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[1] Surface current observations from a high‐frequency radar network deployed in
southern San Diego are decomposed according to their driving forces: pure tides and their
neighboring off‐band energy, local winds, and low frequency. Several superposed ocean
responses are present as a result of the complicated bottom topography and relatively weak
winds off southern San Diego, as opposed to coastal regions where circulation can be
explained by a dominant forcing mechanism. This necessitates an application of a
statistical decomposition approach. Surface currents coherent with pure tides are calculated
using harmonic analysis. Locally wind‐driven surface currents are estimated by regression
of observed winds on observed surface currents. The dewinded and detided surface
currents are filtered by weighted least‐squares fitting assuming white noise and three
colored signal bands: low‐frequency band (less than 0.4 cycles per day) and near‐tidal
peaks at the diurnal (K1) and semidiurnal (M2) frequencies. The spatial and temporal
variability of each part of the decomposed surface currents is investigated in terms
of ocean response to the driving forces. In addition, the spatial correlations of individual
components exhibit Gaussian and exponential shapes with varying decorrelation
length scales.
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1. Introduction

[2] Coastal surface current is a mixture of the oceanic
responses to local winds, remote wind forcing via eddies
and coastal trapped waves, tides, pressure gradients, and
meteorological fluxes of heat and fresh water [e.g., Ekman,
1905; Ewing, 1950; Munk and Cartwright, 1966]. The
components of current have distinct spatial and temporal
scales reflecting distinct ocean dynamics. An appropriate
partitioning of observations allows us to discern the mean-
ingful forcing terms and responses and to deduce their
interactions. Surface current maps created by shore‐based
high‐frequency radars (HFRs) are an in situ observational
resource with high density, hourly in time and km in space.
They also have potential to study near‐surface phenomena at

submesoscale and smaller, surface circulation, and water-
borne transport. In this vein, we have decomposed surface
currents into their driving forces using statistical analysis
and interpreted them in terms of their spatial scales and
temporal variations.
[3] This paper is the first of three companion papers for

surface current decomposition motivated by following
questions: How much surface current variance is explained
by each forcing component? What are the characteristics
and variability of surface currents driven by each forcing
component? How can these results be used to create a sta-
tistical surface current model based upon observations? In
this paper, we focus on the techniques applied for decom-
position, an overall description of current responses to
potential driving forces (e.g., tides, wind, and low‐frequency
forces), and their spatial structure. Detailed investigations on
the individual current components (e.g., locally wind‐driven
and tide‐coherent surface currents) are addressed in the other
companion papers [Kim et al., 2010; S. Y. Kim et al., De-
composing observations of high‐frequency radar derived
surface currents by their forcing mechanisms: Surface
signature of M2 internal tides, manuscript in preparation,
2010].
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[4] There is precedence in the literature of separating
currents based upon their forcing such as decomposing tidal
currents and residual currents using harmonic analysis and
band‐pass filters [e.g., Prandle, 1987; Shay et al., 1995].
Moreover, the locally wind‐driven surface currents were
estimated from the detided surface currents in two ways: a
simple regression between surface currents and winds [e.g.,
Essen et al., 1983; Prandle and Player, 1993] and a fit using
rotary empirical orthogonal functions (EOFs) [e.g., Ng,
1993]. Surface currents off southern San Diego contain
mixed current responses to several driving forces and their
interactions: pure tides, diurnal (plus harmonics) wind,
broad‐band wind, diurnal heat flux, and both cross‐shore
and alongshore pressure gradients. Therefore the use of a
band‐pass filter before the separation of both locally wind‐
driven currents and purely tide‐coherent currents can be
problematic, because locally wind‐driven currents can have
similar spectral content as tidal currents. Moreover, the
least‐squares spectral analysis as an extended version of
Pawlowicz et al. [2002] is used for missing observations
instead of conventional band‐pass filters.
[5] This paper is organized as follows. First, the dominant

variance of in situ observations is described (section 2).
Then, the applied decomposition techniques using a statis-
tical regression and a weighted least‐squares fitting method
are addressed (section 3). Last, the spatial and temporal

variability of decomposed surface currents and their aver-
aged correlation are presented (section 4).

2. Observations

[6] Surface currents observed by three HFRs (∼25 MHz;
Point Loma (SDPL, R1), Border Park (SDBP, R2), and
Coronado Islands (SDCI, R3) in Figure 1) off southern San
Diego are decomposed in terms of their driving forces.
Winds observed at two shore stations (Scripps Pier (SIO,
W1) and Tijuana River (TJR, W2)) are converted into wind
stress using the drag coefficient described by Large and
Pond [1981]. Although other wind observations around
San Diego are available, only two shore station winds in the
study domain are used, because the offshore wind at the
buoy (National Data Buoy Center (NDBC) 46086 station)
has weak coherence with coastal winds, less than 0.5 in the
subdiurnal frequency band and at the diurnal frequency and
less than 0.2 in other frequencies. Moreover, the wind data
at inland stations (National Climatic Data Center (NCDC))
have relatively low sampling frequency and sensor accu-
racy. All observations used in this study are hourly averaged
over 2 years (April 2003 to March 2005). The approaches to
estimate the spectral contents of each observation are sum-
marized in Appendix A.

Figure 1. Study domain for decomposition of surface currents using in situ observations: surface currents
from three HFRs (Point Loma (SDPL, R1), Border Park (SDBP, R2), and Coronado Islands (SDCI, R3)),
coastal winds at two shore stations (Scripps Pier (SIO, W1) and Tijuana River (TJR,W2)), and surface tides
at San Diego Bay (SDB, S). The gray dots indicate the grid points that have at least 70% data availability of
surface currents for 2 years (April 2003 to March 2005). A decomposed surface current time series at the
location A is shown as an example in Figure 4. The bottom bathymetry contours are indicated by thin
curves with 10 m (0 < z < 100 m) and 50 m (100 < z < 1000 m) contour intervals and thick curves at the 50,
100, 500, and 1000 m depths.
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2.1. Surface Currents
[7] Optimally interpolated hourly surface currents are used

for the decomposition analysis (see Appendix B and Kim
et al. [2008] for more details). Surface circulation off south-
ern San Diego is characterized by a southeastward long‐term
mean, near‐coast counter currents (northward), anisotropic and
asymmetric wind‐forced responses due to coastal boundary
effects, vortical phenomena including submesoscale eddies,
and surface signature of semidiurnal (M2) internal tides. Total
surface currents are exponentially decorrelated in space, and
the alongshore components have approximately three time
longer decorrelation length scale than cross‐shore currents
[Kim et al., 2007, 2009a, 2009b; Kim, 2010].
[8] The averaged rotary power spectrum of surface cur-

rents over the grid points as shown in Figure 1 exhibits
clockwise‐dominant tidal peaks, variance in the low‐fre-
quency band (less than 0.4 cycles per day (cpd)), frequency
bands centered on diurnal and semidiurnal tides, their har-
monics, and the residual variance (Figure 2a). The increased
spectral energy near the major tidal constituents are attrib-
uted to nonlinear interactions with topography over the
continental break/shelf and modulation by low‐frequency
signals [e.g., Munk et al., 1965; Munk and Cartwright,
1966]. However, the variance of surface currents at the
inertial frequency (1.06 ≤ fc ≤ 1.08 cpd in the study domain)
is not significantly above the background variance [e.g.,
Bratkovich, 1985], which might be a result of energy dis-
sipation in the coastal region. The weak inertial variance of
surface currents in this region is not due to the limitation of
data record length because the 2 year record length provides
enough resolution to separate the inertial frequency (fc) and
the closest diurnal frequency (K1). Moreover, the subsurface
currents observed from ADCP (28 m depth) located within
the study domain show the same tendency of weak inertial
variance. In addition, the surface currents measured by the
HFR network along the entire U. S. West Coast (USWC)
show a significant separation of the variance between two
frequencies (K1 and fc), so the weak inertial variance appears
to be local to southern San Diego.
[9] The barotropic S1 tidal currents on the USWC have

been reported as 0.08–0.17 cm s−1 from TOPEX/Poseidon
satellite altimetry data [Ray and Egbert, 2004; R. D. Ray,
personal communication, 2009]. Therefore we expect that
the observed S1 surface currents of 5–6 cm s−1 (Figure 2a)
are likely to be a result of other diurnal forcing components,
especially diurnal wind and diurnal stratification change due
to heat flux, rather than the S1 tide.
[10] The source of the surface current variance at the

semidiurnal frequency (S2) can be ambiguous, because it

may be driven by both diurnal wind and S2 tide. Since the
wind variance at the S2 frequency is about 10 times less
than the S1 variance, and the gravitational S2 tidal forcing
is about seven times higher than the atmospherically
forced S2 component (air tides) [e.g., Arbic, 2005; Ponte
and Vinogradov, 2007], we assume that the S2 variance

Figure 2. Regionally averaged rotary power spectra of
(a) total surface currents (u), (b) locally wind‐driven surface
currents (uW), and (c) surface currents with both locally
wind‐driven and purely tide‐coherent components removed
(uG). The 95% confidence internal are indicated with a gray
error bar. Three frequency bands (low‐frequency and fre-
quency bands centered at the diurnal (K1) and semidiurnal
(M2) frequencies) are indicated on the top of Figures 2a
and 2b. Negative and positive frequencies correspond to
clockwise and counterclockwise rotations, respectively.
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of surface currents is dominantly driven by the S2 tide
[Kim et al., 2009a].

2.2. Wind
[11] The rotary power spectrum of the TJR wind contains

a diurnal peak and its harmonics superposed on a red
spectrum (Figure 3a). Although the log‐scale plot com-

presses the peaks, the clockwise variance at the diurnal
frequency is 2–3 times greater than the counterclockwise
variance at that frequency. The SIO wind spectrum (not
shown) shows a similar variance distribution to the TJR
wind. The rotary coherence (g2, see Appendix A) and
phase between the two wind observations are shown in
Figures 3b and 3c, respectively. Statistically significant

Figure 3. (a) Rotary power spectrum of the TJR wind. (b and c) Coherence and phase between SIO and
TJR winds. The 95% confidence intervals are indicated as an error bar and gray shading (see Appendix A).
Positive phase means the TJR wind leads the SIO wind.

KIM ET AL.: SPATIAL STRUCTURES OF SURFACE CURRENTS C12007C12007

4 of 18



coherence (0.6–0.8) is found at the diurnal (S1) and (solar)
semidiurnal (S2) frequencies, and in the subdiurnal frequency
band (∣w∣ < 1 cpd). The phases are nearly zero in the sub-
diurnal frequency band and fluctuate inside larger confidence
intervals in the high‐frequency band (∣w∣ > 2 cpd). The 95%
confidence intervals are indicated by gray shading (see
Appendix A). In the time domain, the hodograph (not
shown) of the hourly composite mean of SIO and TJR winds
with respect to the local time shows dominant land/sea
breezes and northeast‐southwest orientation in their direc-
tion. A slight difference in the orientation between both sites
is presumably due to the local geography.

2.3. Surface Tides
[12] The SIO sea surface height (SSH) shows lower

coherence (g2) with the SSHs at the other tide gauge stations
on the USWC than San Diego Bay (SDB) SSH (by roughly
0.1), especially in the subinertial frequency band. Moreover,
the SIO SSH anomaly (SSHA) time series have incon-
sistencies compared with SSHAs at nearby stations. There-
fore the SDB SSH is used to estimate the pure tide component
although it may be biased by inner harbor effects and less
exposed to local wave setup. The power spectrum of the SDB
SSH (not shown) shows that the semidiurnal variance is
stronger than the diurnal variance (M2 > K1 > S2 ’ O1) as
shown by the SDB tidal constituents listed in Table 1.

3. Methods

[13] The (total) surface currents (u) are decomposed
according to their driving forces sequentially [e.g., Kirwan
et al., 1979; Winant and Bratkovich, 1981]

u ¼ uT þ uF
¼ uT þ uW þ uG
¼ uT þ uW þ ubL þ ubD þ ubS þ uR; ð1Þ

where uT, uW, and uG denote the surface currents driven
by pure tides, the locally wind‐driven surface currents, and
the surface currents with both wind‐driven and purely tide‐
coherent components removed, respectively. The remaining
surface currents (uG) are the sum of low‐frequency (ubL) and
diurnal frequency band (ubD), which includes the inertial sur-
face currents, semidiurnal frequency band (ubS) components,
and residual surface currents (uR).
[14] Under the assumption that the locally wind‐driven

surface currents and the surface currents coherent with pure
tides result from independent forcing sources, although they
interact, the tidal currents including the S2 variance are fil-

tered out first, then the locally wind‐driven surface currents
are separated later.

3.1. Harmonic Analysis
[15] The surface currents phased locked with tidal con-

stituents are filtered using least‐squares fitting for major
tidal constituents except for the S1 frequency (Table 1). This
least‐square fit includes the nodal correction, so the com-
puted phases are nearly identical to Pawlowicz et al. [2002].
This approach can improve the performance because there is
no extra interpolation for missing observations.
[16] The lunar nodal shift with 18.6 year periodicity is not

distinguishable from other low‐frequency variability given
in our record length, and the lunar fortnightly and spring‐
neap tides with 13.661 and 14.765 day periods are not
included in this fit because they do not present as peaks in
the power spectrum. Moreover, fits with and without these
components do not change our results.

3.2. Wind Impulse Response Function
[17] The impulse response function (H) in the discrete

time domain (Dt) is estimated from the detided surface
currents (uF) and wind stress (T)

H xð Þ ¼ huF x; tð ÞTy tð Þi
! "

hT tð ÞTy tð Þi þ Ra

! "%1
; ð2Þ

where T(t) = [t(t − NDt) & & & t(t − Dt) t(t)]† denotes the
wind stress matrix stacked with up to N hour time lags. t(t) is
a two‐element vector to allow for anisotropic response [e.g.,
Kim et al., 2009a], i.e., t(t) = [tx(t) ty(t)]†. The covariance
matrices in equation (2) are computed excluding the missing
data. The regularization matrix (Ra) is assumed to be a scaled
identity matrix

Ra ¼ !2I; ð3Þ

with a2 adjusted to minimize the error in the cross‐validated
current estimates and to stabilize the possibly nonpositive
definite covariance of the wind stress due to missing ob-
servations [e.g., Inman, 1975; Kim et al., 2009a]. This vari-
able (a2) is also called a Lagrangian multiplier or a trade‐off
parameter between model constraint and data misfit. The
locally wind‐driven surface currents are computed as the
convolution of the response function (h(nDt)) andwind stress
(t(nDt)) at each time lag (n = 0,1, & & &, N)

uW x; tð Þ ¼
XN

n¼0

h x; nDtð Þt t % nDtð Þ: ð4Þ

Table 1. Amplitudes of Surface Tides at San Diego Bay

Constituents Constituents Name Frequency (cpd) Amplitude (m) Phase (deg)

M2 Principal lunar semidiurnal 1.9323 0.576 148.9
K1 Lunar solar diurnal 1.0027 0.352 210.5
S2 Principal solar semidiurnal 2.0000 0.233 145.9
O1 Principal lunar diurnal 0.9295 0.218 195.6
N2 Larger lunar elliptic semidiurnal 1.8960 0.136 128.7
P1 Principal solar diurnal 0.9937 0.109 208.8
S1 Solar diurnal 1.0000 0.000 0
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3.3. Surface Currents in Frequency Bands
[18] Significant variance and peaks at the tidal con-

stituents (Figure 2a) and diurnal wind (Figure 2b) are
excluded by the tide and wind models (sections 3.1 and 3.2).
The power spectrum of remaining surface currents (uG)
shows dominant variance in three frequency bands and an
obvious drop at the N2 frequency (Figure 2c). Since the
observation time series are not complete, band‐pass filtering
in the three frequency bands is accomplished by weighted
least‐squares fitting [e.g., Priestley, 1981;Wunsch, 1996], in
spite of the computational expense. The frequencies are
equally spaced and cover the bands just as used in conven-
tional Fourier analysis, but the background spectrum outside
the frequency bands with enhanced energy is treated as
noise. This approach allows us to handle missing observa-
tions appropriately and to avoid an arbitrary interpolation
step in order to make complete time series for a specific
frequency band filtering

uG ¼ ubL þ ubD þ ubS þ uR

¼ GbLGbDGbS
h i mbL

mbD
mbS

2

64

3

75þ uR

¼ Gmþ uR; ð5Þ

where G denotes the regression bases, which are the stacked
arrays of sine and cosine functions for regression on the low,
diurnal, and semidiurnal frequency bands (GbL,GbD, andGbS).
These frequency bands correspond to 0 < ∣w∣ ≤ 0.4 cpd, 0.8 ≤
∣w∣ ≤ 1.2 cpd, and 1.7 ≤ ∣w∣ ≤ 2.2 cpd, respectively, marked
as gray brackets in Figures 2a and 2c. The model coefficients
(m) are estimated by

bm ¼ PGy GPGy þ Rb

! "%1
uG

¼ GyRb
%1Gþ P%1

! "%1
GyRb

%1uG; ð6Þ

where P and Rb denote the model covariance matrix and the
error covariance matrix, respectively [Wunsch, 1996]. The
second line of equation (6) is applied in this analysis
because of the computational expense required for the
matrix inversion, i.e, twice the number of frequencies to be
estimated (1902 basis functions from 951 frequencies for sine
and cosine functions) is less than the length of the time series
(17544 time records).
[19] The model covariance matrix (P = hmm†i) is the

prior estimate of the spectral covariance matrix. The diag-
onal term of the model covariance matrix is the expected
variance at each frequency, and the off‐diagonal terms are
the cross correlation of Fourier coefficients between differ-
ent frequencies. The model covariance matrix is a diagonal
matrix for a stationary process and can be separated into
blocks by each frequency component

P ¼
PbL 0 0
0 PbD 0
0 0 PbS

2

4

3

5; ð7Þ

where PbL = hmbLm
y
bLi, PbD = hmbDm

y
bDi, and PbS = hmbSm

y
bSi.

The variance conservation between the discrete Fourier
transform and the weighted least‐squares fitting approach
is discussed in Appendix A.
[20] The error covariance matrix (Rb = huRuR† i) is esti-

mated from the power spectrum of the residual surface
currents (uR)

S !ð Þ / !-"; ð8Þ

which can be assumed as the power spectrum with white
noise (b = 0) or Brownian/Gaussian noise (b = 2). The
power spectrum of the background currents (Figure 2c) is
approximately

S !ð Þ ¼ 9
!þ 3

: ð9Þ

However, because of the conversion of the nonwhite error
spectrum to a nondiagonal matrix in the time domain and the
computational burden of the matrix inversion in the second
line of equation (6), we assumed the power spectrum of the
error covariance matrix to be white with S(w) = 1 cm2 s−2

cpd−1, which is the floor level (∼5 cm s−1,Dw = 1/731 days =
0.0014 cpd) in Figure 2c.

4. Results

[21] A set of time series of decomposed surface currents at
location A (Figure 1) on year days 145–155 of 2003 is shown
in Figure 4. In this example, the total surface currents are
mainly a sum of the locally wind‐driven and low‐frequency
components (A, C, and D in Figure 4). The local winds are
typical diurnal land/sea breezes of 0.5–4 m s−1 speed, and
their directions are eastward on year days 146–149 and
become northward on year days 150–155 (W1 and W2 in
Figure 4). The locally wind‐driven surface currents capture a
footprint of local winds and seem to be smooth, because the
regularization is designed to filter out the noise in the wind
data (C in Figure 4) (see Kim et al. [2009a] for more details).
The persistent south/southeastward components in the total
surface currents are from the contribution of low‐frequency
components (D in Figure 4). In the tide‐coherent surface
currents,M2 tidal surface currents are dominantly visible and
the amplitude fluctuations are due to the linear modulation
between major tidal constituents (B in Figure 4). In a sim-
ilar way, the surface currents in the bands near pure tides (K1
and M2) appear as time series modulated by low‐frequency
components (E and F in Figure 4). The residual surface cur-
rents are likely to contain observational errors and intermit-
tent current components, which are not coherent with tides,
wind, and low‐frequency forcing (G in Figure 4).

4.1. Variance of Decomposed Surface Currents
[22] The overall variance partitions of decomposed surface

currents are summarized in Table 2. The low‐frequency band
surface currents and locally wind‐driven surface currents,
each have approximately one third of the total variance.
Purely tide‐coherent surface currents and surface currents in
the diurnal and semidiurnal frequency bands represent
approximately 20% of the total variance. The residual sur-
face currents including nonlinear interactions, small‐scale
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features, outliers, noise, observation errors account for about
15% of total variance. For detailed descriptions on indi-
vidual components, their spatial and temporal variations are
presented as root‐mean‐square (RMS, cm s−1) ellipses
(Figure 5) and monthly time series of their RMS computed
over all grid points (Figure 6).
4.1.1. Spatial Variation
[23] As described in section 2.1, the surface circulation off

southern San Diego includes several major features: south-
ward/southeastward long‐term mean surface currents across
the domain, near‐coast northward counter currents, and
local submesoscale eddies with 5–25 km diameter. Some-
times this mean flow veers westward or southwestward. The
RMS ellipses of total surface currents partly reflects the

influence of coastline boundary, less variance nearshore and
more offshore, and are aligned with this typical surface
circulation pattern (A in Figure 5). In addition, the weak
variance at the edge of the domain can be attributed to a low
signal‐to‐noise ratio (SNR).
[24] The purely tide‐coherent surface currents reflect the

surface current components driven by K1 and M2 tides. They

Figure 4. An example of a set of time series of local winds and decomposed surface currents at the
location A in Figure 1. (top) Local winds at the SIO (W1) and TJR (W2) stations. (bottom) Total
surface currents (u, A), surface currents coherent with pure tides (uT, B), locally wind‐driven surface
currents (uW, C), surface currents in the low‐frequency band (ubL, D), surface currents in the semidiurnal
frequency band (ubD, E), surface currents in the semidiurnal frequency band (ubS, F), and residual surface
currents (uR, G).

Table 2. Variance Fraction (%) of the Decomposed Surface
Currents

Pure Tides Wind Mean Low Diurnal Semidiurnal Residual

6.3 29.8 8.9 29.1 8.2 3.7 14.0
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have high RMS in the west of Point Loma and along the
Coronado Bank as shown in tidal ellipses at K1 and M2
frequencies (B in Figure 5 and Figure C1). Surface current
observations using HFR, averaged over upper O(1) m, can
contain both barotropic and baroclinic tidal components, but
those components can perhaps be distinguished by varia-
tions in their spatial structure. Considering the phase of tidal
ellipses (Figure C1), the K1 and M2 tide‐coherent surface
currents are considered as barotropic and baroclinic com-
ponents, respectively. For example, the surface currents at
the M2 frequency present a polarization front composed of

clockwise and counterclockwise ellipses in the northwest
and southeast areas of the domain, respectively (see Kim et
al. (manuscript in preparation, 2010) for more details). This
oppositely rotating surface circulation is robust in space and
persistent in time with subtidal fluctuations due to back-
ground flows. This surface circulation is partly driven by
mass conservation in the coastal region according to the M2
surface tide. The phase of M2 surface currents exhibits
onshore and offshore propagation from near Coronado
Bank. In this area, the bottom slope indicates shoreward‐
propagating M2 internal tides, and barotropic nearshore tidal

Figure 5. RMS ellipses of decomposed surface currents (cm s−1). See Figure 4 for the notation of
decomposed surface currents. Two artifacts at SDBP (287°T, arrow a) and SDCI (325°T, arrow b) are
indicated (see G).
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models [e.g., Spargo et al., 2004] expect 2–3 times stronger
baroclinic M2 currents than barotropic currents. Moreover,
subsurface current and temperature profiles observed at a
local mooring support the shoreward propagating M2 inter-
nal tides. In addition, the polarized M2 front has been re-
ported in several coastal regions, where M2 internal tides
have been observed off Oregon [e.g., Erofeeva et al., 2003],
off Bodega Bay [e.g., Kaplan et al., 2005], off San Fran-
cisco Bay [e.g., Gough et al., 2010], Monterey Bay [e.g.,
Paduan and Cook, 1997; Rosenfeld et al., 2009], and Ha-
waii [e.g., Lumpkin, 1995; Zaron et al., 2009].
[25] The wind regression analysis (section 3.2) allows us

to estimate the fraction of variance of surface currents ex-
plained by local winds, i.e., wind skill. The locally wind‐
driven surface currents at low‐frequency (∣w ∣ ≤ 0.4 cpd)
account for over 70% of the estimated wind skill (see Kim

et al. [2010] for more details). The wind skill map shows
the skill decreasing with distance from the TJR wind station,
ranging from (∼0.5) nearby to (∼0.25) offshore, similar to
the RMS ellipses (C in Figure 5). In addition, the time mean
of locally wind‐driven surface currents has a spatial gradient
from strong currents (7–10 cm s−1) in the center of domain
to relatively weak currents 1–5 cm s−1 offshore and near-
shore (e.g., near SDB mouth). This heightened RMS dis-
tribution partly results from local geostrophic balance
between sea level pressure gradients against the coast and
currents [e.g., Ponte, 2010; Kim et al., 2010].
[26] The RMS ellipses of low‐frequency components

more clearly show the directional preference parallel to the
coast (north‐south direction) than other current components
(D in Figure 5). The low‐frequency variability can be
interpreted in the context of other in situ observations:

Figure 5. (continued)
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Subsurface currents at a local mooring within the study
domain have oscillations with time scales of several days to
weeks in the alongshore direction [e.g., Kim, 2010]. More-
over, alongshore surface currents off the USWC contain
poleward propagating signals of about 2–3 weeks time
scale. Low‐frequency circulation off southern San Diego
shows alternating eastward and southward surface currents
approaching to Point Loma. Eastward flow slows down near
the coast (Point Loma) and southward flow slides over the
headland. Those flows are visible in the RMS ellipse and
generate strong horizontal shear, partly related to the gen-
eration of submesoscale eddies [Kim, 2010].
[27] The enhanced variance of surface currents in the

diurnal and semidiurnal frequency bands (Figure 2) suggests
nonlinear interactions of tides with low‐frequency energy.
The polarization of diurnal band surface currents tends to be
more clockwise as opposed to the spread polarization of
semidiurnal surface currents due to mixture of clockwise
and counterclockwise rotations (Kim et al., manuscript in
preparation, 2010). Thus, diurnal band surface currents have
more circular motion rather than elliptical motions, and their
amplitudes tend to be limited by the coast (E in Figure 5 and
Figure C1a). On the other hand, the semidiurnal surface
currents are more elliptical and baroclinic than diurnal sur-
face currents, similar to the spatial pattern of M2 ellipses
(F in Figure 5 and Figure C1b).
[28] The residual surface currents indicate higher RMS at

the edge of the domain, behind Coronado Islands, and on
baselines between radar sites (G in Figure 5). Along with
those, there are artifacts in radial velocity maps due to sharp
changes in the measured beam pattern of stations SDBP
(287°T, arrow a) and SDCI (235°T, arrow b) (G in Figure 5)
[see also Kim et al., 2007; Kim, 2010]. The sharp change in
the measured beam pattern causes an ambiguity in the
bearing solution calculated from the MUSIC algorithm [e.g.,
de Paolo and Terrill, 2007]. The other one is seen along an
azimuth about 325 degrees clockwise from true north of the

SDCI site. The MUSIC solutions were concentrated along
this radial, which led to ambiguity in the current field. This
occurred at the edge of a gap in the measured beam pattern
and has been investigated. These artifacts are most visible in
the curl and divergence of the current field, the spatial
coherence map with other in situ observations (not shown),
and the residual current field (G in Figure 5). They affect
less than 10% of the total grid points, so the spatially
averaged covariance estimates are little changed.
4.1.2. Temporal Variation
[29] The monthly RMS time series of total surface cur-

rents (A in Figure 6) show a seasonal pattern as strong in
summer (April–September) and weak in winter (October–
March). This seasonality appears mainly in the surface
currents in the low‐frequency and diurnal frequency bands
and locally wind‐driven surface currents (C–E in Figure 6).
Because seasonal and diurnal stratifications as well as sea-
sonal wind forcing are dominant terms to contribute the
temporal variation of the current variance.
[30] The purely tide‐coherent surface currents (B in

Figure 6) have semiannual beat due to K1 and P1 tidal
constituents (Table 1). While signals of spring‐neap (dif-
ference of M2 and S2 frequencies) and lunar fortnightly
(difference of K1 and O1 frequencies) tides exist within this
current component, they are smeared by the monthly mean.
[31] The locally wind‐driven surface currents reflect the

RMS of local winds (C and W in Figure 6). As local winds
off southern San Diego have a seasonality with an opposite
sense of total surface currents, strong in winter and weak in
summer, the wind‐driven surface currents are approximately
out of phase with a typical seasonality in this region.
Moreover, the current responses due to the diurnal wind
(e.g., diurnal jets) are not visible because they are rela-
tively less dominant compared with low‐frequency variance
of the wind‐driven currents (see Kim et al. [2010] for more
details).

Figure 6. Temporal variation of the RMS of decomposed surface currents (cm s−1) and TJR and SIO
winds (W, m s−1). The summer and winter indicate April–September and October–March, respectively.
See Figure 4 for the notation of decomposed surface currents.
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4.2. Structure of Decomposed Surface Currents
[32] The correlation function and the approximate spatial

structure of the mesoscale and submesoscale currents are
presented with Gaussian or exponential functions to mirror
underlying physics and variability [e.g., Chereskin and
Trunnell, 1996; Peters et al., 2002; Paduan and Shulman,
2004; Kim et al., 2007; Willis and Fu, 2008]. Large‐scale
variability, including geostrophic and barotropic motions
are expected to show more Gaussian shapes, compared to
exponential shapes expected for smaller‐scale processes
(e.g., submesoscale and turbulence) [e.g., Townsend, 1980;
Denman and Freeland, 1985; Chereskin and Trunnell, 1996;
Wilkin et al., 2002].
4.2.1. Averaged Spatial Correlation
[33] The spatially averaged correlation coefficients are

presented as plan views in the spatial lag space (Dx, Dy) for
each decomposed component (Figure 7, see Kim [2009] for
three‐dimensional structures). Three correlation terms of
each decomposed component are shown as two diagonal
terms for u components (#uu, Figure 7a) and v components
(#vv, Figure 7b) and the off‐diagonal term for u and v com-
ponents (#uv, Figure 7c). The mean component is not con-
sidered here because it has only a single realization. The
orientation of two diagonal terms (#uu and #vv) is computed as
the tilt of the major axis in a counterclockwise sense from the
positive Dy axis (Table 3). Vertical sections through the
correlation along this direction and the perpendicular are
shown to more easily compare the correlation function of
each component in the cocentered space and to quantify the
decorrelation length scales in spite of their spatial complexity
(Figure 8). The off‐diagonal terms vary within ±0.25 with
complicated shapes and do not lend themselves to simple
functional descriptions (Figure 7c). However, since they are
not completely zero, some dependency between u and v is
likely. Note that #uv and #vu are not identical but mirrored in
the Dx and Dy axes.
[34] The total surface currents (A in Figure 7) have the

superposed structure of all decomposed components (B–G
in Figure 7), which is slightly different from the spatial
correlations presented previously [Kim et al., 2007, Figure
12] due to the difference in the method used to extract the
vector current from radial velocities: optimal interpolation
now versus unweighted least‐squares fitting then [Kim et al.,
2008]. The optimally interpolated surface currents have less
noise and are smoother (see Appendix B for more details).
As a result, the averaged spatial structure computed here is
somewhat smoother than before, but its shape and decorr-
elation length scales are nearly the same. The assumed OI
decorrelation scale (2 km in x and y directions) is much
smaller than the scales in the spatially averaged correlation
function for all decomposed surface currents, so it is not
expected to influence the estimate of surface current scales.
Although OI estimates are biased toward zero due to the
prior assumption on the model variance and error variance,
there is no significant variance reduction compared to the
previous results.
[35] The purely tide‐coherent surface currents have broad

spatial structure in the center and complicated features near
the edge of the domain (B in Figure 7) presumably owing to
the large scale of the barotropic tidal forcing and the bar-
oclinic tides having relatively smaller‐scale spatial structure,

respectively. In addition, the baroclinic tide‐coherent sur-
face currents have local variability when they are considered
in the context of the USWC‐wide barotropic tides.
[36] The locally wind‐driven surface currents have the

most broad spatial structure in the x and y directions of all
the components (C in Figure 7), because wind‐driven sur-
face circulation in low frequency does not vary that much in
the study domain. On the other hand, the limitation of
available wind observations can be one reason. As winds at
only two stations are used, the given analysis assumes the
same winds forced surface currents on all grid points in the
domain.
[37] The spatial structure of low‐frequency band surface

currents has clear directional orientation (D in Figure 7):
u and v are highly correlated in the x and y directions,
respectively, which implies the influence of the cross‐shore
and alongshore pressure gradients. Those pressure gradients
are associated with the setups of the wind‐driven sea ele-
vation at low frequency against and along the coast,
respectively [e.g., Kim et al., 2010].
[38] The remaining surface current components have rel-

atively small spatial scale variability. As described in E in
Figure 5, the diurnal band surface currents have the most
circular variance ellipses of all current components. This
produces nearly identical correlation functions for u and v
(E in Figures 7a and 7b), which have similar decorrelation
length scale and orientation in both directions. The semi-
diurnal band surface currents have a localized structure with
small ridges between 0.2 and 0.4 (F in Figure 7), which
possibly are due to baroclinic tidal currents. Although the
purely tide‐coherent surface currents are removed, the bar-
oclinic components still remain as enhanced variance in the
tidal bands. The decorrelation length scale of the residual
surface currents is the smallest of all components (G in
Figure 7 and Figure 8). Since the barotropic and baroclinic
currents are driven by surface pressure gradients and the
tide‐topographic interaction along with the stratification in
the interior, respectively, they differ in the characteristics of
the spatial scale as shown (B and F in Figure 7).
4.2.2. Decorrelation Length Scales
[39] The spatial correlation functions of individual surface

current components are relevant to the development of
mapping or assimilation technique for numerical ocean
models, which often assume Gaussian correlation functions
for lack of information. The correlation function estimated
here appear to be Gaussian, exponential structures, or
combination of the two, with different decorrelation length
scales depending on underlying physics (section 4.1.1). The
correlation functions of purely tide‐coherent surface cur-
rents and locally wind‐driven surface currents appear to be
more Gaussian than exponential (B and C in Figure 7). The
other correlation functions are likely to be more exponential
in shape, or perhaps large‐scale Gaussian with a small‐scale
exponential superposed (D–F in Figure 7). The one‐
dimensional correlation functions in the major and minor
axes show these shapes more clearly (Figure 8). Since the
correlation functions have the superposed shapes, using
function fits to estimate the decorrelation scales may not
work as well as for the total currents, which appeared more
purely exponential [Kim et al., 2007]. The decorrelation
length scales of decomposed surface currents can be ordered
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Figure 7

KIM ET AL.: SPATIAL STRUCTURES OF SURFACE CURRENTS C12007C12007

12 of 18



in terms of the correlation in the major axis for u (Figures 8a
and 8b) as

$W > $T > $bD ' $ > $bL > $bS > $R ð10Þ

and v (Figures 8c and 8d) as

$W > $T > $bL ' $ > $bD > $bS > $R; ð11Þ

where the subscript in l{·} indicates each component.

[40] The length scale of total surface currents (l) is
approximately the median value, consistent with the aver-
age of the length scale of individual surface current com-
ponents. The switch between $bL and $bD for u and v
components, respectively, may imply the dominance of
alongshore and cross‐shore current variability. The order
of length scales in the major axis is consistent for u and v

Figure 7. Spatially averaged correlations of decomposed surface currents are presented as plan views of three components:
(a) u components (#uu), (b) v components (#vv), and (c) u and v components (#uv). In the diagonal terms (#uu and #vv), thick
black contours present at 0.2, 0.4, 0.6, and 0.8 with 0.05 spacing with the gray contour. In the off‐diagonal term (#uv), the
dashed, solid, and dash‐dotted contours indicate the negative, positive, and zero correlations, respectively. See Figure 4 for
the notation of decomposed surface currents.

Figure 7. (continued)
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(Figures 8a and 8c) unlike those for the minor axis
(Figures 8b and 8d).

5. Discussion and Conclusion

[41] Surface currents measured by shore‐based high‐fre-
quency radars (HFRs) are decomposed into several current
components according to their driving forces and interac-
tions of current responses: pure tides, local winds, cuspate
tidal bands centered at the diurnal (K1) and semidiurnal (M2)

frequencies, the low‐frequency band (less than 0.4 cpd), and
residual components. Harmonic analysis for tides, wind
regression, and weighted least‐squares fit for three colored
signals are designed to make use of knowledge of both
physical forcing mechanisms and statistics of in situ ob-
servations and to treat missing data appropriately. As an
extend of this analysis, the given decomposition technique by
physical driving forces is also applicable to radial velocities
measured by the individual radar.
[42] The purely tide‐coherent surface currents contain

barotropic and baroclinic components. Their magnitude and
phase allow us to distinguish two components. The M2 tidal
ellipses show the phase propagation onshore and offshore
and elevated RMS over continental shelf break region,
consistent with M2 internal tides reported in other in situ
observations. This suggests that the HFR be used as a
potential tool to identify the surface features modulated by
internal tides or baroclinic motions in coastal regions.
[43] The locally wind‐driven surface currents are com-

puted from the impulse response function between shore
station winds and detided surface currents allowing for

Figure 8. Spatially averaged correlations of decomposed surface currents at the (a and c) major axis and
(b and d) minor axis: #uu (Figures 8a and 8b) and #vv (Figures 8c and 8d). See Figure 4 for the notation of
decomposed surface currents.

Table 3. Potation Angle (deg) of the Spatially Averaged Correla-
tions of Decomposed Surface Currents is Calculated as the Tilt of
the Major Axis in a Counterclockwise Sense From the Positive Dy
Axisa

Total Pure Tides Wind Low Diurnal Semidiurnal Residual

#uu 48.2 26.5 31.7 80.0 14.7 13.9 22.6
#vv 2.5 85.2 5.2 2.2 51.0 64.2 50.0

aSee Figure 7.
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anisotropic response. The approach using transfer function
and response function quantifies the statistical relationship
between wind and surface currents and relates to dynamics of
wind‐driven surface circulation. For example, the local pres-
sure set up against the coast due to local winds is balancedwith
currents as local geostrophic balance, presented as increased
amplitude of transfer function [e.g., Kim et al., 2010]. A
seasonality imposed on surface currents is not explicitly par-
titioned as a forcing term, however, the seasonal wind transfer
function and local CTD cast data show seasonality [e.g., Kim
et al., 2010].
[44] The decomposed surface currents show distinct spa-

tial structure and decorrelation length scales. The spatially
averaged correlations exhibit both Gaussian and exponential
shapes depending on the source of the variability and the
geophysical influence, especially coastline and bottom
bathymetry. The orientation of correlation function also re-
flects these influences.
[45] The results of decomposing the surface currents can

serve as building blocks for a statistical model of the surface
currents for gap filling and forecasting. Near‐future currents
coherent with pure tides can be computed from the estimated
Fourier coefficients, and the locally wind‐driven currents
may have some predictability from the (anisotropic) response
function driven by atmospheric forecasts. The surface current
components in the three frequency bands have predictability
according to their decorrelation times, but a dynamical model
may be needed to optimize forecasts, for instance, low‐fre-
quency currents could be estimated from forecasts of large‐
scale wind and atmospheric pressure.

Appendix A: Notes on Spectral Analysis
A1. Estimates of Spectral Contents

[46] Spectral analysis, such as rotary power spectra and
coherence, can help to identify dominant modes of vari-

ability in the observations and relationships between driving
forces and surface current response. The power spectrum
can be calculated from either the Fourier transform of the
time lag covariance (Wiener‐Khinchin theorem) or squared
coefficients of the windowed Fourier transform of the time
series [e.g., Priestley, 1981; Cohen, 1992, 1998; von Storch
and Zwiers, 1999]. Both approaches are comparable and
produce similar estimates of the dominant bands of variance
in the data. Typically the Fourier transform of the time series
requires complete data which is sometimes made using
interpolation methods such as objective analysis to fill in the
missing data. In this paper, the missing points in the time
series are filled by zeros before the transform and taper
functions are not used. In our data set, the fraction of
missing points is generally small (less than 8%) and ex-
periments show that zero filling slightly increases the noise
level at the highest frequencies, but the identification of the
dominant variability is robust. Least‐squares harmonic
analysis (as opposed to power spectrum estimation) was
used in the band‐pass filtering (section 3.3) of the time
series with missing data instead of filling zeros in order to
avoid contamination of the high‐frequency band. For the
power spectra, taper (window) functions were tested to see
whether the spreading due to sidelobes affected the final
spectral estimate, but no significant change in the power
spectrum was observed. For example, the cuspate peaks near
the diurnal and semidiurnal tides and wind are not affected
by sidelobe spreading.
[47] The number of degrees of freedom (DOF, 2N) in the

spectral analysis is determined by a trade‐off between the
frequency resolution and confidence level of estimates. In
other words, as the DOF increases, the frequency resolution
of the estimates coarsens while the error bars decrease. A
single time series is broken into N nonoverlapped time series
with identical record lengths, and the spectral analyses for

Figure C1. Tidal ellipses of surface currents estimated using the harmonic analysis at (a) K1 and (b) M2
frequencies. The blue and red ellipses represent clockwise and counterclockwise rotations, respectively.
The black line within an ellipse indicates the phase. The units of the major and minor axes are cm s−1.
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the individual segments are averaged. For the single wind
time series, N is chosen to be 50 to resolve the diurnal
peak and its harmonics of the wind (section 2.2 and
Figure 3).
[48] The number of spatial DOF for surface current time

series at 1337 grid points used in this study is calcu-
lated as three based on the moment matching method
(Figures 1 and 2). Estimates of the DOF of spatially
correlated time series have been discussed [e.g.,
Bretherton et al., 1999].
[49] The coherence (g2) reported in this study is referred

as to

%2 !ð Þ ¼ 1
N

XN

n¼1

js12 !ð Þj2

s11 !ð Þs22 !ð Þ

 !

n

; ðA1Þ

where s11(w) and s22(w) are the cospectrum of each sub-
sampled datum, and s12(w) is the cross spectrum of them. The
confidence intervals of the coherence, phase, and power
spectrum are considered [e.g., Priestley, 1981; von Storch
and Zwiers, 1999].

A2. Variance Conservation in the Extended Spectral
Analysis

[50] A time series (d) can be regressed using the explicit
basis of the sine and cosine functions (G) on the discrete
frequency domain

d ¼ Gm; ðA2Þ

d tð Þ ¼ a0 þ
XN

n¼1

an cos!nt þ bn sin!nt

¼ a0 þ
1
2

XN

n¼1

an % ibnð Þei!nt þ an þ ibnð Þe%i!nt; ðA3Þ

where an and bn are the model coefficients (an and bn 2 R).
m = [a1 & & & an b1 & & & bn]†. On the other hand, the discrete
Fourier transform can decompose the time series (d) into

d ¼ Gm̂; ðA4Þ

d tð Þ ¼
XN

m¼%N

d̂mei!mt

¼
XN

m¼%N

âm þ ib̂m
! "

ei!mt ; ðA5Þ

where âm and b̂m are Fourier coefficients (âm and b̂m 2 R,
d̂m 2 C, m ≠ 0). The variance conservation of two approaches
in the frequency domain is

hd tð Þ2i ¼ 1
2
trace hmmyi

! "
¼ trace hm̂m̂yi

! "
; ðA6Þ

where † denotes the (complex conjugate) transpose.

A3. Relationship of Slow Least‐Squares Fitting and
Discrete Fourier Transform

[51] The slow least‐squares fitting is converted the regular
expression of the spectral analysis [e.g., Gonella, 1972;
Mooers, 1973]. The data (d) is represented with

d tð Þ ¼ u tð Þ þ iv tð Þ ¼ 1
2

XN

n¼1

!nei!nt þ "ne%i!nt; ðA7Þ

where an and bn are the coefficients in counterclockwise
and clockwise rotations, respectively

!n ¼ an þ dnð Þ þ i %bn þ cnð Þ; ðA8Þ

"n ¼ an % dnð Þ þ i bn þ cnð Þ; ðA9Þ

u tð Þ ¼
XN

n¼1

an cos!nt þ bn sin!nt

¼ 1
2

XN

n¼1

an % ibnð Þei!nt þ an þ ibnð Þe%i!nt; ðA10Þ

and

v tð Þ ¼
XN

n¼1

cn cos!nt þ dn sin!nt

¼ 1
2

XN

n¼1

cn % idnð Þei!nt þ cn þ idnð Þe%i!nt: ðA11Þ

Appendix B: Optimally Interpolated Surface
Currents

[52] The surface currents are optimally interpolated from
radial velocities using an isotropic exponential correlation
function with a decorrelation length scale of 2 km in both x
and y directions (l0 = 2 km). The normalized uncertainty (c)
defined as the ratio of the uncertainty variance of the esti-
mate to the current variance is used to indicate how certain
(c → 0) or uncertain (c → 1) the estimate is. In this study,
the threshold of the normalized uncertainty is set to 0.95 in
order to exclude estimates with high uncertainty both near
the edge of the study domain and baselines, which are about
8% of the total data. Although the chosen threshold (c =
0.95) is higher than used elsewhere in the literature, the
uncertainty estimate is high because of the short exponential
covariance used in the map, which does not reflect an
optimal estimate using observed covariances. In any case, it
was sufficient to exclude meaningless estimates, and the
analysis and results were not sensitive to this choice. Since
OI is a spatial smoothing filter, the smoothness of the cur-
rent map depends on the correlation function and its dec-
orrelation length scale. If a large‐scale correlation function
was used to map the data, the resulting fields would be
smooth, and small‐scale features would be lost. The chosen
decorrelation length scale (l0 = 2 km) in this study allows us
to preserve most variability and dynamic features, while
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avoiding spurious estimates, and lowers the noise level
compared with estimates using an unweighted least‐squares
fit. More discussion of the OI technique as used here is
addressed by Kim et al. [2008].

Appendix C: Tidal Ellipses

[53] The purely tide‐coherent surface currents are pre-
sented as tidal ellipses at K1 and M2 frequencies in Figures
C1a and C1b, respectively.
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