coast Guard, INTECMAR, the University of Vigo, Puer-
tos del Estado and MeteoGalicia for the collaboration and the data
provided for the study.

References

Abascal AJ, Castanedo S, Gutierrez AD, Comerma E, Medina R,
Losada IJ (2007) TESEO, an operational system for simulating
oil spills trajectories and fate processes. Proceedings ISOPE-
2007: The 17th International Offshore Ocean and Polar Engineer-
ing Conference. Lisbon, Portugal, The International Society of
Offshore Ocean and Polar Engineers (ISOPE) 3:1751–1758

Abascal AJ, Castanedo S, Mendez FJ, Medina R, Losada IJ (2009a)
Calibration of a Lagrangian transport model using drifting buoys
deployed during the Prestige oil spill. J Coast Res 25(1):80–90

Abascal AJ, Castanedo S, Medina R, Losada IJ, Alvarez-Fanjul E
(2009b) Application of HF radar currents to oil spill modelling.
Mar Pollut Bull 58:238–248

Allen AA, Plourde JV (1999) Review of Leeway; field experiments
and implementation. USCG & R&D Center Technical Report
CG-D-08-99

Fig. 16 Search area (grey
circle) to find the origin of buoy
number 9 (group II) in the
second period (R00.82 km).
Actual and simulated backward
trajectories are indicated by
black and grey lines. The buoy
trajectory spans from
September 15 08:00 UTC to
September 15 22:00 UTC. The
initial time and position of the
simulation is indicated by the
black circle. The black dots
stand for the final position of
the backtracked trajectories

1088 Ocean Dynamics (2012) 62:1073–1089



Allen-Perkins S, Montero P, Ayensa G (2010) Testing and application
of buoys to follow up spills. Drifter workshop, Vigo (Spain)

Al-Rabeh AH, Lardner RW, Gunay N (2000) Gulfspill Version 2.0: a
software package for oil spills in the Arabian Gulf. Environ
Model Softw 15:425–442

Ambjörn C (2008) Seatrack Web forecasts and backtracking of oil
spills—an efficient tool to find illegal spills using AIS. US/EU-
Baltic International Symposium, IEEE/OES

ASCE (1996) State-of-the-art review of modeling transport and fate of
oil spills. ASCE Committee on Modeling Oil Spills. Water
Resources Engineering Division. J Hydraul Eng 122(11):594–609

Balseiro CF (2008) MeteoGalicia final report. Easy Project
Barrick DE, Evens MW, Weber BL (1977) Ocean surface currents

mapped by radar. Science 198:138–144
Beegle-Krause CJ (2001) General NOAA Oil Modeling Environment

(GNOME): a new spill trajectory model. International Oil Spill
Conference

Breivik Ø, Allen AA (2008) An operational search and rescue model for
the Norwegian Sea and the North Sea. J Mar Syst 69(1–2):99–113

Breivik Ø, Allen AA, Maisondieu C, Roth JC (2011) Wind-induced
drift of objects at sea: the leeway field method. Appl Ocean Res
33(2):100–109

Castanedo S, Medina R, Losada IJ, Vidal C, Méndez FJ, Osorio A,
Juanes JA, Puente A (2006) The Prestige oil spill in Cantabria
(Bay of Biscay). Part I: operational forecasting system for quick
response, risk assessment and protection of natural resources. J
Coast Res 22(6):1474–1489

Chapman RD, Graber HC (1997) Validation of HF radar measure-
ments. Oceanography 10:76–79

Chapman RD, Shay LK, Graber HC, Edson JB, Karachintsev A,
Trump CL, Ross DB (1997) On the accuracy of HF radar surface
current measurements: intercomparisons with ship-based sensors.
J Geophys Res 102(8):18737–18748

Christiansen BM (2003) 3D oil drift and fate forecast at DMI. Techni-
cal report no. 03-36. Danish Meteorological Institute, Denmark

Daniel P, Marty F, Josse P, Skandrani C, Benshila R (2003) Improve-
ment of drift calculation in MOTHY operational oil spill predic-
tion system. Proceedings of the 2003 International Oil Spill
Conference. Washington, DC: American Petroleum Institute

Davidson FJM, Allen A, Brassington GB, Breivik Ø, Daniel P, Kama-
chi M, Sato S, King B, Lefevre F, Sutton M, Kaneko H (2009)
Applications of GODAE ocean current forecasts to search and
rescue and ship routing. Oceanography 22(3):176–181

Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global
optimization for conceptual rainfall–runoff models. Water Resour
Res 28(4):1015–1031

Edwards KP, Werner FE, Blanton BO (2006) Comparison of observed
and modeled drifter trajectories in coastal regions: an improve-
ment through adjustments for observed drifter slip and errors in
wind fields. J Atmos Ocean Technol 23(11):1614–1620

Fernández V, Ferrer MI, Abascal AJ, Castanedo S, Medina R, Alvarez
E (2010) Operational applications of coastal high-frequency (HF)
radar technology for oil spill operations. I Encuentro Oceanogra-
fía Física Española, Barcelona (Spain)

Griffa A, Piterbarg LI, Ozgokmen T (2004) Predictability of Lagrang-
ian particle trajectories: effects of smoothing of the underlying
Eulerian flow. J Mar Res 62:1–35

Hackett B, Breivik Ø, Wettre C (2006) Forecasting the drift of objects
and substances in the oceans. In: Chassignet EP, Verron J (eds)
Ocean weather forecasting: an integrated view of oceanography.
Springer, Dordrecht, pp 507–524

Hodgins DO (1991) New capabilities in real-time oil spill and fate
prediction using HF radar remote sensing. Proceedings of the 14th
AMOP Technical Seminar, Canada

Hunter JR, Craig PD, Phillips HE (1993) On the use of random walk
models with spatially variable diffusivity. J Comp Phys 106:366–376

Kohut JT, Roarty HJ, Glenn SM (2006) Characterizing observed
environmental variability with HF Doppler radar surface current
mappers and acoustic Doppler current profilers: environmental
variability in the coastal ocean. J Ocean Eng 31(4):876–884

Lipa BJ, Barrick DE (1983) Least-squares methods for the extraction
of surface currents for CODAR cross/loop data application at
ARSLOE. IEEE J Ocean Eng OE-8:226–253

Maier-Reimer E (1982) On tracer methods in computational hydrody-
namics. In: Abbott MB, Cunge JA (eds) Engineering application
of computational hydraulics, 1 (Chapter 9). Pitman, London

Martinez WL, Martinez AR (2002) Computational statistics handbook
(Chapter 8). Chapman and Hall, Boca Raton

Miranda R, Braunschweig F, Leitão P, Neves R, Martins F, Santos A
(2000) MOHID 2000, a coastal integrated object oriented model.
Hydraulic Engineering Software VII. WIT, Southampton

O’Donnell J, Ullman D, Spaulding M, Howlett E, Fake T, Hall P, Tatsu
I, Edwards C, Anderson E, McClay T, Kohut J, Allen A, Lester S,
Lewandowski M (2005) Integration of Coastal Ocean Dynamics
Application Radar (CODAR) and Short-Term Prediction System
(STPS) surface current estimates into the Search and Rescue
Optimal Planning System (SAROPS). US Coast Guard Tech.
Rep., DTCG39-00-D-R00008/HSCG32-04-J-100052

Price JM, Reed M, Howard MK, Johnson WR, Zhen-Gang J, Marshall
CF, Guinasso JRNL, Rainey GB (2006) Preliminary assessment
of an oil-spill trajectory model using a satellite-tracked, oil-spill-
simulating drifters. Environ Model Softw 21:258–270

Reed M, Turner C, Odulo A (1994) The role of wind and emulsifica-
tion in modelling oil spill and surface drifter trajectories. Spill Sci
Technol Bull 1(2):143–157

Rixen M, Ferreira-Coelho E, Signell R (2008) Surface drift prediction
in the Adriatic Sea using hyper-ensemble statistics on atmospher-
ic, ocean and wave models: uncertainties and probability distri-
bution areas. J Mar Syst 69(1–2):86–98

Sebastiao P, Soares CG (2006) Uncertainty in predictions of oil spill
trajectories in a coastal zone. J Mar Syst 63:257–269

Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Wang W,
Powers JG (2005) A description of the Advanced Research WRF
version 2. NCAR technical note NCAR/TN-468+STR, 88 pp

Sotillo MG, Alvarez Fanjul E, Castanedo S, Abascal AJ, Menendez J,
Olivella R, García-Ladona E, Ruiz-Villareal M, Conde J, Gómez
M, Conde P, Gutierrez AD, Medina R (2008) Towards an opera-
tional system for oil spill forecast in the Spanish waters: initial
developments and implementation test. Mar Pollut Bull 56
(4):686–703

Spaulding ML, Howlett E, Anderson E, Jayko K (1992) OILMAP: a
global approach to spill modelling. 15th Annual Arctic and ma-
rine Oilspill Program, Technical Seminar, Edmonton

Stewart RH, Joy JW (1974) HF radio measurements of surface cur-
rents. Deep-Sea Res 21:1039–1049

Ullman D, O’Donnell J, Edwards C, Fake T, Morschauser D, Sprague M,
Allen A, Krenzien B (2003) Use of Coastal Ocean Dynamics Appli-
cation Radar (CODAR) technology in U. S. Coast Guard search and
rescue planning. US Coast Guard Rep., CG-D-09-03. 40 pp

Ullman DS, O’Donnell J, Kohut J, Fake T, Allen A (2006) Trajectory
prediction using HF radar surface currents: Monte Carlo simulations
of prediction uncertainties. J Geophys Res 111(C12005):1–14

Varela R (2010) Implementación de un sistema radar de alta frecuencia
en la Ria de Vigo. Características fundamentales. I Encuentro
Oceanografía Física Española, Barcelona (España)

Vrugt JA, Gupta HV, Bouten W, Sorooshian S (2003a) A Shuffled
Complex Evolution Metropolis algorithm for optimization and un-
certainty assessment of hydrologic model parameters. Water Resour
Res 39(8) 1201:1–8 1–16

Vrugt JA, Gupta HV, BoutenW, Sorooshian S (2003b) Shuffled Complex
Evolution Metropolis (SCEM-UA) algorithm. Manual, version 1.0.
24 pp

Ocean Dynamics (2012) 62:1073–1089 1089


	Backtracking drifting objects using surface currents from high-frequency (HF) radar technology
	Abstract
	Introduction
	Data
	Buoy data
	HF radar currents
	Atmospheric data

	Methodology
	Lagrangian trajectory model
	Transport model calibration
	Estimation of confidence intervals for backtracked trajectories

	Results
	Calibration results
	Trajectory analysis

	Conclusions
	References


