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High-frequency radars measure projections of surface velocity vectors on the directions of the radar

beams. A variational method for reconstruction of the 2d velocity field from such observations is

proposed. The interpolation problem is regularized by penalizing high-frequency variability of the

surface vorticity and divergence fields. Twin-data experiments are used to assess the method’s skill and

compare it with two well-known approaches to HFR data processing: conventional local interpolation

and more sophisticated non-local scheme known as open-boundary modal analysis (OMA). It is shown

that the variational method and OMA have a significant advantage over local interpolation because of

their ability to reconstruct the velocity field within the gaps in data coverage, near the coastlines and in

the areas covered only by one radar. Compared to OMA, the proposed variational method appears to be

more flexible in processing gappy observations and more accurate at noise levels below 30%.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The technology of monitoring near-coastal currents by high
frequency radars (HFRs) has been rapidly developing in the past
decade. HFR observations were extensively used to study near-
shore circulation under a large variety of environmental condi-
tions (e.g., Prandle, 1993; Graber et al., 1996; Hisaki et al., 2001;
Breivik and Sætra, 2001; Sentchev and Yaremchuk, 2007; Shay
et al., 2007; Chavanne et al., 2007). At present, the HFR surface
current mapping technology is capable to provide surface velocity
maps in an area up to 200 km offshore, with space–time
resolutions of 0.2–1 h/1–10 km depending on the particular
system and practical application.

An important question in dealing with HFR data is the problem
of retrieving the 2d velocity vector maps from the velocity
components measured along the beams. The most commonly
used technique (e.g., Shay et al., 2007) is based upon local
interpolation (LI) of the radial data. It takes into account both
measurement errors and the effect of geometric dilution of
precision (Chapman et al., 1997) associated with the angle
between the intersecting beams in a given grid cell.

Recently, Park et al. (2007) proposed a more sophisticated
algorithm for reconstruction of the stream function c and velocity
potential j associated with the surface velocity field. The
algorithm is based on minimization of a cost function in
the c=j space. The problem is regularized by attracting the
ll rights reserved.
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uk).
interpolation pattern to a prior background state in a metric
associated with a user-specified covariance function. The latter
has to be simple enough to be inverted in realistic applications.

Another algorithm which has been under development in
recent years (Lekien and Coulliette, 2004; Kaplan and Lekien,
2007) in the HFR community is the open-boundary modal
analysis (OMA). This technique can be viewed as an extension of
the normal mode analysis (Eremeev et al., 1992; Lipphardt et al.,
2000) which, similarly to Park et al. (2007), employs decomposi-
tion of a 2d vector field into divergent and rotational components.
Apart from the capability to avoid explicit specification of the
poorly known error covariance, the OMA technique automatically
takes into account the kinematic constraints imposed on the
velocity field by the coastlines.

The OMA is based on expansion of c and j in the
eigenfunctions of the Laplacian operators (interior modes) and
solutions to specific boundary value problems (boundary modes).
Regularization is achieved by an appropriate spectrum cutoff and
penalizing the magnitudes of the remaining low-wavenumber
spectral components. Such an approach may lack flexibility
in representing localized small-scale features as well as flow
structures near open boundaries, where the rotational component
of the velocity field is subject to the zero normal flow constraint.
Besides, certain difficulties may arise when dealing with gappy
data, especially when the horizontal size of a gap is larger than the
minimal length scale resolved (Kaplan and Lekien, 2007).

In this paper we present a 2d variational (2dVar) interpolation
method designed for HFR data processing and compare its
performance with the LI and OMA techniques. In contrast to the
method of Park et al. (2007), the proposed algorithm does not
require specification of a background velocity field and its
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Fig. 1. Setting of the numerical experiments: upper panels show two velocity fields used in twin-data experiments. The first field (A) has nine eddy structures

superimposed on two jets: one following the coastline and another located farther offshore. The second one (B) has three large eddies and a broad jet. Lower panels show

vorticity (left) and divergence (right) fields, corresponding to A. Three coastal radars sample the radial velocities along beam directions binned at 2 km radial and 5�

azimuthal resolution. Sampling points are shown by gray dots. Gray rectangle in the lower left panel envelops simulated gap in the HFR data. Radar positions are shown by

black dots. The interpolation domain and the coastline are similar to the ones used in KL07 for OMA processing of HFR observations in the Bodega Bay. The coordinate

system is rotated clockwise (north is on the right). Contour intervals for vorticity and divergence are 5� 10�5 s�1 and 10�5 s�1, respectively.
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covariance structure that may be lacking in many applications.
Similar to OMA, the 2dVar method is non-local (the result
of interpolation at a given grid point depends on all the
observed radial velocities) and kinematically constrained (the
interpolated velocity field v is subject to constraints imposed by
the coastline).

A distinct feature of the 2dVar approach is that the interpolat-
ing functions (eigenvectors of the Hessian matrix) depend both on
the shape of the coastline and on the spatial distribution of the
data points. The latter feature (lacking in OMA) is especially useful
in practice, because HFR data often have gaps in spatial coverage,
and the issue of filling those gaps is important.

Another useful property of the proposed 2dVar method is that,
similar to LI, it operates in the velocity space, and thus requires
less sophisticated operators for projection of the unknown
gridded velocities on the radial components of the current speed.
This property provides better conditioning of the Hessian matrix,
faster convergence of the minimization algorithm and improved
computational efficiency.

This paper is organized as follows: in the next section we
describe the algorithm by specifying the cost function and
kinematic constraints, outline its numerical implementation and
the error analysis scheme. Section 3 is devoted to comparison of
the method with LI and OMA techniques in the framework of
numerical experiments with simulated data in a realistic domain.
In Section 4 we compare the real HFR data interpolation by the LI,
OMA and 2dVar methods. Discussion and conclusions complete
this paper.
2. Methodology

Consider an oceanic domain O partly bounded by the coastline
@O0 where HFRs are located (Fig. 1). Projections v� of the surface
velocity field vtðx; yÞ on the radar beam directions r are observed
at a discrete set of points xk; k ¼ 1; . . . ;K located along the beams.
Our goal is to obtain an estimate v of vt given v�k and their
observation errors sðv�kÞ.

2.1. Cost function

Following the standard methodology of the variational inter-
polation the ‘‘best’’ estimate v is determined by maximizing its
likelihood expressed in terms of the Gaussian probability density
function PðvÞ� exp½�JðvÞ� (e.g., Thacker, 1989). The argument of
the exponent (the cost function) is quadratic in v and usually
consists of two terms: J ¼ Jd þ Jr .

The first term Jd measures the ‘‘distance’’ between observa-
tions v� and the corresponding components of the unknown field
v at the observation points:

Jd ¼
1

2

XK

k¼1

s�2ðv�kÞ½ðv � rkÞ � v�k�
2

" #
(1)

Because of Gaussianity the ‘‘distance’’ is quadratic in v and scaled
in the observation points by the corresponding error variances.
Although the form of Jd implicitly assumes that observation errors
are uncorrelated, a more general formulation can also be
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considered by specifying the full K � K inverse error covariance
matrix. In practice, error covariances between the HFR radar
observations are known with much less accuracy than their
variances, and we will further consider the case of the diagonal
observational error covariance matrix.

The second term Jr is introduced to regularize the interpolation
problem: the unknown continuous field v has many more degrees
of freedom than the number of observations K . Here we follow a
standard regularization approach (e.g., Thacker, 1988) and
penalize higher spatial derivatives of v:

Jr ¼
K

2A

Z
O
½Wd
ðx; yÞðDdivvÞ2 þWc

ðx; yÞðDcurlvÞ2�dx dy (2)

where divv ¼ @xuþ @yv, curlv ¼ @xv� @yu are the divergence and
vorticity, respectively, D ¼ @xx þ @yy is the Laplacian operator
and A is the area of interpolation domain bounded in Fig. 1 by a
thin line.

Conceptually, it is convenient to represent Ddivv and Dcurlv as
additional Gaussian d-correlated fields, whose ‘‘observed’’ values
are zeroes and error variances are W�1

d ðx; yÞ and W�1
c ðx; yÞ,

respectively (Thacker, 1988). By introducing such bogus observa-
tions in every spatial location, we effectively make the total
number of data points larger than the number of unknowns,
making the interpolation problem formally well posed. Note that
since the Laplacian acts as a high-pass filter, the assumption on
zero spatial correlations between the bogus data appears to be
much more realistic as compared to the case if we penalized the
magnitudes of divv and curlv (i.e. ‘‘observed’’ their zero values).

In contrast to s�2ðv�kÞ that can be estimated experimentally
with some confidence, the functions of Wd and Wc are largely
unknown and should be obtained from ad hoc considerations. In
the present study we set their spatial variability to be inversely
proportional to the local density rðx; yÞ of HFR observation points:
Wc;d

¼ ac;dr�1. By introducing this assumption we expect to
resolve finer structures of the velocity field in the regions of
higher data density, and therefore relax the smoothness con-
straint. The definition of the scalar parameters ac and ad is given
in Section 3.1.

After we specified the probability density function on the
space V of all possible configurations of vðx; yÞ, the ‘‘best’’
interpolation pattern is sought by maximizing the probability
expð�JÞ, or, equivalently, by minimizing J with respect to v.
Technically, the minimization can be done in a subspace V0 	V
constrained by additional conditions imposed on v by dynamics or
some other reliable source of information. In the present study we
utilize the simplest possible constraint by specifying the condition
vð@O0Þ ¼ 0 at the coastline, i.e. the regular-grid velocity field is
defined as the one minimizing J under the condition vð@O0Þ ¼ 0:

Jd þ Jr ! min
v2V0

2.2. Numerical implementation

The interpolated velocity v ¼ fu;vg is discretized on a regular
grid with a constant step dx in both directions. For a typical HFR
network the domain size is always much smaller than the Earth
radius, so we adopt flat geometry, assuming that spherical
corrections are much smaller than uncertainties introduced by
measurement errors and by the lack of knowledge of their
covariance structure. First-order differential operators are ap-
proximated by central differences, whereas the discrete Laplacian
of the scalar fields divv and curlv in Eq. (2) is defined by a
standard 5-point stencil:

D̃ji;j ¼ ½ji;jþ1 þji;j�1 þjiþ1;j þji�1;j � 4ji;j�=dx2,
where j stands for either divergence or vorticity and indices i; j

enumerate regular grid points in x and y directions, respectively.
Discretization converts J into a quadratic form defined on a finite-
dimensional space of the grid point values of u and v:

J̃ ¼
1

2

X
k

s�2ðv�kÞ½ðP̂
ij

kvijÞ � rk � v�k�
2

8<
:
þ

K

N

X
i;j

½Wd
ijðD̃ ˜divvijÞ

2
þWc

ijðD̃ ˜curlvijÞ
2
�

9=
; (3)

Here N is the number of regular-grid points in O and P̂
ij

k denote
linear interpolation operators, which project the values of vij onto
the HFR observation points xk from the apexes of a grid cell,
containing xk.

Constrained minimization of J is performed using the quasi-
Newtonian descent algorithm of Gilbert and Lemarechal (1989). In
addition to the computation of J̃ this algorithm also requires a
procedure for computation of its derivatives @J̃=@uij and @J̃=@vij.
This procedure was obtained by analytical differentiation of the
code for the computation of J̃ .
2.3. Error estimation

Keeping in mind the probabilistic interpretation of J̃ , we treat
Eq. (3) as the argument of the Gaussian exponent. Under this
assumption, the inverse error covariance matrix C�1 for gridded
velocity vij is the matrix H of second derivatives of J̃ with respect
to uij and vij (the Hessian matrix of the problem). Technically, the
computation of H is implemented by taking the finite differences
of @J̃=@uij and @J̃=@vij in V0. Because the gradient of J̃ is the linear
function of uij and vij, the numerical approximation error of this
procedure is zero.

It is easy to note that the matrix H may not necessarily have
the full rank and, therefore, cannot be inverted to obtain the error
covariance matrix C. This is a consequence of the fact that some of
the velocity patterns cannot be observed by the HFR system. As a
simple example consider HFR observations along a single beam:
adding a velocity field orthogonal to that beam with vorticity and
divergence linearly dependent on x and y does not change the
value of the cost function. In realistic situations more complicated
patterns may exist, which depend on the geometry of the domain,
radar positions, sampling discretization along the beams, and the
type of regularization.

Degeneracy of H implies that the result of interpolation
depends on the velocity field v0 used as a ‘‘first guess’’ at the
start of the minimization procedure: if unobserved patterns are
present in v0, they will remain there unaffected. Consequently, in
order to remove these unobserved fields from the interpolation
pattern one has to start minimization from v0 ¼ 0, as it is done in
the presented algorithm. To remove the unobserved subspace
from error analysis we perform eigenvalue decomposition of H

with respect to a standard dot product in the velocity space and
discard eigenvectors with zero eigenvalues to estimate C.

Error covariance matrix of any linear function y of v is then
obtained as Cy ¼ LT

yCLy, where Ly is the matrix representation of
the corresponding linear operator y ¼ Ly½u;v�. Of particular
importance for applications are the divergence Ld½u;v� ¼ @xuþ

@yv and vorticity Lc½u;v� ¼ �@yuþ @xv operators. Mapping the
diagonal elements of the corresponding covariance matrices
provides an estimate of the accuracy of retrieving these quantities
from HFR data, and may give guidance to better configuring the
HFR networks.
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3. Twin-data experiments

3.1. Setting

To assess the performance of the interpolation scheme, we
conducted twin data experiments with simulated HFR observa-
tions. Their setting (Fig. 1) was chosen to mimic the real
experiment in the Bodega Bay conducted in spring and summer
of 2003. The reconstructed velocity fields are sampled along the
beams with 2 km discretization, and the azimuthal increment of
the beam directions is 5�.

We conducted eight major series of twin-data experiments by
varying the interpolation method (2dVar, LI and OMA), the
interpolated field (patterns A and B in Fig. 1) and coverage of
the domain by observations (with and without the gap shown in
the lower left panel in Fig. 1). Within each series of experiments
we varied the noise level n in the simulated observations: radial
velocities v�k ‘‘observed’’ at points xk were defined by adding white
noise w to projections of the true currents vt on the beam
directions rk:

v�k ¼ ðP̂
ij

kvt
ij � rkÞ þ nVw (4)

Here V is the typical magnitude of vt and n is the scalar parameter
whose reciprocal has the meaning of signal/noise ratio. Three
values of n (0.1, 0.3 and 0.5) were tested within each series. In
correspondence with Eq. (4), HFR measurement errors in Eq. (3)
were defined as sðv�kÞ ¼ nV .

The ‘‘true’’ current fields vt (Fig. 1, upper panels) were defined
on a regular 40� 32 grid with 2 km step in x and y directions. The
fields were obtained by specifying the corresponding stream
function c and velocity potential j: first, positions of the jets
were set by defining jumps in c along the jet axes visible in Fig. 1.
In all other spatial locations the stream function was independent
of horizontal coordinates. Second, these step-like elongated
structures in c were smoothed by the biharmonic filter, whose
cutoff scale was set to 6 and 10 km for patterns A and B,
respectively. Third, Gaussian-shaped eddies of different size and
strength were placed between the jets (nine for flow pattern A and
three for B). Similar technique was used to define j with the
difference that the amplitude of jets and eddies was 5–6 times
smaller and all the eddies had the opposite sign to c to simulate
convergence within anticyclonic structures and vice versa. The
resulting currents have the typical velocity magnitude V ¼ 0:59
and 0.11 m/s for cases A and B, respectively.

The spatial scales of the ‘‘true’’ currents in Fig. 1 are somewhat
smaller than those typically seen in the Bodega Bay (Kaplan and
Lekien, 2007; Section 4 of the present manuscript), especially for
the case A, where the domain was populated with more numerous
eddies and concentrated jets. This was done to test the algorithm
in a somewhat more ‘‘violent’’ regime, which could be encoun-
tered in other domains.

To assess the impact of gaps in the spatial coverage by HFR
observations, we used two simulated data sets: one with the full
coverage by the radial velocity data (shown by gray dots in the
lower right panel in Fig. 1), and another without observations in
the rectangular domain (lower left panel in Fig. 1). These data sets
had K ¼ 2011 and 1699 observation points, respectively.

After removing coastal grid points and masking out grid points
not covered by observations, the total number of the velocity grid
point values was N ¼ 993, so that the problem had 2N ¼ 1986
degrees of freedom.

The quality of interpolation was monitored by several para-
meters. Misfit between the interpolated field and the data md was
defined as md ¼ jvk � v�kj=jv

�
kj, where vk is the projection of

interpolated velocity on the radar beam at the kth measurement
point and overline denotes averaging over the measurements.
Velocity error ev was defined as the mean absolute difference
between the true vt and the interpolated v currents normalized by
V: ev ¼ hjvt � vji=V , where angular brackets denote averaging over
the interpolation grid. Similar expressions are used to assess the
interpolation qualities ed, ec of the divergence and vorticity fields:

ed ¼ hjdivðvt � vÞji=hjdivvtji; ec ¼ hjcurlðvt � vÞji=hjcurlvtji

Dependence of the bogus data inverse variances Wd
ij and Wc

ij on
x and y was defined to be inversely proportional to the number of
observation points nij within the 2dx radius from a given grid
point xij:

Wc;d
¼ ac;dn�1

ij (5)

In the case when no observations were found in the 2dx vicinity
(e.g., in the center of the gap) nij was set to 1.

The proportionality coefficients ac and ad are equal to the
inverse squared magnitudes c�2 and d�2 of the corresponding
fields. The typical magnitude c of Dcurlv is estimated as
c ¼ V=ðL2dxÞ, where L is the spatial scale of the interpolated
velocity field. Both V and L are deduced from statistical analysis of
the simulated HFR data: for circulations A and B the spatial scales
are estimated as LA ¼ 5:9 km and LB ¼ 8:8 km. We further assume
that the typical magnitude of the divergence field may be
substantially smaller than c (e.g., for quasigeostrophic currents
d�gc, where g is the Rossby number). In the presented experi-
ments we set g ¼ 0:2 according to the definition of the ‘‘true’’
currents shown in Fig. 1. In practice, g can be assessed with a
reasonable accuracy from physical considerations.

Since the result of interpolation depends only on the relative
magnitudes of the terms in the cost function, it is convenient to
characterize the algorithm by the non-dimensional parameter
Wc
� ¼ n2V2acK=4Ndx6 ¼ n2KL4=4Ndx4 which has the meaning of

the ratio between the vorticity regularization and the data misfit
terms. Since we assume that Wd

¼ g�2Wc , the value of Wc
�

entirely defines the shape of the cost function for a given field (A
or B) and data configuration (with or without the gap).

Initial values of v are set to zero in all the interpolation
experiments to ensure uniqueness of the solutions in the sense
that unobserved patterns are not present in the interpolated fields
(Section 2.3). Experiments were conducted on a 2.66 GHz single-
processor PC and it took 0.7 s of CPU to perform N�1000 iterations
of the minimization procedure.

3.2. Results

3.2.1. Experiments with three radars

Table 1 compares the performance of the proposed 2dVar
interpolation algorithm with the local and non-local interpolation
techniques.

The LI method was implemented in its simplest form: velocity
vij at a given regular grid point xij was computed by minimizing

Ĵij ¼
XNr

k¼1

½vij � rk � Q̂
k

ijv
�
k�

2 !min
vij

where Nr is the number of radars illuminating the grid point and
the operator Q̂

k

ij linearly interpolates the radial velocities v�k
measured by kth radar in the immediate vicinity of xij onto that
grid point. Interpolation is performed in polar coordinates with
the origin at the radar’s location. Note that LI method provides a
robust solution with two radars only if their beams are far from
parallel, and it would not work at all with one radar or in the
regions not covered by data.

The non-local OMA method is formally free from these
limitations, because it implicitly employs additional smoothness
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Table 1
Dependence of the interpolated field parameters md; ev ; ec , and ed on the reconstructed velocity field and noise level n in the simulated HFR data.

Field type n No gap Gap Wc
�

md ev ec ed md ev ec ed L ðkmÞ; k

A 0.10 0.07 0.13 0.19 0.76 0.07 0.15 0.23 0.82 0.2

0.26 0.31 0.38 1.52 0.28 0.39 0.50 1.70 6� 10�3

0.10 0.19 0.32 1.19 0.15 0.33 0.49 1.35

0.30 0.24 0.29 0.37 1.69 0.24 0.29 0.41 1.59 1.8

0.28 0.32 0.39 1.66 0.29 0.41 0.51 1.78 6� 10�3

0.22 0.30 0.42 2.07 0.23 0.41 0.58 1.79

0.50 0.41 0.31 0.37 1.59 0.42 0.43 0.53 1.87 20�

0.31 0.34 0.42 1.69 0.32 0.44 0.56 1.93 6� 10�3

0.34 0.41 0.57 2.99 0.49 0.50 0.69 2.36

B 0.10 0.08 0.10 0.18 0.74 0.08 0.13 0.23 0.83 1

0.23 0.23 0.34 1.32 0.24 0.26 0.35 1.40 7� 10�4

0.10 0.15 0.26 1.36 0.14 0.30 0.44 1.52

0.30 0.28 0.19 0.30 1.44 0.25 0.27 0.43 1.87 9

0.25 0.25 0.36 1.47 0.26 0.30 0.41 1.61 7� 10�4

0.23 0.29 0.49 2.93 0.33 0.41 0.59 2.34

0.50 0.28 0.27 0.40 1.57 0.40 0.39 0.53 2.40 25*

0.25 0.29 0.41 1.87 0.34 0.37 0.56 2.56 7� 10�3

0.34 0.42 0.71 4.40 0.51 0.50 0.75 3.38

The 2dVar, OMA and LI results are shown, respectively, in the upper, middle and lower lines of the table cells. Note that LI errors were computed over subdomains which did

not include near-coastal regions and the gap (see Figs. 2–5). Parameters for the 2dVar and OMA interpolation schemes are shown in the right column. The 2dVar

experiments with n ¼ 0:5 were made under the divergence-free approximation ðWd
� ¼ 106

Þ.
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information and takes into account kinematic constraints im-
posed on the velocity field by the coastlines. We implemented the
OMA algorithm using the code from http://www.pmc.ucsc.edu/
�dmk/software/openMA. The code has two tunable parameters:
the modal cutoff length scale L and the regularization weighting
constant k, which can be considered as the analog of Wc

�. In all
OMA experiments listed in Tables 1 and 2 we minimized ev by
varying both L and k for each value of n. In the 2dVar experiments
the only tunable parameter is Wc

�, which was determined as
discussed above.

Inspection of the 2dVar results (upper lines in Table 1) shows
that the algorithm is robust in the entire range of noise levels and
provides a reasonable fit to the data. The minimum value of md ¼

0:07 achieved at 10% noise in Table 1 (case A) corresponds in
magnitude to observation errors introduced by the noise w. In that
sense the capability of HFR measurements to capture the
structure of the flows in Fig. 1 is quite remarkable. With the
increase of observation noise the 2dVar algorithm loses precision,
but still provides a noise-consistent fit to the data in the entire
range of n for both A and B background states (cf. column 2 and
upper lines in columns 3 and 7 in Table 1).

Reconstruction of the divergence and vorticity fields is less
accurate since horizontal derivatives amplify grid-scale noise. This
is especially visible in the behavior of ed, because the divergence
field was set to be five times weaker than vorticity by the design
of the experiments. Nevertheless, the 2dVar algorithm captures
the signs and positions of the major structures in the divergence
field at the ‘‘practical’’ noise levels of 0.1 and 0.3 (cf. the lower
right panel in Fig. 1 and the upper right panels in Figs. 2 and 3).

Compared to the divergence, the vorticity field is reconstructed
with much higher quality: both the amplitudes and the locations
of most of the structures are well reproduced even at the noise
level of n ¼ 0:3 (cf. low left panel in Fig. 1 and upper left panel in
Fig. 3). The gap in data coverage is also handled well: the overall
increase in the interpolation errors ev, ed and ec in Table 1 is
consistent with the fraction of O occupied by the gap, whereas the
saddle-like structure of the vorticity field in the gap is recon-
structed quantitatively.

The velocity patterns generated by the three methods (left
panels in Fig. 2) may look similar, but nevertheless differ
considerably in terms of the velocity interpolation error ev. The
difference becomes more evident after taking the divergence of
the fields (right panels in Fig. 2): since OMA does not impose any
smoothness constraint on divv, the corresponding divergence
field, although being three times weaker than vorticity, looks
rather chaotic with the formal error ed ¼ 1:52. A similar feature-
less pattern is given by LI, with the difference that divergence in
near-coastal areas cannot be estimated at all due to either single-
radar measurements or beam-crossing angle limitation (nearly
parallel radar beams).

Introduction of the gap in data coverage enhances the
difference between the three methods (cf. columns 4–8 and 5–9
in Table 1 keeping in mind that LI errors are computed outside the
gap). A probable reason for the difference between OMA and
2dVar is the emergence of the spurious maxima in both vorticity
and divergence fields inside the gap in the OMA case (cf. upper
and middle panels in Fig. 3). In the 2dVar formulation, vorticity
and divergence fields cannot have maxima inside the data-void
regions, because their variation within the gap closely approaches
the behavior of a harmonic function.

Comparison of the 2dVar, OMA and LI lines in Table 1 shows
that OMA code tends to provide less precise fit to the data at 10%
noise level without the gap (lines 2 and 11 in Table 1). This can be
partly explained by a relatively low number of degrees of freedom
(number of modes) involved. In the OMA formulation the number
of modes is proportional to ðD=LÞ2, where D is the horizontal size
of the domain and L is the cutoff length scale. For the reported
experiments, however, the optimal length scale L was close to
5–6 and 7 km for the A and B fields, respectively (column 11 in
Table 1). These length scales correspond to 130–230 eigenmodes,
whose amplitudes were varied to fit the data in 2011 (1699 with
the gap) points. In an attempt to achieve a better fit md at low

http://www.pmc.ucsc.edu/~dmk/software/openMA
http://www.pmc.ucsc.edu/~dmk/software/openMA
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noise levels we tried to increase the number of modes by reducing
L to 2–3 km, but that required an increase of regularization
parameter k, otherwise interpolation patterns appeared too noisy,
possibly because of the ill-conditioning of the system matrix.

Overall, Table 1 shows that the 2dVar method performs similar
to LI and better than OMA at n ¼ 0:1 and somewhat better at
n ¼ 0:320:5. When the gap is present in the data describing
smaller scale currents (case A, lines 1 and 2, and 4 and 5 in
Table 1) 2dVar keeps a significant advantage to OMA up to n ¼ 0:3.
Both non-local methods (OMA and 2dVar) are better than LI
because of their ability to estimate currents within the gap and
close to the coastline.
3.2.2. Experiments with two radars

In practice, there are often situations when a radar stops
operating due to hardware failure or some other reasons. In such
case local interpolation methods often fail in a large number
of grid points, because they require at least two velocity
components for retrieving the velocity vector in a grid cell. The
OMA and 2dVar algorithms are essentially non-local and therefore
have an ability to interpolate the velocity field over distances
exceeding dx.

To investigate the performance of the schemes in such
situations, we switched off the rightmost (northern) and/or
middle radars and examined the interpolation patterns both with
and without the gap in the data. These experiments also allowed
us to assess the accuracy of interpolation in the regions where
data density was less or close to one observation per grid cell:
after removing the northern radar such regions emerge in the
upper (western) and right (northern) parts of the domain.

Fig. 4 gives an indication that OMA algorithm is less accurate
than 2dVar in such regions: a visual comparison of the vorticity
distributions with those in Fig. 1 shows that OMA errors tend to be
larger when y440 km or x460 km. The LI algorithm performs
much worse: derivatives of the velocity field cannot be estimated
not only in the region of single-radar coverage ðx460 kmÞ but also
near the coastline. Quantitative assessment of ec for the three
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interpolation patterns in Fig. 4 also shows that the regions
of low data density are the major contributors to the larger
value of ec for the OMA pattern (0.45 vs 0.34 in Fig. 4). The value of
ec for LI (0.39) cannot be objectively compared with these
numbers because it was computed by averaging over much
smaller area.

Fig. 5 shows an example of interpolation with two radars and
the gap in the data. The difference between 2dVar and OMA is
already evident from the velocity patterns: OMA produces a
spurious jet within the gap which destroys two eddies at the
upper and right edges of the data-void region. 2dVar preserves
these eddies and the saddle-like structure of the currents within
the gap. Comparison of the vorticity fields (right panels in Fig. 5)
shows that OMA again produces a maximum inside the gap. The
2dVar pattern appears to be unrealistic inside the gap as well, but
compared to OMA has more reasonable structure near the gap’s
boundary.

The overall results (Table 2) indicate that in the case of two-
radar configurations non-local methods (OMA and 2dVar) have a
considerable advantage over LI with 2dVar showing somewhat
better performance than OMA.
3.2.3. Experiments with a single radar

As a matter of curiosity, we also performed experiments with
only one radar in operation. The resulting velocity and vorticity
fields are shown in Fig. 6. In this experiment we had only 675
observations that were used to retrieve 1986 velocity components
in all the grid points. In an attempt to reduce the number of
unknowns we reconstructed only the rotational part of the flow by
prescribing a large value to Wd

� ¼ 105 as compared to Wc
� ¼ 0:1.

It is interesting that even in this case the interpolation pattern
still contains the major circulation features of the ‘‘true’’ field with
the formal error level of about 40% (Fig. 6). We attribute this
‘‘skill’’ to specific alignment of the current structures with respect
to the radar and to our (correct) prior assumption that the
currents are generally non-divergent: the 2dVar algorithm just
found a divergence-free field with the smoothest possible
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vorticity at the prescribed level of misfit (0.1) with the radial data
and zero flow condition at the coast.
3.3. Interpolation errors

Interpolation errors depend on the number of unobserved
eigenmodes that are removed from the Hessian spectrum while
computing the velocity error covariance matrix Cv. We assumed
an eigenmode to be unobserved if the ratio of its eigenvalue to the
largest one was less than e ¼ 10�7, i.e. the relative contribution of
the mode to the cost function was comparable with the machine
precision. Fig. 7 shows the Hessian spectra computed at different
noise levels for observations without (a) and with (b) the gap in
the data coverage with three operating radars. As expected, the
number of unobserved modes increases with the increase of n and
with the reduction of the number of data points in the presence of
the gap.

Fig. 8 gives two examples of the interpolation error maps. The
left panel shows velocity interpolation errors at n ¼ 0:1 in the
presence of the gap. To compute the error distribution in Fig. 8a,
we took the square roots of the sums of the diagonal elements of
Cv that correspond to the error variances for the velocity
components u and v, then normalized the map by its maximum
value (5.1 cm/s) and took the inverse to obtain the spatial
distribution of the relative accuracy of interpolation. The lowest
accuracy is attained at the periphery of the domain and near the
coastline, where radar beams are almost parallel. A local
minimum of the accuracy is also observed inside the gap.

Square roots of the diagonal elements of the divergence error
covariance matrix Cd ¼ LdCvLyd for the data coverage without the
gap are mapped in the right panel. The overall error level

sðdivvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hCdðxij;xijÞi

hðdivv� hdivviÞ2i

s

is 0.88, which is consistent with the value of ed ¼ 0:76 (Table 1,
line 3, column 6), obtained by the direct comparison of the
interpolated pattern with the ‘‘true’’ field.

Error analysis is more expensive than interpolation, because of
the necessity to compute the Hessian spectrum, and the pseudo-
inverse H�1. In our case these procedures required 296 and 210
CPU s, respectively. For presented method, the eigenfunctions of H
(i.e. the modal structure of the velocity error covariance matrix)
depend both on the shape of the coastline and on the distribution
of the data points over the domain. It is therefore necessary to
perform the analysis each time when the data coverage substan-
tially changes.

To estimate errors with n OMA modes, one has first to obtain
the n� n matrix A of the covariances between modal coefficients.
This procedure involves two matrix inversions and several
multiplications by the n� K matrix U which projects the modes
on radial velocities. The velocity covariance matrix C is then
obtained via standard transformation C ¼ UTAU. We did not have
the OMA error analysis code in our disposal, and could not assess
its computational cost. A rough estimate indicates, however, that
it is of the same order as for the 2dVar algorithm and should also
be performed each time when the data coverage changes
substantially.
4. Interpolation of the real data

As a final exercise we reconstruct velocity field from real HFR
observations in the Bodega Bay conducted on the 30 of July, 2003.
The velocity in the upper right panel of Fig. 9 can also be found in
Kaplan and Lekien (2007). The interpolation parameters for OMA
were L ¼ 5 km and k ¼ 10�4 as in Kaplan and Lekien (2007). The
2dVar algorithm was used in divergence-free approximation
ðWd
� ¼ 106

Þ, because at the estimated noise level of n ¼ 0:35,
velocity scale of L ¼ 4:4 km and sampling discretization of 2 km, it
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Table 2
Same as in Table 1, but for the experiments with the type A circulation and 2-radar configurations.

Radars n No gap Gap Wc
�

md ev ec ed md ev ec ed L ðkmÞ; k

1.3 0.10 0.09 0.21 0.26 1.31 0.09 0.25 0.35 1.21 0.4

0.31 0.38 0.48 1.68 0.29 0.48 0.59 2.09 6� 10�3

0.12 0.25 0.42 1.43 0.17 0.39 0.56 1.42

0.30 0.24 0.31 0.37 1.60 0.22 0.38 0.48 1.54 1

0.33 0.42 0.51 2.07 0.31 0.51 0.65 2.37 6� 10�3

0.19 0.39 0.55 2.35 0.24 0.61 0.69 1.82

1.2 0.10 0.10 0.29 0.34 1.82 0.09 0.32 0.44 1.84 0.6

0.29 0.36 0.45 1.59 0.30 0.43 0.52 1.88 6� 10�3

0.11 0.32 0.39 1.22 0.15 0.46 0.56 1.27

0.30 0.24 0.39 0.45 2.04 0.25 0.44 0.52 2.19 0.8

0.31 0.41 0.49 2.01 0.30 0.45 0.53 2.03 6� 10�3

0.17 0.42 0.50 2.17 0.25 0.54 0.68 1.26
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is hard to obtain statistically confident estimates of the
divergence. With 1401 observation points in use Wc

� ¼ 0:5.
The LI interpolation (lower panel in Fig. 9) appears to have

much lower quality compared to the results of non-local
interpolation. This is evident in terms of not only the larger md,
but also visually: velocity estimates do not exist in the sparsely
covered right corner of the domain and are too noisy near the
coast where radar beams are close to parallel.
The 2dVar- and OMA-generated patterns are qualitatively
similar, although OMA velocity is more smooth and characterized
by somewhat larger misfit with the data. The major difference
between the 2dVar- and OMA-generated patterns is observed in
two regions shown in Fig. 9 by gray rectangles. In the bay between
the southern (left) and middle radars the 2dVar pattern shows an
indication of anticyclonic circulation, whereas OMA produces a
broad offshore current there. The values of ev computed by
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Fig. 9. Velocity field in the Bodega Bay on July 30, 2003, obtained by three interpolation methods. Misfit md with the radial velocity data is shown in the upper right

corners.
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averaging over 265 observation points in that region are 0.26 for
2dVar and 0.27 for OMA, respectively. The region on the right
should be considered as a gap, since it contains only four data
points near its right boundary.

In the absence of accurate information on the true currents in
the region it is hard to estimate the quality of interpolation and
compare the results objectively. The reader may evaluate them,
however, using a subjective opinion which depends on his/her
experience in observing surface currents and/or analysis of their
physics.
5. Discussion and conclusions

We have presented a numerical algorithm for retrieving
surface velocity field from HFR observations. The algorithm is
based on the minimization of a quadratic cost function in the
space of all possible configurations of the velocity field. The
interpolation problem is regularized by enforcing smoothness in
the vorticity and divergence fields. Such approach allows to define
the covariance structure of regularization terms using only three
scalar parameters that can be easily derived from the statistical
analysis of HFR data and basic physical considerations.

In contrast to OMA and the 2dVar algorithms of Park et al.
(2007), the proposed method operates in the velocity space, and
thus requires less sophisticated operators for the projection of
the unknown gridded velocities on the radial components of the
current speed. This property provides better conditioning of the
system matrix and faster convergence of the minimization
algorithm.

Performance of the method is compared with the LI and OMA
algorithms. It is shown that the proposed approach is robust and
capable to provide a statistically consistent fit to the data in the
wide range of signal/noise ratios. The comparison demonstrated
similar (to LI) or better (than OMA) performance of the 2dVar
technique under relatively high S/N ratios, especially when a
80–90% fit to the velocity field with wide spatial spectrum
(containing strong localized features as in type A circulation) is
required. At more realistic (less than 3–4) S/N ratios the OMA and
2dVar have similar skill and outperform LI because of their better
treatment of the coastal regions where beam directions are close
to parallel.

The variational approach gives more flexibility in fitting the
data, since the number of modes in use is close to the number of
points on the interpolation grid. It is also flexible in the choice of
regularization, because the desired smoothness and its spatial
variation can be directly controlled by a simple modification of the
cost function. The 2dVar method also appears to be more accurate
than LI and OMA in the regions with sparse data coverage, and
within the large gaps in observations.

Regarding the computational cost, the LI algorithm is sig-
nificantly better than non-local OMA and 2dVar methods as it
required only a fraction of a second of CPU time on a 2.66 GHz PC.
Performance of the OMA and 2dVar is compatible: the 2dVar
interpolation required 0.7–3 s, whereas the OMA code consumed
2.5–4 s of CPU time on the same machine. The 2dVar error
analysis is more expensive (5–8 min of CPU time) than interpola-
tion, since it requires inversion of the Hessian matrix. We did not
have the OMA error analysis code in the disposal. However, rough
estimates show that the corresponding CPU time should be
compatible. In any case, at the present stage of computer
technology the computational cost for both non-local methods
is sufficiently low to allow their operation in real-time regime.

In formulating the 2dVar algorithm we elected to enforce
smoothness in the interpolated patterns of divergence and
vorticity, because these quantities are important for physical
applications. Because the penalized Laplacians of divergence and
vorticity represent high-order derivatives of the velocity field,
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stochastic models for Dcurlv and Ddivv are accurate under the
diagonal approximation of the corresponding covariance matrices
and require definition of only three parameters, which can be
inferred from statistical analysis of HFR data. This property of
the algorithm allows the user to avoid ad hoc definitions of the
background velocity field and its covariance that are used to
regularize the problem in the method of Park et al. (2007).
However, if the background field and its statistics are known with
enough confidence (e.g., from a long data-driven model run) the
corresponding term could be easily included into the cost function
without substantial modifications of the code.

The major idea of the study was to develop an inexpensive
algorithm for real-time interpolation of the surface currents at the
space/time scales resolved by a typical HFR system. The
unresolved processes may induce spatial correlations between
the observed radial velocities. These cross-correlations could be
taken into the account by specifying the off-diagonal elements of
the error covariance matrix s. The corresponding modification of
the code could be done easily as soon as reliable estimates of the
spatial error covariances become available. Similarly, the no-slip
kinematic constraints can either be relaxed or be replaced by
more sophisticated drying/wetting conditions if the HFR-covered
area is bounded by gently sloping beaches.

Another straightforward development of the algorithm is
refinement of the spatial pattern of the regularization variances
W�1: the data density function can be improved by taking into
account angles between the beam directions in the vicinity of a
grid point. Finally, the interpolation problem can be reformulated
in terms of the finite elements that will increase the accuracy in
presentation of the coastlines and data-dense regions.
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