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A Global Optimal Solution With Higher Order
Continuity for the Estimation of Surface

Velocity From Infrared Images
Wei Chen

Abstract—A global optimal solution (GOS) provides surface
velocities from Advanced Very High Resolution Radiometer
(AVHRR) remote image sequences using bilinear interpolation
algorithms. Although an accurate velocity field can be estimated
by GOS from a sequence of infrared images, the field has only
first-order continuity. Because an actual coastal ocean has a com-
plex irregular coastland and some ocean studies need vorticity and
divergence analysis, which must be extracted from the velocity
field, the development of generic GOS algorithms with higher
order continuity and smoothed cutouts around these edges is
very important. This paper addresses the issues of higher order
continuity and smoothed cutouts around coastland edges for using
GOS to estimate surface velocities. GOS bilinear polynomials,
previously applied to square tiles with first-order continuity, are
replaced by surface B-spline functions. The new GOS algorithms
can be applied to AVHRR images containing complicated coastal
land boundaries, even clouds, to yield smooth velocity fields next
to land and higher order continuity velocity fields. The velocity
fields obtained through the applications of the first- and higher
order GOS techniques to a sequence of two National Oceanic
Atmospheric Administration AVHRR images, which were taken
from the New York Bight fields, are compared with those mea-
sured with the CODAR array. The retrieved velocity fields are
used directly to calculate the surface divergence and vorticity. It
is found that the angular and magnitude errors of the velocity by
the first- and third-order GOSs are quite close for both numerical
model data and AVHRR image sequences, and the velocity field
estimated by the third-order GOS is globally smoothed.

Index Terms—Global optimal solution (GOS), infrared images,
inverse model, motion estimation, velocity estimation.

I. INTRODUCTION

ACCURATELY estimating ocean currents at geophysical
scales is a formidable task, requiring high-fidelity spatial

and temporal observations. Satellite-based methods have the
potential for providing this information, and methods for esti-
mating surface currents from the advection of features observed
in sequential satellite images of large-scale oceanic flows have
been sought for more than 20 years. A variety of methods
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are available for surface current estimation from sequential
imagery. At present, we are concerned with the inversion of a
heat equation to obtain the velocity field at the ocean surface.

Since the introduction of the seminal works by Kelly [1] and
Kelly and Strub [2], the inverse technique has been employed
and developed in several papers. For example, it has been em-
ployed to infer the properties of the ocean surface mixed layer.
Ostrovskii and Piterbarg [3], [4] invert an advection–diffusion
equation for the upper ocean mixed layer in different areas of
the Pacific Ocean for velocity, as well as vertical mixed-layer
entrainment velocity and horizontal diffusivity. Using model-
generated data, Vigan et al. [5], [6] demonstrate the utility of
the method for the Brazil–Malvinas confluence region, while
Zavialov et al. [7] have performed a similar calculation for the
same region using sea-surface temperature (SST) data mapped
from in situ measurements. Recently, there have been some
different conceptual approaches in estimating geophysical flow
[8]. Marcello et al. [9] performed evaluation and detailed stud-
ies of popular motion estimation techniques in the computer-
vision field applying to applications of remote sensing.

The global optimal solution (GOS) of Chen et al. [10] pro-
vides surface velocities from Advanced Very High Resolution
Radiometer (AVHRR) remote image sequences. They find that
the verifiable accuracy obtained is much better than the pre-
viously reported for several reasons. First, they do not impose
the constraints used in the inverse method of Chen et al. [10].
Second, they do not smooth the data but remove only broad-
area trends. All of the finer scale surface isotherm structures
are thus retained, and these structures provide unambiguous
features for tracking and inversion. To solve velocities with the
GOS method, an unmasked domain of an image sequence has
been divided into many smaller subdomains or “tiles.” If a tile
contains any land or cloud contamination, that tile is discarded,
so that the resulting near-shore coverage is jagged. Since the
velocity was expanded by first-order continuity surface polyno-
mials, it is difficult to calculate vorticity and divergence based
on the estimated velocity field by the first-order GOS without
preprocessing.

This paper addresses the issues of higher order continuity
and smoothed cutouts around coastland edges for using GOS
to estimate surface velocities. GOS bilinear polynomials, pre-
viously applied to square tiles with first-order continuity, are
replaced by surface B-spline functions [13]. The degree of the
continuity is determined by the user; thus, the GOS meth-
ods can handle complicated unmasked areas, which contain
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shorelines or clouds. These pixel subsets are melded into a
single high-order continuous velocity field for the entire image
scene. The velocity is thus globally valid and is chosen as an
optimal solution to the heat equation. The vertical entrainment
and diffusive effects are grouped into a single function of the
horizontal spatial variables and solved for this field and velocity
simultaneously to yield a GOS. In addition, the number of
control points in the B-spline functions on the whole unmasked
scene is chosen so that the problem is a determinate one without
additional constraints on the velocity field. The fidelity of the
solutions is evaluated by comparing it with the output of a 3-D
nonhydrostatic numerical ocean model.

This paper is organized as follows. In Section II, the model
and associated algorithms are described. Section III deals with
the validation of the technique by deriving velocity from syn-
thetic tracer motion within a numerical ocean model and de-
tailed statistical comparisons among the current fields obtained
by the previous first-order GOS and this high-order GOS. The
utility of the results is demonstrated in Section IV, where the
GOS technique is applied to two AVHRR image pairs from
the North Atlantic Ocean. Conclusions are drawn in Section V.

II. TRACER CONSERVATION EQUATION

A. Tracer Conservation Equation

The heat flow of an image sequence is a set of vector fields,
relating each image to the next. Each vector field represents
the apparent displacement of each pixel from image to image.
The evolution of temperature field in a 2-D surface of ocean is
governed by the heat equation [1], [10]

Tt + uTx + νTy = s (1)

where u and ν are the heat flow components in the x- and y-
directions for a displacement and Tx, Ty , and Tt are the partial
derivatives of the temperature T = T (x, y, t) with regard to the
x- and y-coordinates and time t. The heat flow vector is defined
by v = (u(x, y, t), v(x, y, t)). The variable s = s(x, y, t) is a
source term containing the effects of air–sea interaction and
turbulent processes within the mixed layer (see, e.g., [10]).
Here, we have three unknowns in only one equation; thus, the
problem is ill posed, and extra constraints must be imposed in
order to arrive at a solution.

B. Expansions of Velocity Field and Source

The temporal and spatial derivatives of the temperature flow
fields in (1) can be calculated from the temperature flow fields
on the image sequence. The problem is underdetermined, how-
ever, because three unknowns u, ν, and s must be derived from
a single heat equation (1) at each of these pixel points.

This new approach is to expand the velocity fields and source
terms {u(x, y), ν(x, y), s(x, y)} as 2-D B-spline functions [13]
on the whole image scene

{u(x, y), ν(x, y), s(x, y)}

=
Ncx∑

p=0

Ncy∑

q=0

{cpupq, cpνpq, cpspq}Npn(x)Nqn(y) (2)

where {cpuij , cpνij , cpsij}, n, Ncx + 1, Ncy + 1, Npn(x),
and Nqn(y) are the control points for each {u, ν, s}, the order
of B-splines, the number of control points on the x- and y-
directions, and blending functions, respectively. The total num-
ber of control points, which is also the total number of unknown
parameters for all components in (2) for all image pixels, is
given by

Ncp = 3(Ncx + 1)(Ncy + 1). (3)

Substituting (2) into (1), we found

Tt(x, y) =
Ncx∑

p=0

Ncy∑

q=0

[cpspq − cpupqTx(x, y)

− cpνpqTy(x, y)] Npn(x)Nqn(y) (4)

where p and q are the control point indices. To easily deal with
the math problem and the next step discussion, we introduce a
single index mapping function α by

α = α(k, p, q) = 1+k+Nc (p+q(Ncx + 1))
∀ (p ∈ {0, 1,. . ., Ncx}, q ∈ {0, 1,. . ., Ncy},

k ∈ {0, 1,. . ., Nc}) (5)

where Nc = 3 or 2 (if we ignore the source term) and α ∈
{1, 2, . . . , Ncp}. Introducing a new parameter aα with a single
index α, we have

aα =






cpupq, (k = 0, 0 ≤ p ≤ Ncx, 0 ≤ q ≤ Ncy)
cpνpq, (k = 1, 0 ≤ p ≤ Ncx, 0 ≤ q ≤ Ncy)
cpspq, (k = 2, 0 ≤ p ≤ Ncx, 0 ≤ q ≤ Ncy)

and a new extended blending function is also defined by

Bα(x, y) =






−Tx(x, y)Npn(x)Nqn(y), (k = 0)
−Ty(x, y)Npn(x)Nqn(y), (k = 1)
Npn(x)Nqn(y), (k = 2).

Then, we can rewrite (4) in a more compact form that is
suitable for incorporation into the formalism described in the
next section as

Tt(x, y, t) =
Ncp∑

α=1

aα(t)Bα(x, y). (6)

Now, we can solve the aforementioned system of equations
to find the solution of the heat equations on the image sequence,
if the total number of unknown parameters aα is exactly equal
to the total number of pixels. A flexible treatment of the prob-
lem is that which seeks a solution with adjustable parameters
(the number of unknown parameters) to obtain an optimized
solution.

C. GOS

A chi-squared function expresses the error in fitting a set of
aα to the data; it is defined by

χ2 =
N∑

i=1



∆Ti

∆t
−

Ncp∑

α=1

aαBα,i




2
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where N = NxNy is the total number of pixels and Bα,i =
Bα(x, y)∀ (i = x + (y − 1)Nx).

A GOS can be obtained by minimizing χ2 with respect to
aα. This minimization procedure is a linear regression problem,
which results in the following linear system of equations for the
matrix a(≡ aα):

a = L−1b (7)

where

Lαβ =
1
N

N∑

i=1

Bα,iBβ,i bα =
1
N

N∑

i=1

Bα,i
∆Ti

∆t
. (8)

L is an Ncp × Ncp correlation matrix between Bα,i and
Bβ,i, and b is an Ncp-dimensional correlation vector between
Bα,i and ∆Ti/∆t. Since Ncp is dependent on the number of
pixels for a particular image sequence, a selected number of
control points Ncp will normally be on the order of hundreds
to thousands. The heat equation thus becomes a global linear
optimization problem, and velocity fields and source terms can
be computed over the whole image by (2). We can adjust the
order of B-spline function to control the order of continuity
for the vector field and also the number of control points of
the B-spline function to get from high to low resolutions of the
structures for the velocity field.

D. Computing Algorithms

To solve the system of equations (7), we must calculate a
correlation matrix L first. Using the index mapping function
defined in (5), this correlation matrix is a band diagonal, and
the width of the band depends on the Ncx, Ncy , and the order
of B-spline function. If we consider the nonzero terms in the
matrix L that is only related to the neighborhood points of
the spatial mapping position of the index α, then a refining
designed program for the calculation of the correlation (8) can
greatly accelerate the computation speed. Let us define the
neighborhood points of the spatial mapping position of the
index α within an unmasked image region Ω = Ω(α); then,
the correlation matrix L defined in (8) can be modified by

Lαβ =
1
N

∑

i∈Ω

Bα,iBβ,i. (9)

Once matrix L is obtained, the positive definite band-diagonal
matrix can be solved by a regular linear subroutine.

An example of a realistic AVHRR image with a masked
region and selected control points is shown in Fig. 1. The solid
red dots are used to indicate the positions of the control points,
and the summation index i in (9) goes over all unmasked pixels
(within the Ω region), as shown in Fig. 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS

The performance of GOS with first-order continuity test
and applications has been demonstrated in the paper by
Chen et al. [10]. To assess the ability of the present method to
obtain surface velocities, we still use the solution of a numerical

Fig. 1. Example of masked AVHRR image with the positions of control points
labeled by solid red dots.

model as a benchmark and introduce a surface tracer field as
an initial condition. The angular and magnitude measures of
error are introduced in this paper, and the mean values of these
errors are applied to evaluate the performance of the velocity
estimations.

A. Numerical Model

A simulated flow field and its advection of SST are obtained
by solving 3-D nonlinear fluid dynamical equations and the
equation for the tracer (or temperature). For the purposes here,
the temperature T is treated simply as a passive tracer with a
weak diffusivity added for numerical stability (see [10]).

The inversion of the simulated SST for surface flow is
performed using the nth-order GOS method for a range of
control points. The number of pixels between two control points
is defined by N − 1. In terms of the number of control points,
the smallest array size tested has the dimension of N = 8 points
on each side (see Fig. 1), and the largest one has 20. In the
calculations reported here, only the cubic B-spline function
(n = 4) in (3) is used. Therefore, the order of continuity of
the velocity fields estimated by the GOS is equal to three.
The benchmark velocity vectors given by the numerical model
are shown in Fig. 2(a), and for comparison, vectors estimated
by the third-order GOS with B-spline functions are shown in
Fig. 2(b). The number of pixels between two control points used
to obtain this GOS result is N = 11 grid points wide on each
side. The false-color presentation of images in the background
is the tracer field (or simulated SST) with scales ranging from
0 to 50 km in horizontal and vertical, which, by the time from
18 to 20 h, has been deformed by the currents and is sig-
nificantly different from its original sin(2πx/L) sin(2πy/L)
square cell shape.

The two velocity vector fields in Fig. 2 are mutually similar,
with each showing a distribution of eddies having diameters on
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Fig. 2. Velocity fields: (a) and (b) Averages of the modeled velocity fields generated by the model at time t1 = 18 h and t2 = 20 h. (b) Estimated vector fields
obtained from the third-order GOS between t1 and t2.

the order of 15 km and more gently curved tendril structures
with larger radii of curvature. There are three prominent eddies
in the modeled tracer field [Fig. 2(a)], with centers located
at ∼(5 km, 5 km), (36 km, 5 km), and (21 km, 40 km).
The third-order GOS results [Fig. 2(b)] capture these features
qualitatively well and represent them as well-defined vortices.
Two examples of this are the jets of fluid exiting the left edge of
the box at y ≈ 25 km and the one at the upper right-hand corner.

The velocity fields with two components u and ν generated
by a numerical ocean model at time t1 = 18 h and t2 = 20 h
and estimated by the first- and third-order GOSs are displayed
as images, as shown in Fig. 3. The velocity field images (c) and
(f) are estimated by the third-order GOS and demonstrate that
the fields with higher order continuity are obviously compara-
ble to the fields estimated by the first-order GOS.

B. Error Measurement

The angular and magnitude measures of error are used in this
paper. Velocity may be written as v = (u, ν, 0) (assuming that
the component of velocity in z is w = 0), and then, the angular
and magnitude errors between the correct velocity vc and an
estimate ve are

∆θ = arccos
(

vc · ve

|vc||ve|

)
= arccos

(
ueuc + νeνc√

u2
c + ν2

c

√
u2

e + ν2
e

)

(10)

∆V =
|vc − ve|2

|vc||ve|
=

(ue − uc)2 + (νe − νc)2√
u2

c + ν2
c

√
u2

e + ν2
e

(11)

where magnitude errors are a dimensionless quantity. The mean
values of the angular and magnitude errors between the correct
velocity vc and an estimate ve are used to evaluate the perfor-
mance of the velocity estimations.

The aforementioned comparisons between Fig. 2(a) and (b)
have been qualitative. The quantitative measures of how well
the first- and third-order GOSs can reproduce the model flow
are shown in Fig. 4, in which the mean values of the angular
and magnitude errors versus N are shown.

Both curves of the angular and magnitude errors generated by
the first- and third-order GOSs exhibit a local minimum in the
vicinity of N ≈ 10 and 11, and two competing phenomena, one
at small N and another for large, are responsible for this. When
N is small, the number of B-spline squares required to cover
the image must be large (Fig. 1). Both curves of the angular
and magnitude errors shown in Fig. 4 indicate that there are no
significant differences between N = 8 and 15, in which range
N is highly recommended.

The system is not strongly overdetermined because there are
a few N points over which to fit to the B-spline velocity expres-
sion to each square. As N increases, however, the B-spline fits
become less accurate (the number of control points decreases),
and the angular and magnitude errors of the estimated velocities
increase. The offsetting effect occurs for very large N . There,
the number of control points used to tile the image decreases
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Fig. 3. Velocity field images with two components u and ν that have ranges from dark (−0.23 m/s) to light (0.23 m/s) regions approximately. (a) and (d)
Averages of the modeled vector field images generated by the model at time t1 = 18 h and t2 = 20 h. (b), (c), (e), and (f) Estimated vector field images obtained
from the first- and third-order GOSs between t1 and t2.

Fig. 4. Plots of error measurement generated by the first- and third-order GOSs with numerical model data at time t1 = 18 h and t2 = 20 h. (a) Mean values of
angular error defined by (10) versus N (the number of pixels between two control points). (b) Mean values of magnitude error defined by (11) versus N .

markedly. Consequently, a potentially complex tracer distribu-
tion must be described with far fewer B-spline expressions, and
the accuracy must decrease. Larger values of N thus reduce our

ability to capture small-scale variability in the velocity field,
which accounts for the increasing error for large N . The net
effect of these two competing phenomena is the local minimum



1936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 4, APRIL 2010

Fig. 5. Vector field derived from the AVHRR image (false-color representations) sequences within an unmasked region. (a) February 28, 2004 at 19:02–22:32
UT. (b) May 26, 2007 at 7:21–10:46 UT. Vectors are plotted at every (a) tenth pixel and (b) fifth pixel, and the image shown is the second of each pair.

Fig. 6. Contour plots of (left) vorticity and (right) divergence are calculated from the velocity fields that are estimated by the third-order GOS technique with
AVHRR image sequence on February 28, 2004 at time from 19:02 to 22:32 UT.

we see in each curve for N ≈ 10 for the first-order GOS and
N ≈ 11 for the third-order GOS.

IV. APPLICATION TO AVHRR IMAGES

The intended application of the third-order GOS technique is
to obtain an accurate estimation of the ocean surface velocity
from AVHRR image sequences. We derive a velocity field from
two National Oceanic Atmospheric Administration (NOAA)
satellite images taken from the New York Bight, which is
east of the New Jersey coast and south of Long Island, NY.
These data were taken on February 28, 2004 at times ti =
19:02 and 22:32 UT [Fig. 5(a)] and on May 26, 2007 at times

ti = 7:21 and 10:46 UT [Fig. 5(b)], respectively. We calculate
the velocities from each of the two image pairs at contiguous
times. The pixel resolutions for the images are 1.15 km in
the north–south and east–west directions for the first data set
and 1.008 km for the second data set in the same directions,
respectively. The temporal separations between images are thus
∆ti ≡ ti+1 − ti = 3.500 and 3.42 h, respectively. We examine
the results over the New York Bight for the pair with the 3.42-h
temporal separation and then compare the details of the flows
and statistical results of velocity fields in a small region where
corroborating shore-based Doppler radar coverage exists.

The northern portion of the image in Fig. 5(a) shows some
atmospheric water haze contamination in the dark streaks
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extending from the northern edge of the image down in a
south–southeasterly direction. Their presence is also verified
from the negative values delivered there by the NOAA SST al-
gorithm. Additional cloud contamination is also clearly present
in the southeastern part of the image as spotted streaks extend-
ing northward in the vicinity of the Gulf Stream (GS). The
earlier image in Fig. 5(a) (at 19:02 UT and not shown here)
shows a far more extensive cloud coverage over the GS. In
order to apply the third-order GOS technique, we first mask the
clouds and land, which is consistent with the strategy discussed
in Section II-D. The resulting masked image has the form of
Fig. 1, with right-angle cutouts around the edge where we have
discarded any region containing clouds (in the north and south)
or land (toward the west).

The major advantage of the new GOS algorithms is that
it yields continuous spatial derivatives of the velocity field,
which allows us to extract computed quantities such as the
vorticity and divergence without any additional processing. In
contrast, the first-order GOS can only provide a continuous
velocity field (first order only), but the derivatives of the
field with respect to x and y are not continuous. Therefore,
we have to process the estimated velocity field by smooth-
ing algorithms before computing the vorticity and divergence
with the previous version of GOS. However, the degree of
continuity of the velocity field estimated by the current ver-
sion of GOS is easily controlled by this algorithm [we can
control the order of B-spline functions by selecting the num-
ber of n’s defined in (2)]. Therefore, the vorticity and diver-
gence can be calculated directly from the estimated velocity
field.

In Fig. 6, we show the contour plots of the calculated
vorticity (ξ = νx − uy) and divergence (ζ = ux + νy), com-
puted from the AVHRR image sequence from 19:02 to 22:32,
with u and ν inferred from the third-order GOS. The contour
increment is 5 × 10−6/s, and the interval represented is −1.5 ×
10−5/s < ξ < +1.5 × 10−5/s, which are on the order of the
Coriolis frequency (and are typical vorticity magnitudes for this
region).

There are several regions shown in Fig. 6(a), for which
there is a strong visual correspondence between the computed
vorticity distributions and the shape of the SST distribution. In
each of these locations, we see that the vorticity distribution is
consistent with the sense of tracer advection of the SST field.
First, there is a streamer of warm GS water attached to the
GS and being advected anticyclonically around the ring (the
center at position x ≈ 400 and y ≈ 320 with a diameter of
about 100 km); it extends from the three o’clock position to the
nine o’clock position. This bulk clockwise circulation is evident
in all of the velocity fields retrieved from the GOS method.
Fig. 6(a) shows the vorticity contours and a representative
anticyclonic swirl distribution [14], [15]. The details of the
velocity distribution are not critical for this illustration, and we
have sketched this example (and those below) only to capture
the typical properties of the expected flow field. The velocity
at the center of the ring increases from zero to an anticyclonic
maximum at a finite radius and then decreases at larger radii.
The consequences of this typical velocity distribution are that
the vorticity is negative near the ring center and positive away

from it. Indeed, we see that the contours in Fig. 6(a) are
blue (ξ < 0) for small radii and red (ξ > 0) in an annulus
surrounding the negative-vorticity core. The northern portion
of the ring appears to possess no vorticity, only because of the
absence of trackable features there. The negative-vorticity core
is not circular, which may suggest the presence of azimuthal
perturbations from the assumed axisymmetric shape. Second,
Fig. 6(a) shows a retrograde filament of warmer water being
advected from the GS. As in Fig. 6(a) (the center of this
region at position x ≈ 170 and y ≈ 350 with a diameter of
about 100 km), we show a superposition of the SST, surface
vorticity, and a nominal profile of a velocity distribution that
is consistent with the observed SST deformation. We see that
the northern flank of both the SST and vorticity distribution is
consistent with the assumption of a rudimentary jet structure.
Specifically, we note that ξ < 0 (purple or blue color contour) at
this location. Conversely, the southern flank of the jet associated
with the filament exhibits a region of red vorticity isopleths,
corresponding to ξ > 0 there (red or yellow color contour).
The vorticity, SST deformation pattern, and assumed velocity
profile are thus all mutually consistent with that of an energetic
jet advecting fluid from the GS. Finally, the portion of the
ocean that shows the region (the center at position x ≈ 200 and
y ≈ 420) in Fig. 6(b) is unique among the three areas shown
in Fig. 6(a). This region is centered over the site, where the
velocity field is diverging [in Fig. 6(b)]. The associated vorticity
is compatible with this surface velocity structure. In particular,
cyclonic (ξ > 0) contours lie to the south of the anticyclonic
(ξ < 0) ones.

The GOS vectors have been superimposed on the AVHRR
image from 7:21 to 10:46 UT on May 26, 2007, as shown in
Fig. 5(b) and Fig. 7(b) and (c). While the evidence of organized
flows is clearly evident, an excellent opportunity exists for a
detailed comparison between the first- and third-order GOS
velocity fields and a “ground-truth” realization of the same
velocity field obtained from the Rutgers University Coastal
Radar (CODAR).

This CODAR array has a resolution of 6 km and velocity
magnitude and direction accuracies of ±0.04 cm/s and ±1◦,
respectively [12]. We plot the CODAR and corresponding
first- and third-order GOS velocity fields for the time interval
from 7:21 to 10:46 in Fig. 7. The radar field at the midpoint
of the image time has been derived from interpolating the
Rutgers hourly records [11]. The CODAR and first- and third-
order GOS flows in Fig. 7 agree qualitatively, although the
details of each may differ in specific locations. In general,
there is a flow from the north toward the south for this time
interval.

The aforementioned discussion is merely qualitative, but a
quantitative comparison can be made between the first- and
third-order GOS predictions and CODAR velocities by com-
paring their magnitudes and directions. To do this, we still use
the angular and magnitude errors defined by (10) and (11),
respectively, to evaluate the errors of these estimations. The
results of calculating the angular and magnitude errors are
shown in Fig. 8 for both the first- and third-order GOS velocity
fields for the time interval from 7:21 to 10:46. Comparing
the angular and magnitude errors by the first- and third-order
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Fig. 7. Vector field derived from the AVHRR image sequence (false-color representations) from 7:21 to 10:46 UT on May 26, 2007 within an unmasked region.
(a) Average CODAR velocity field (background image at 7:21 UT). (b) and (c) Estimated velocity fields by the first- and third-order GOSs (background images at
10:46 UT).

Fig. 8. Plots of error measurement generated by the first- and third-order GOSs with AVHRR data from 7:21 to 10:46 UT on May 26, 2007. (a) Mean values of
angular error defined by (10) versus N (a number of pixels between two control points). (b) Mean values of magnitude error defined by (11) versus N .

GOSs, we can see that both GOS values are quite close in Fig. 8
within the whole range for N .

V. CONCLUSION

A higher order GOS inverse technique to obtain near-surface
velocity from sequential infrared images has been presented.
Two-dimensional B-spline functions over the whole unmasked
image scenes are used to convert the inverse problem from a
locally underdetermined system of equations to an overdeter-
mined one. At those locations where land or clouds occupy a
portion of B-spline functions, the array is discarded (Fig. 1),
and a “mask” is generated.

The resulting third-order GOS velocity fields have been
compared with those from the numerical model and from the
first-order GOS technique (see [10]). The calculation of the
angular and magnitude error difference between the first- and
third-order GOS results and the model or CODAR velocities
indicates that the GOS/model or GOS/CODAR errors are quite
close (Figs. 4 and 8), but the new GOS algorithms allow us to
generate high-order continuity velocity fields and deal with the
shoreline or contaminated regions easily.

This paper has aimed at providing an accurate technique
to estimate sea-surface velocities from satellite SST fields. In
addition, the problem of solving the heat equations becomes
solving linear system equations by the GOS algorithms. The
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velocity field expanded by surface B-spline functions that allow
us to select the order of continuity for different applications
is globally smoothed [Fig. 3(c) and (f)]. Adjusting the number
of control points in the B-spline functions, we can restrain the
noise for real image data efficiently (see [10] for the first-order
GOS) and obtain a scalable spatial resolution of the velocity
field. The field estimated by higher order GOS can be used
to extract the computed quantities such as the vorticity and
divergence without additional processing, and the handling of
complicated coastal land boundaries and cloud contamination
becomes a much easier process.

These numerical results have provided an important test of
the reliability of the first- and third-order GOSs. In order to
gain a further understanding of the usefulness of the GOS
method and to see if further insight could be obtained into
the underlying dynamics, I have provided the examples of
the surface vorticity and divergence calculations based on the
velocity field estimated by the third-order GOS with realistic
AVHRR image sequence in the New York Bight. I have found
that at least three interesting examples of vorticity structures
emerge: a warm core ring, a GS filament, and a divergent
region. This last scenario is located in the northern part of the
region. In all these cases, the computed vorticity distributions
are consistent with the inferred velocity patterns required for
the observed kinematic distortions of the tracer.

ACKNOWLEDGMENT

The author would like to thank Prof. J. Kohut (Rutgers
University) for supplying the CODAR velocity field used in this
paper.

REFERENCES

[1] K. A. Kelly, “An inverse model for near-surface velocity from infrared
images,” J. Phys. Oceanogr., vol. 19, no. 12, pp. 1845–1864, Dec. 1989.

[2] K. A. Kelly and P. T. Strub, “Comparison of velocity estimates
from Advanced Very High-Resolution,” J. Geophys. Res., vol. 97,
pp. 9653–9668, 1992.

[3] A. Ostrovskii and L. Piterbarg, “Inversion for heat anomaly transport from
sea-surface temperature time-series in the northwest Pacific,” J. Geophys.
Res., vol. 100, no. C3, pp. 4845–4865, 1995.

[4] A. G. Ostrovskii and L. I. Piterbarg, “Inversion of upper ocean time series
for entrainment, advection, and diffusivity,” J. Phys. Oceanogr., vol. 30,
no. 1, pp. 201–214, Jan. 2000.

[5] X. Vigan, C. Provost, R. Bleck, and P. Courtier, “Sea surface velocities
from sea surface temperature image sequences 1. Method and valida-
tion using primitive equation model output,” J. Geophys. Res., vol. 105,
no. C8, pp. 19 499–19 514, 2000.

[6] X. Vigan, C. Provost, R. Bleck, and P. Courtier, “Sea surface velocities
from sea surface temperature image sequences 2. Application to the
Brazil–Malvinas confluence area,” J. Geophys. Res., vol. 105, no. C8,
pp. 19 515–19 534, 2000.

[7] P. O. Zavialov, R. D. Ghisolfi, and C. A. E. Garcia, “An inverse model
for seasonal circulation over the southern Brazilian shelf: Near-surface
velocity from the heat budget,” J. Phys. Oceanogr., vol. 28, no. 4, pp. 545–
562, Apr. 1998.

[8] S. Côté and A. R. L. Tatnall, “The use of the Hopfield neural network
to measure sea-surface velocities from satellite images,” IEEE Geosci.
Remote Sens. Lett., vol. 4, no. 4, pp. 624–628, Oct. 2007.

[9] J. Marcello, F. Eugenio, F. Marqués, A. Hernández-Guerra, and A. Gasull,
“Motion estimation techniques to automatically track oceanographic ther-
mal structures in multisensor image sequences,” IEEE Trans. Geosci.
Remote Sens., vol. 46, no. 9, pp. 2743–2762, Sep. 2008.

[10] W. Chen, R. P. Mied, and C. Y. Shen, “Near-surface ocean velocity
from infrared images: Global optimal solution to an inverse model,” J.
Geophys. Res., vol. 113, no. C10, p. C10 003, 2008.

[11] S. R. Chubb, R. P. Mied, C. Y. Shen, W. Chen, T. E. Evans, and
J. Kohut, “Ocean surface currents from AVHRR imagery: Comparison
with land-based HF radar measurements,” IEEE Trans. Geosci. Remote
Sens., vol. 46, no. 11, pp. 3647–3660, Nov. 2008.

[12] J. T. Kohut, S. M. Glenn, and R. J. Chant, “Seasonal current variability on
the New Jersey inner shelf,” J. Geophys. Res.—Oceans, vol. 109, no. C7,
p. C07 S07, 2004.

[13] A. Watt and M. Watt, Advanced Animation and Rendering
Techniques—Theory and Practice. Reading, MA: Addison-Wesley,
1992, pp. 89–110.

[14] G. R. Flierl and R. P. Mied, “Frictionally induced circulations and spin
down of a warm-core ring,” J. Geophys. Res.—Oceans, vol. 90, no. C5,
pp. 8917–8927, 1985.

[15] T. A. Joyce and M. A. Kennelly, “Upper-ocean velocity structure of Gulf
Stream warm-core ring 82B,” J. Geophys. Res., vol. 90, no. C5, pp. 8839–
8844, 1985.

Wei Chen received the B.S. degree in physics from
Nankai University, Tianjin, China, in 1982 and the
Ph.D. degree in physics from Brigham Young Uni-
versity, Provo, UT, in 1991.

He held a postdoctoral position at the National
Institute of Standard and Technology, Gaithersburg,
MD. Since 1999, he has been a Research Physi-
cist with the Remote Sensing Division, Naval Re-
search Laboratory, Washington, DC. He designed,
developed, and implemented independently several
software packages which include PlotInfinity and

MathInfinity (Computer Algebra System). His areas of research include solid-
state physics, computer science, image processing, and remote-sensing appli-
cations in oceanography.


