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A surface current observation system based on high-frequency (HF) radar has been 
developed for Raritan Bay and the coastal waters of New York and New Jersey. An HF 
radar network provides synoptic surface current maps in near-real-time that can be opti-
mally combined with ocean circulation models using data assimilation (DA) framework 
to obtain the best possible estimate of a three-dimensional ocean state. A nudging or 
Newtonian damping scheme has been developed to assimilate HF radar data into an 
estuarine and coastal ocean circulation model. This model, with an extensive embed-
ded real-time observational network, is called the New York Harbour Observing and 
Prediction System (NYHOPS). A nudging parameter is introduced into the equations of 
motion which affects the model dynamics. The data is imparted to neighbouring (three-
dimensional) grid points via model dynamics. The impact of HF radar DA is analysed by 
computing the DA skill score (DAskill) based on the mean-square-error (mse). The DAskill 

is computed by comparing non-assimilated and assimilated model solutions with in-situ 
observations of three-dimensional currents, temperature and salinity, which have not 
been included in the assimilation. A positive DAskill (0∼1) represents an improvement in 
the model performance by assimilation. HF radar data covering Raritan Bay and the New 
York Bight (NYB) Apex were assimilated into the NYHOPS model in the model hindcast 
cycle (−24h to 0h) on a daily forecast basis for a period of 40 days. The DAskill is assessed 
with respect to the NYHOPS model hindcasts (daily model solutions from −24h to 0h) 
as well as the first day forecasts (daily model solutions from 0h to 24h). HF radar DA 
improved the NYHOPS model performance during both the hindcast and forecast peri-
ods. The model skill metrics for the near-surface layers in the inner-NJ shelf region shows 
a hindcast DAskill of 24% (14%) and forecast DAskill of 18% (7%) for horizontal velocities 
u: east-west component (v: north-south component), and a hindcast DAskill of 33% (38%) and 
forecast DAskill of 25% (30%) for temperature (salinity). The nudging scheme is robust 
and efficient for the HF radar DA into the NYHOPS operational forecast model. The 
NYHOPS-HF radar DA system is capable of importing in the observations and produce 
useful hindcasts/forecasts with minimum computational expense.
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INTRODUCTION

Today’s numerical ocean models are capable of 
simulating three-dimensional (3D) ocean circula-
tion over a wide range of scales: from regional 
estuarine, coastal ocean circulation to global ocean 

circulation. The dynamic seastate simulated by these models 
critically depends on the model boundary conditions, as well 
as the model’s capability to resolve the water parameters, 
both spatially and temporally. Research and development in 
the field of instrumentation and technology over the last three 
decades has substantially improved coastal ocean observation 
systems. These advanced systems provide enormous amounts 
of ocean measurements in real-time, addressing the ‘scarcity’ 
of observational data in oceanography. The increasingly 
available ocean observational data are appropriate for ‘data 
assimilation’, where observational data are combined with a 
numerical model to obtain the best possible representation of 
the ocean state, which is better than could be obtained using 
just the numerical model or the observational data alone.1 

The development of land-based HF radar systems over the 
last decade has provided a unique shore-based ocean obser-
vation platform that is capable of measuring ocean surface 
currents. With the expanding network of HF radars providing 
synoptic surface current maps in near-real-time, more and 
more surface-current data assimilation (DA) efforts have 
been focused on coastal regions. Earlier HF radar DA studies 
were more directed towards the low frequency circulation 
patterns, in which the higher frequency tidal signals were 
eliminated by low-pass filtering of the HF radar data prior 
to assimilating into the numerical ocean models. In some of 
the studies, the tidal forcing and surface heat fluxes were not 
considered in the ocean models. 

In one of the earlier DA studies using HF radar data for 
Monterey Bay, California2 a pseudo-shearing stress, defined 
by the difference between the model surface current and 
HF radar data, was used to correct the model wind forcing. 
Another study3 reported HF radar surface current assimilation 
into a realistic coastal model for the Norwegian coast using 
an optimal interpolation (OI) method. An HF radar DA study 
for the Oregon coast4 used a sequential OI scheme based on 
a physical-space statistical analysis system (PSAS) and a 
time-distributed averaging procedure (TDAP). A representer-
based four-dimensional variational method (4D-VAR)5 was 
used6 to assimilate HF radar data into a simplified ocean 
model. Others7 have assimilated HF radar data using a PSAS 
scheme based on data-dependent velocity covariance func-
tions in Monterey Bay, in which the near-surface model  
currents were corrected and projected down into the water 
column based on physical arguments of energy conservation 
and Ekman theory. Assimilation of HF radar data using a 
melding/nudging approach has been reported8 for the New 
Jersey inner-shelf. Another paper9 reported assimilated HF 
radar surface currents in the West Florida shelf using an 
ensemble-based error covariance method. And a further 
paper10 reported a three-dimensional variational assimila-
tion (3D-VAR) of HF radar data in the Southern California 
on an operational basis. A 4D-VAR method has been used11 
to assimilate HF radar data in the San Diego coastal region. 
Recently, authors12 reported assimilation of HF radar-derived 
radial/total surface currents using PSAS scheme for Monterey 

Bay, in which low-pass filtered (unfiltered) HF radar data 
were assimilated into non-tidal (tidal) ocean models.

The goal of this study is to develop a near-real-time HF 
radar data assimilation method for the New York Harbour 
Observing and Prediction System (NYHOPS) operational 
forecast model that resolves tidal frequency variability. In 
the present work, half hourly (∼30 min) HF radar measured 
surface currents were assimilated into the primitive equation 
coastal ocean model (NYHOPS) using a cost-effective nudg-
ing assimilation scheme which resolves the tidal variability. 
This assimilation/forecast system for the urban estuaries of the 
New York/New Jersey (NY/NJ) Harbour and the NY Bight 
(NYB), incorporates tidal forcing, along with the forcing from 
the open ocean, surface meteorology, and freshwater inflows. 

OCEAN OBSERVATIONS
HF radar observations
Over the last couple of decades, HF radar has emerged as one 
of the important components of the ocean observing system. 
The HF radar system works on the principle of radio wave 
backscatter by ocean surface gravity waves in the frequency 
band 3 ∼ 30MHz, and is capable of mapping near-surface 
ocean currents over a spatial range of about 200km, depend-
ing upon the transmitting frequency.13,14,15,16

An HF radar network based on the Coastal Ocean 
Dynamics Application Radar (CODAR) system has been 
established in the NY/NJ Harbour waters and the NY Bight 
Apex. CODAR is a unique HF radar system consisting of 
a single pole transmitter antenna, and a compact and col-
located three-element receiver antenna.13 It works on a 
direction finding (DF) algorithm patented as multiple signal 
classification (MUSIC).17 The HF radar network employed 
in the present study consists of four monostatic standard-
range CODAR seasonde systems, located at Sandy Hook, 
NJ (HOSR: owned and operated by Rutgers University 
(RU)); Breezy Point, NY (BRZY: owned and operated by 
RU); Bayshore Water Front Park, NJ (BSWP: mobile sys-
tem, owned and operated by National Ocean Atmospheric 
Administration (NOAA)); and on the south shore of Staten 
Island, NY (SILD: owned and operated by Stevens Institute 
of Technology (SIT)). The HF radar sites and the present 
study domain are shown in Fig 1.

HF radar systems work on the underlying assumptions of 
linear wave theory and deep water conditions. A single HF 
radar site measures only the radial component of the surface 
current, in which the Bragg scattering is predominant. HF 
radar systems measure the radial component of the surface 
current with respect to spatial domain defined by a polar 
coordinate system. The spatial domain is divided into annular 
bins called range cells (∼1.5km, for standard-range CODAR 
seasonde) extending circularly from the HF radar site as the 
origin, and the azimuth ranges from 0° ∼ 360°, incremented at 
every 5°. The total vector field of the surface currents is com-
puted by combining the radial vectors measured by individual 
HF radar sites. This computation of the total vector field from 
the radial vectors follows a method of least squares suggested 
by18. A minimum of two or more radial vectors measured by 
the spatially separated HF radar sites, with at least one radial 
vector from each of the two different HF radar sites are com-
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bined to obtain the total surface current field. Surface currents 
measured using HF radar are near-surface depth averaged  
(d ∼ 0.5m, for standard-range CODAR seasonde) and the 
depth of influence is a function of the transmitting frequency 
of the HF radar system.19 A detailed description of the HF 
radar network used in this study has been published,20 which 
reports the surface current circulation in Raritan Bay and the 
NYB Apex measured using HF radar systems. 

In the present study, radial vector fields generated by the 
four HF radar sites every 30min were combined with respect 
to a pre-defined surface grid using the method of least squares 
to generate the total vector field. The NYHOPS model hori-
zontal grid was used as the pre-defined surface grid for the 
total vector field computation. The HF radar network used in 
the present study provided good coverage of surface currents 
in the NY Harbour, Raritan Bay, and the NYB Apex.

One of the quality control measures used in the HF radar 
total vector processing is the geometric dilution of precision 
(GDOP), which is defined as the spatial uncertainty associ-
ated with geometric combination of the radial vectors.21,16 
The GDOP uncertainty increases with the distance from the 
HF radar stations and reaches a maximum along the periphery 
of the HF radar data footprint, and along the baseline (line 
connecting the HF radar stations). In order to improve the HF 
radar data quality, the present study used a GDOP uncertainty 
threshold value of less than 1.5cm s−1, and the maximum 
radial and total current magnitudes were limited to 1.5m s−1. 
Another quality control measure used in the HF radar total 
vector processing is the temporal data coverage threshold, 

where only HF radar data with a temporal data coverage 
threshold value of greater than 50% were used in this study. 
The HF radar data footprint for the period of Jan–April 2007 
and the bathymetric contours is shown in Fig 1.

ADCP observations
Acoustic Doppler Current Profiler (ADCP) observations in 
the NYB Apex were used to perform the DAskill analysis in 
this study. The ADCPs (M1 and M2) were deployed and 
maintained by Rutgers University for the period 22 February 
2007–27 April 2007, and were located in the vicinity of the 
Breezy Point (BRZY) HF radar station (located in Fig 1). The 
ADCPs provided u (east-west) and v (north-south) velocity 
components in 0.5m vertical bins and were hourly averaged. 
The M1 ADCP was deployed at a mean water depth of 12.3m 
from the surface (∼ at third range-cell from BRZY HF radar 
station) at a radial distance of ∼3.25km from the Breezy Point 
(BRZY) HF radar station. The M2 ADCP was deployed at 
a mean water depth of 16.7m from the surface (∼ at seventh 
range-cell from BRZY HF radar station) at a radial distance of 
∼9.5km from the Breezy Point (BRZY) HF radar station. The 
ADCPs failed to provide a reliable dataset in the near-surface 
layers (∼ 1.2m from the surface for M1 ADCP and ∼6.2m 
from the surface for M2 ADRCP).

Glider based observations
Temperature (T) and Salinity (S) profiles from gliders in the 
NJ shelf region were used for the DAskill analysis in this study. 
The gliders (G1 and G2) were deployed and maintained by 

Fig 1: Location map showing the present study domain. Blue circles indicate HF radar stations, red star indicates ADCP mooring 
locations, and grey squares indicate fixed-sensor locations, dashed grey line indicates the Sandy Hook-Rockaway Point (SHRP) 
transact. HF radar data footprint is shown by black dots. Contour lines indicate the water depths in metres, only HF radar data 
points with temporal data coverage greater than 50% were used in this study. The trajectories of the glider data  
(G1 and G2) used for the model skill assessment is shown in the sub-figure
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Rutgers University for March 2007, with their trajectories 
located in the NJ shelf region (Fig 1). The glider G1 flight 
(7 March 2007–3 April 2007) was across the NJ shelf with 
its trajectory extending from the inner-NJ shelf at Great Bay, 
south of NJ coastal ocean, to the outer-NJ shelf up to a depth 
of 100m. The glider G2 flight (13 March 2007–6 April 2007) 
was along the mid-NJ shelf region, with its trajectory extend-
ing from the Great Bay, south of NJ coastal ocean, to the 
Nantucket Islands, Massachusetts.

Fixed-sensor based observations
Moored temperature (T) observations in the NYHOPS domain 
were used for the DAskill analysis in this study. Moored hourly 
surface and bottom temperature records were obtained from 
the National Ocean Service (NOS stations: The Battery 
(BATN6) and Sandy Hook (SDHN4)), Stevens Institute of 
Technology (SIT station: Belford (STBLD4)), and Rutgers 
University (ADCP moorings: M1 and M2) (Fig 1).

MODELLING BACKGROUND
NYHOPS (http://stevens.edu/maritimeforecast/) is an estua-
rine and coastal ocean forecast system based on an extensive 
real-time observational network of distributed sensors22 
which has been operational since the beginning of 2004. 
The system is designed to represent the water parameters, 
weather and environmental conditions of the NY/NJ Harbour 
Estuary, Raritan Bay, Long Island Sound, NY Bight, and the 
NJ coastal ocean in real-time, and to forecast the conditions 
in near and long-term. 

The NYHOPS forecast model is a three-dimensional, 
time-dependent hydrodynamic model, based on the estuarine 

coastal and ocean model (ECOM), a direct descendant of the 
Princeton Ocean Model (POM).23 This numerical model is 
based on an ‘Arakawa-C’ grid, and solves a coupled system 
of differential, prognostic equations describing the conserva-
tion of mass, momentum, heat, and salt. The model is based 
on orthogonal curvilinear co-ordinate system in the horizon-
tal plane and  co-ordinate system in the vertical plane. The 
vertical eddy viscosity coefficients were calculated using the 
Mellor-Yamada level 2.5 turbulence closure scheme24 with 
subsequent modifications.25,26 The model uses the shear-
dependent Smagorinsky formulation27 for the calculation of 
horizontal eddy viscosity, and a spatially varying bottom fric-
tion coefficient was employed in the present study.

The model recognises both the faster, barotropic external  
waves and the slower, baroclinic internal waves, and solves 
the corresponding barotropic and baroclinic equations with 
different time-steps using a mode-splitting technique. The 
external barotropic mode assumes homogeneous tempera-
ture and salinity and uses a computational time step of  
1 second. The internal baroclinic mode employs stratifica-
tion and uses a computational time step of 10 seconds. The 
high-resolution model domain consists of 147x452 (I x J) 
curvilinear segments in the horizontal plane, and 11 vertical 

 levels. The model domain encompasses the entire NY/NJ 
Harbour Estuary, Long Island Sound, and the NJ and Long 
Island coastal ocean (Fig 2). The model domain includes the 
tidal Hudson River up to the federal dam at Troy, NY, at its 
northern boundary. The open ocean boundary of the model 
domain is bound to the: (a) southeast, at the continental shelf 
to depths lesser than the 200m isobath, (b) southwest, by 
a line extending from coastal Maryland south of Delaware 
Bay, and (c) east, to a cross-shelf line extending southward 

Fig 2: The New York Harbour Observing and Prediction System (NYHOPS) high resolution model grid. The model grid for 
Raritan Bay and the NYB Apex is zoomed-in and shown in the sub-figure
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from Nantucket Island, MA. The model grid resolution varies 
throughout the domain ranging from approximately 7.5km at 
the open ocean boundary to less than 50m in several parts of 
the NY/NJ Harbour Estuary. 

The depth of the water column varies from approxi-
mately 200m at the open ocean boundary to less than 1m 
near the shore and in several parts of the NY/NJ Harbour 
Estuary. The model forcing functions consist of (a) ocean 
boundary conditions of sea surface elevation, temperature 
and salinity fields along the open ocean boundary, (b) sur-
face meteorology, and (c) freshwater inflows from rivers, 
streams, waste-water treatment plants, and point sources 
from combined sewer overflows and surface run-offs. They 
have been described in detail.28

An extensive hydrodynamic model skill assessment has 
been conducted recently28 to quantify the hindcasting and 
forecasting capabilities of the NYHOPS model. Model results 
have been compared to in-situ observations of water level, 
currents, temperature, salinity and waves at over 100 loca-
tions; collected over a two-year period. The model’s ability 
to describe the hydrodynamic conditions in the extensive area 
it is employed for is quite good. The average index of agree-
ment29 for water level is 0.98, for currents 0.87, for water 
temperature 0.98, for salinity 0.77, and for significant wave 
height is 0.88. Respective, average root-mean-square (rms) 
errors are: 10cm for water level, 13cm s−1 and 9° for currents, 
1.4°C for water temperatures, 2.8 psu for salinities, and 32cm 
for significant wave heights. Additional comparisons of the 
NYHOPS sea surface temperature predictions against satel-
lite data also show good agreement in the coastal ocean.30

HF RADAR DATA ASSIMILATION SCHEME
The present work employs a nudging assimilation scheme 
to assimilate HF radar data into the NYHOPS model. In the 
nudging or Newtonian damping scheme, a forcing term is 
added to the dynamic model which drives the model toward 
the observations. The rate of nudging must be small and 
should have a smooth variation with respect to spatial and 
temporal fields of the ocean state variables as described next.

Nudging scheme
Following the work of previous papers,31,32,33,34 a nudging term 
is introduced into the equation of motion as:

∂
∂

= ( ) − ∗ −( )U
t

physics U U oλ  (1)

where U represents the model velocity, Uo represents the 
observed velocity, λ represents the nudging parameter, and 
(physics) includes Coriolis, pressure gradients, vertical diver-
gence of shear stress, non-linear advection, and other terms 
like horizontal and vertical mixing. The velocity U can be 
either the u (east-west) or v (north-south) velocity compo-
nents. The nudging parameter (λ) used in the present study 
was designed with an exponential spatial and temporal scale 
dependence. The empirical equation of the nudging param-
eter (λ) can be represented as:
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where r is the distance between model grid point and the 
observed data location, t − t0 is the difference between assimi-
lation and observation time, ta is the assimilation timescale 
which determines the strength of the nudging parameter (λ), 
td is the damping time-scale for the nudging term, Rn2 is 

the length-scale, e
z
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  is the exponential decay parameter 

which controls the depth of influence of the nudging param-
eter (z = 0, at the mean sea-surface, and zd is the depth of 
influence).

The method generates sources and sinks near the obser-
vational locations. Model dynamics are affected by these 
‘forces’ and the data are imparted to neighbouring (three-
dimensional) grid points. The nudging assimilation method 
is a rough approximation of a standard Optimal Interpolation 
(OI) scheme, in which the gain matrix [K] is analytically 
specified, rather than deriving by minimising the square of 
the analysis error covariances.35

The present study assimilates HF radar total surface 
currents which were obtained by combining radial vector 
fields using the method of least squares18 with respect to the 
NYHOPS model horizontal grid. Since HF radar observations 
were collocated with the NYHOPS model grid point and 
were linearly interpolated to model time-step between suc-
cessive observation records, the nudging parameter (λ) can 
be approximated as 
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1 , when there is zero time-lag between model
and data. The nudging parameter λ(i,j,k) = 0, at all other 
model grid points with no HF radar observations.

The forcing term introduced by the nudging scheme 
corresponds to the misfit between observed and modelled 
velocities, scaled by a damping factor (nudging parameter λ, 
Equation (2)). The nudging parameter attenuates the noisy 
sources and sinks introduced by the model-data surface 
velocity misfits.

This nudging scheme for assimilating surface currents 
was initially applied to an idealised estuary with a long 
straight channel and a curved configuration.36 The ocean 
model was forced with realistic estuarine conditions of river 
discharge, tidal variation, and density stratification. More 
insight was obtained about the three-dimensional modifica-
tions to current, temperature and salinity fields due to assimi-
lation of synthetic surface currents. The effect of surface 
current assimilation on the circulation and density stratifica-
tion for the idealised model experiments suggested there was 
a need to quality check the magnitude and direction of HF 
radar-derived surface currents prior to assimilating into the 
NYHOPS model.

A series of preliminary experimental runs assimilating 
HF radar surface currents into the NYHOPS model using this 
nudging scheme were performed. Satisfactory results were 
obtained using an assimilation time-scale ta of 1800 seconds, 
which maintained smooth variation of the misfit perturba-
tions, and the depth of influence zd of 2.0m, which restricted 
the assimilation to near-surface layers.
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ASSIMILATION RESULTS
The focus of this study is to understand the NYHOPS model 
performance with respect to model hindcast (defined as the 
daily model solutions from −24h to 0h) and daily forecast 
(ie, daily model solutions from 0h to 24) by assimilating 
HF radar surface currents. Surface currents measured using 
standard-range HF radar network covering Raritan Bay and 
the NYB Apex were assimilated into the NYHOPS model for 
a period of 40 days from 24 February 2007 to 4 April 2007 
(referred to ‘assimilation period’ hereafter) using the nudg-
ing assimilation scheme described above. The preceding 24h 
series of HF radar total surface current maps (obtained at 30 
min intervals) were assimilated into the NYHOPS model on 
daily forecast basis.

Skill metrics
The effectiveness of DA was evaluated by statistically compar-
ing both non-assimilated (‘reference’) model and assimilated 
model solutions with in-situ observations, which are not used 
in the assimilation. The DA skill score (DAskill) was based on 
mean-square-error (mse),37,38 which can be defined as:

DA
mse

mseskill
a

r

= −1
  (3)

where mser is the mean-square-error of the difference between 
non-assimilated model solution and observations, and msea is 
the mean-square-error of the difference between assimilated 
model solution and observations. The DAskill can be defined 
as a reduction of the mse due to assimilation with respect to 
a non-assimilated model. A positive DAskill (0 ∼ 1) represents 
an improvement in the model performance by assimilation.

A complex vector correlation between model velocities 
and in-situ observations were also computed. Specifically, it 
has been shown39 that the magnitude (ρ) and phase (θ) of com-
plex (vector) correlation coefficient (ρ e(iO)) between any two 
vector series w1(t) = u1(t) + i v1(t), and w2(t) = u2(t) + i v2(t) can 
be estimated in terms of:
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The magnitude (ρ) represents the overall measure of correla-
tion (< 1.0 by Schwartz inequality) which is independent of 
any co-ordinate system. The phase angle (θ) represents the 
average veering between the two vector series, where the 
phase angle is meaningful only if the magnitude of the corre-
lation is high. The combined set of (ρ ∼ 1) and (θ ∼ 0) denotes 
an excellent comparison between the two vector series.

The DAskill and vector correlations with respect to three-
dimensional currents were computed by comparing model 
currents with ADCP observations at stations M1 and M2 (see 
Fig 1) for the assimilation period. The DAskill with respect 
to three-dimensional temperature (T) and salinity (S) were 
obtained by comparing non-assimilated and assimilated 
model T and S profiles with glider data from trajectories 
G1 and G2 (Fig 1) for March 2007. The DAskill were also 
assessed with respect to fixed-sensor Temperature (T) obser-
vations for the assimilation period. The DAskill metrics were 
computed for the NYHOPS model hindcast as well as the 
first day forecast.

Surface current modifications
HF radar surface current data were nudged into the NYHOPS 
model in the model hindcast cycle (−24h to 0h) at a tem-
poral resolution of 30 min. The model surface currents  
(u and v components) were adjusted using the misfit between 
modelled currents and HF radar currents, weighted by the 
nudging parameter (λ). In order to analyse the surface current 
modifications introduced by the assimilation and to assess the 
mismatch between HF radar data and modelled currents, HF 

Fig 3: Spatial distribution of DAskill between (non-assimilated and assimilated) model hindcast (daily model solutions from 
−24h to 0h) and HF radar data for the u (left panel) and v (right panel) currents. The black ‘ ’ indicates the locations of 
time-series comparison between HF radar data and NYHOPS (non-assimilated and assimilated) model solution, black ‘ ’ 
indicates ADCP locations (M1 and M2), and black circles indicate HF radar stations
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Fig 4: Time-series comparison for the u & v components of HF radar currents and NYHOPS (non-assimilated and assimilated) 
model hindcast currents in the Raritan Bay and the NYB Apex (Fig 3 for location) for the assimilation period. Top panels  
(a) & (b) show hourly HF radar current and model current comparison for Raritan Bay for u & v components respectively, and 
bottom panels (c) & (d) show hourly HF radar current and model current comparison for the NYB Apex for u & v components 
respectively. Green line indicates HF radar currents, red line indicates non-assimilated (reference) model currents, and blue line 
indicates assimilated model currents
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radar surface currents were compared with non-assimilated 
and assimilated NYHOPS model near-surface currents for 
daily model hindcast cycle (−24h to 0h) throughout the assim-
ilation period. The misfit between model currents and HF 
radar data at every data point of the HF radar footprint were 
statistically analysed by computing the DAskill (Equation (3)) 
for both u and v components (Fig 3).

The DAskill for the Raritan Bay and the NYB Apex in Fig 3 
is greater than 0.7 for both u and v currents, whereas the 
DAskill degrades and shows a minimum along the periphery 
of the HF radar data footprint. In order to understand the 
temporal evolution of the surface currents, the model surface 
currents and HF radar currents were compared at two loca-
tions (marked by black ‘*’ in Fig 3), one in Raritan Bay and 
the other in the NYB Apex.

The model/observation time-series comparison for u and v 
currents for Raritan Bay (Figs 4a & 4b) shows predominant u 
component with a magnitude of ∼ 0.5m s−1 and v component 
∼ 0.1m s−1. This time-series comparison shows a reasonable 
agreement between HF radar and assimilated model currents 
for the predominant u component than for the v component. 
The time-series comparison for u and v currents for the NYB 
Apex (Figs 4c & 4d) also shows a good agreement between 
assimilated model currents and HF radar data for both u and 
v components. The root-mean-square-error (rmse) of the 
difference between HF radar currents and model currents, 
labelled in Fig 4, shows considerable reduction in the rmse 
due to assimilation. The time-series comparison at these two 

locations demonstrate that the nudging term, represented by 
the model-data misfit and weighted by the nudging parameter 
(λ), introduced into the model momentum equations behaves 
as expected, adjusting the model currents toward HF radar 
observations.

Data assimilation skill for velocities based on ADCP 
observations
The DAskill for the u and v component with respect to ADCP 
data (at stations M1 and M2) for model hindcasts and fore-
casts are shown in Fig 5. The hindcast DAskill with respect to 
M1 ADCP data (Fig 5a) shows a positive skill throughout the 
water column for both u and v components. A maximum skill 
of +24% was achieved for the predominant u component at 
near-surface layers, whereas v component shows a maximum 
skill of +20% at sub-surface layers. The hindcast DAskill with 
respect to M2 ADCP data is shown in Fig 5b, where M2 
ADCP failed to provide reliable data at near-surface layers 
(∼ 6.2m from the surface). Based on M2 ADCP data, a posi-
tive skill was achieved at sub-surface layers for both u and v 
components with a maximum skill of +48% (+30%) for the 
u (v) components, and the skill degrades with increasing 
depth at near-bottom layers for both u and v components. 

The DAskill with respect to ADCP (M1 and M2) data for 
model forecasts are shown in Figs 5c & 5d. The forecast DAskill 
with respect to M1 ADCP data (Fig 5c) shows a positive skill 
throughout the water column for both u and v components with 
a maximum skill of +18% for the predominant u component at 

Fig 5: Model hindcast (−24h to 0h) 
DAskill [top panels (a) & (b)] and 
first day model forecast (0h to 24h) 
DAskill [bottom panels (c) & (d)] for 
the u and v components with respect 
to ADCP (M1 and M2) data. Top 
panels (a) & (b) show the model 
hindcast DAskill with respect to M1 
ADCP data and M2 ADCP data and 
bottom panels (c) & (d) show the 
model forecast DAskill with respect 
to M1 ADCP data and M2 ADCP 
data. Blue solid line indicates DAskill 
for u component and red solid line 
indicates DAskill for v component

Ganesh_JOO_Feb.indd   82 17/02/12   9:35 AM



83

Assimilation of HF radar-derived surface currents on tidal-timescales

Volume 5 No 1 February 2012      Journal of Operational Oceanography

near-surface layers and a maximum skill of +10% for v com-
ponent at sub-surface layers. The forecast DAskill with respect 
to M2 ADCP data (Fig 5d) also shows a positive skill of +40% 
(+22%) for the u( v) components at sub-surface layers. 

The model forecast DAskill shows a similar variation along 
the depth as that of the model hindcasts, but with a decrease 
in the skill magnitude. This decrease in the forecast DAskill 
may be due to the fact that HF radar data were assimilated 
only into the NYHOPS model hindcast cycle. The present 
study uses a weaker nudging parameter (λ) by defining an 
assimilation timescale (ta) of 1800 seconds in order to ensure 
a smaller rate of nudging and smooth variation of the ocean 
state parameters in space and time. This weaker nudging 
parameter down-weights the impact of noisy sources and 
sinks (‘shocks’) introduced by the model-data surface current 
misfits. Once the model completes the hindcast cycle and 
starts forecasting, HF radar data is no longer nudged into the 
model momentum equations, and the impact of the model 
state adjustments imparted during the model hindcast cycle 
diminishes gradually over the forecasting time.

The vector correlation (ρ, θ) between model currents 
and the ADCP data for model hindcasts and forecasts are 
shown in Fig 6. The complex correlation values between 
(non-assimilated and assimilated) model hindcast currents 
and ADCP data (Figs 6a & 6b) shows an overall increase in 
the magnitude of the complex correlation (ρ) and a decrease 
in the average veering angle (θ) between model currents and 
ADCP data by surface current assimilation. This represents 
an improvement in the model performance by assimila-
tion. The vector correlation statistics (ρ, θ) between (non-
assimilated and assimilated) model forecast currents and 
the ADCP data are shown in Figs 6c & 6d, which also show 
a similar vertical structure along the depth as that of the 
model  indcasts, but with a less pronounced effect of surface 
current assimilation.

Based on model-ADCP data comparison, DAskill shows 
improved model performance at the near-surface and the 
sub-surface layers for both model hindcasts and forecasts. HF 
radar surface current assimilation increases the magnitude of 
the complex correlation (ρ) and decreases the average veering 

Fig 6: Model hindcast (−24h to 0h) vector correlation (ρ and θ) [top panels (a) & (b)] and first day model forecast (0h to 24h) 
vector correlation (ρ and θ) [bottom panels (c) & (d)] with respect to ADCP (M1 and M2) data. Top panels (a) & (b) show 
the vector correlation (ρ and θ) for (non-assimilated and assimilated) model hindcast with respect to M1 ADCP data and 
M2 ADCP data, and bottom panels (c) & (d) show the vector correlation (ρ and θ) for the (non assimilated and assimilated) 
model forecasts with respect to M1 ADCP data and M2 ADCP data. In each plot, top x-axis represent θ (blue solid line) and 
bottom x-axis represent ρ (red solid line). Lines marked with ‘ ’ indicate non-assimilated (reference) model, while ‘!’ indicates 
assimilated model
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angle (θ) between model currents and ADCP data, for both 
model hindcasts and forecasts, showing an enhancement in 
the model performance.

Temperature and salinity assimilation skill based on 
glider observations
The effectiveness of DA with respect to three-dimensional 
Temperature (T) and Salinity (S) distributions in the regions 
outside the assimilation domain was studied by comparing 
non-assimilated and assimilated model T and S profiles 
with glider (G1 and G2 trajectories, sub-figure in Fig 1) T 
and S data. The improvements in the model performance by 
HF radar DA were assessed by computing the DAskill with 
respect to three-dimensional T and S fields. The NYHOPS 
model solutions for T and S, for both model hindcasts as well 
as forecasts, were linearly interpolated in time and space to 
glider profiles. The DAskill is based on mse of the difference 
between non-assimilated and assimilated model T and S pro-
files and glider profiles. The DAskill (Equation (3)) for T and 
S were computed as a function of the depth for the regions 
of inner-NJ shelf (0 ∼ 30m) and mid-NJ shelf (30 ∼ 90m) for 
the period of glider flights (March 2007). The model hind-
cast DAskill for T and S fields in the inner-NJ shelf region 
with respect to G1 glider data is shown in Fig 7a. In the 
inner-NJ shelf region, DA shows reasonable improvement in  

hindcasting T and S at the near-surface layers, showing a 
DAskill of 33% (38%) for T (S). The model hindcast DAskill 
for T and S fields in the mid-NJ shelf region with respect to 
G2 glider data is shown in Fig 7b. Surface current assimila-
tion shows only moderate improvement in hindcasting T in 
the mid-NJ shelf region. The DAskill based on glider data 
(G1 and G2) for model forecasts are shown in Figs 7c & 7d, 
which show a similar variation along the depth as that of 
the model hindcasts, with the near-surface layers showing a 
forecast DAskill of 25% (30%) for T (S) for the inner-NJ shelf 
region. The forecast DAskill based on glider data (G1 and G2) 
shows a decrease in the skill magnitude compared to model 
hindcast, which is consistent with other assimilation skills 
discussed above.

Data assimilation skill for temperature based on 
fixed-sensor observations
The non-assimilated and assimilated model T were compared 
with in-situ T observations from the fixed-sensors. The com-
puted DAskill with respect to T observations were tabulated, 
shown in Table 1. The assimilated model T showed a better 
comparison with in-situ observations than non-assimilated 
model, showing an improved model performance by surface 
current assimilation for both model hindcasts and forecasts. 
The DAskill for the model forecasts were similar to that for the 

Fig 7: Model hindcast (−24h to 0h) DAskill [top panels (a) & (b)] with respect to G1 glider data for the inner-NJ shelf region (a) 
and with respect to G2 glider data for the mid-NJ shelf region (b). Model forecast (0h to 24h) DAskill [bottom panels (c) & (d)] 
with respect to G1 glider data for the inner-NJ shelf region (c) and with respect to G2 glider data for the mid-NJ shelf region (d). 
Red solid line indicates DAskill for T and blue solid line indicate DAskill for S
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model hindcasts for all the stations and shows an increased 
skill based on the near-surface T observations than for the 
near-bottom T observations.

SUMMARY AND DISCUSSION
A nudging scheme is implemented to assimilate HF radar 
surface currents into the NYHOPS model. HF radar total 
surface currents were assimilated into the NYHOPS model 
for a period of 40 days (24 Feb 2007–4 April 2007). The 
impact of DA in the model performance was evaluated by 
computing the DAskill, and a positive DAskill (0 ∼ 1) represents 
an improvement in the model performance by assimilation. 
The DAskill were based on the mse of the difference between 
non-assimilated and assimilated model solutions and in-situ 
observations of three-dimensional (u, v) currents, temperature 
(T), and salinity (S), which are not used in the assimilation. 
The present work focused on the NYHOPS model perform-
ance in hindcasting (daily model solutions from −24h to 0h) 
and forecasting (first day forecast: daily model solutions from 
0h to 24h) the ocean state by assimilating HF radar surface 
currents. The DAskill was computed by comparing model 
solutions with ADCP (at stations M1 and M2) observations 
for three-dimensional (u, v) currents, glider (G1 and G2 tra-
jectories) observations for three-dimensional T and S, and 
fixed-sensor T observations.

The DAskill analysis based on three-dimensional currents 
obtained from ADCPs (M1 and M2) showed a reasonable  
improvement in the NYHOPS model performance by 
surface current assimilation for both model hindcasts and 
forecasts. Comparison with M1 ADCP data showed a posi-
tive DAskill throughout the water column for both u and v 
components, for the NYHOPS model hindcasts as well as 
forecasts. Model skill metrics based on M1 ADCP data for 
the near-surface layers in the inner-NJ shelf region showed 
a hindcast DAskill of 24% (14%) and forecast DAskill of 18% 
(7%) for three-dimensional u (v) currents. Comparison with 
M2 ADCP data showed positive DAskill for the sub-surface 
layers for both u and v components, for the NYHOPS 
model hindcasts as well as forecasts. Based on M2 ADCP 
data a hindcast DAskill of 48% (30%) and forecast DAskill of 
40% (18%) were achieved for three-dimensional currents 
u (v) at the sub-surface layers, and the skill degrades with 
increasing depth at near-bottom layers. The vector cor-
relation statistics between model currents and ADCP data 
showed an overall increase in the magnitude of the complex 
correlation (ρ) and a decrease in the average veering angle 
(θ) between model currents and ADCP currents, showing 

an improved model performance by surface current assimi-
lation for both model hindcasts as well as forecasts.

The modifications to three-dimensional T and S fields 
due to assimilation were studied by comparing non-assim-
ilated and assimilated model T and S solutions with glider 
(G1 and G2) T and S profiles, for model hindcasts as well 
as forecasts. A positive DAskill were achieved for T and S 
for the near-surface layers in inner-NJ shelf region for both 
model hindcasts and forecasts, showing a hindcast DAskill 
of 33% (38%) and forecast DAskill of 25% (30%) for three-
dimensional temperature (salinity). The glider flights falls 
outside the assimilation domain and the improvement in 
the model performance suggests the influence of HF radar 
DA beyond the assimilation domain via model dynamics. 
The DAskill metrics for the mid-NJ shelf region showed no 
considerable improvement in the model performance. This 
low DAskill score in the mid-NJ shelf regions might be due 
to the influence of offshore climatological open boundary 
conditions. The coarser resolution (∼ 7.5km) of the model 
curvilinear grid along the offshore mid-NJ shelf region may 
also influence the poor DAskill with respect to glider data. 
The DAskill were also computed with respect to fixed-sensor 
(T) observations. HF radar assimilation showed positive 
DAskill at all the locations with pronounced improvement 
with respect to near-surface T for both the model hindcasts 
and forecasts than for the near-bottom T.

The nudging scheme is robust and efficient for the HF 
radar DA into the NYHOPS operational forecast model, 
resolving the tidal frequency variability. The assimilation 
system is capable of importing in the observations and pro-
vides improved hindcasts and forecasts for the study domain 
with the lowest computing cost of application. Future work 
will focus on assimilating HF radar data, drifter data, and sat-
ellite Sea Surface Temperature (SST) data covering the Mid-
Atlantic Bight and the New York Bight into the NYHOPS 
operational forecast model.
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Table 1: Data assimilation skill for the NYHOPS model (comparison with fixed-sensor temperature observations)

Location Station 
Name Agency Parameter Depth DAskill 

Hindcast 
DAskill 

Forecast

The Battery, NJ BATN6 NOS Temperature Surface +11% +12%

Sandy Hook, NJ SDHN4 NOS Temperature Surface +34% +36%

Belford, NJ STBLD4 SIT Temperature Bottom +12% +11%

ADCP mooring: 1 M1 RU Temperature Bottom +5% +5%

ADCP mooring: 2 M2 RU Temperature Bottom +11% +10%
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