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[1] Open-boundary modal analysis (OMA) is a generalized Fourier transform that
interpolates, extrapolates, and filters scattered current measurements and produces smooth
current maps in coastal areas. Boundary conditions are enforced by adjusting the OMA
modes to the coastline. Filtering is achieved by discarding OMA modes whose length
scales are below a selected threshold. In this paper, we determine the length scale of the
OMA modes, and we derive approximated formulas. Operational use of the OMA modes
and the length scale formulas are illustrated on surface currents measured by high-
frequency radar in the Gulf of Eilat (Gulf of Aqaba).
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1. Introduction

[2] Increasingly accurate remote sensing techniques are
available for measuring surface currents in coastal areas
[Barrick et al., 1985; Gurgel et al., 1999b]. High-frequency
(HF) radar stations measuring surface currents, such as the
SeaSonde [Hodgins, 1994] or WERA [Gurgel et al., 1999a]
flourish along shorelines worldwide. On the basis of Bragg
resonance from ocean waves and the Doppler shift in the
reflected signal, the HF radar station is able to determine
the magnitude of the surface current along a radial joining
the antenna and any target point [Barrick et al., 1977]. For a
given location, measured radial currents (henceforth ‘‘radi-
als’’) from at least two different angles are needed to
evaluate directly the surface velocity vector (henceforth
‘‘total’’).
[3] Figure 1 describes the setting in the Gulf of Eilat in

the northern Red Sea. Two 42 MHz SeaSonde HF radar
systems measure the currents at a spatial resolution of
approximately 300 m and a temporal resolution of 30 min.
There is one SeaSonde at the InterUniversity Institute in
Eilat (IUI) and another station at the Port of Eilat (PORT).
The distance between the two stations is approximately
5 km. In order to approximate the current vector at a certain
point, we need to have radials measurements from both
stations and the two should observe this patch of water from
different angles. Ideally, we want an angle of about 90�
between the two radials and, in any case, at least 15�
[Barrick, 2002].

[4] In addition to geometric considerations, such as the
distance from the radar stations and the angle between the
radials, the accuracy of the measurement is also subject to
sea conditions and radio frequency noise levels. As a result,
the output of such a sensing system is a time varying cloud
of radial measurements. Not only are the radial currents
changing over time but also their number, locations and
accuracy.
[5] For practical purposes such as tracking algae blooms

[Olascoaga et al., 2006] or maximizing the dispersion of
pollutants [Lekien et al., 2005], it is necessary to fill the
gaps in the data and to control its quality. Several methods
are available to interpolate and extrapolate the radar data:
one may perform objective mapping [Kim et al., 2007], use
empirical orthogonal functions (EOF) or use Fourier trans-
forms. An invaluable advantage of the latter is that the
currents are written as a sequence of modes, each of which
with a specific length scale. Filtering can therefore be
performed by thresholding the wavelength of the modes.
[6] A disadvantage of the standard Fourier transform is its

inadequacy in coastal areas. Indeed, currents developed in a
Fourier basis will not necessarily be tangent to a coastline.
While this may not be a significant problem in Eulerian
studies, any method based on Lagrangian paths suffers
dramatically from such a violation of the boundary con-
ditions [Coulliette et al., 2007]. Whether one integrates
single particle paths, computes finite-time stretching, or
extracts Lagrangian coherent structures, it is critical to start
from surface currents that are tangent to the coastline and
that will not allow particle trajectories to penetrate the
coastline.
[7] The work of Lynch [1989] and Eremeev et al. [1992a,

1992b] generalizes the notion of Fourier modes to a coastal
domain with an arbitrary coastline. Instead of projecting on
products of sines and cosines, the modes are defined as the
eigenfunctions of the Laplacian for the domain of interest
[Lipphardt et al., 2000]. Lekien et al. [2004] show that this
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generalized Fourier basis is complete: it can represent all
possible surface currents and it guarantees that the currents
are tangent to the coastline. Lekien et al. [2004] further add
a new sequence of open-boundary modes to allow inflow
and outflow through the segments of the boundary that are
not part of the coastline.
[8] This procedure is referred to as open-boundary modal

analysis (OMA). Each OMA mode is associated with a
specific wavelength, or length scale. Being able to approx-
imate this length scale quickly is essential when performing
filtering or reconstruction of the currents. As shown by
Lekien and Coulliette [2007], knowledge of accurate length
scales for OMA modes also provides a premium method for
computing quasi-turbulent energy spectra.
[9] The goal of this study is to derive robust formulas to

compute the length scale of each OMA mode. Indeed, it is a
necessary step to enable efficient filtering of the data and
accurate nowcasting. Following Tricoche et al. [2001] and
X. Tricoche (Topology simplification for turbulent flow
visualization, paper presented at Grafiktag, Gesellschaft
für Informatik, Saarbrücken, Germany, 2002), we investi-
gate the OMA modes and derive their length scale on the
basis of their features. For a given mode, we extract the
width of the eddies contained in the mode. By eddy, we
mean a closed contour of the stream function or the velocity
potential. This ‘‘eddy’’ usually does not correspond to a real
eddy in the current field but represents the smallest feature
(length scale) of the observed mode. We then derive several
approximations and compare them with existing formulas
(namely, the expressions used by Lipphardt et al. [2000]
and Lekien et al. [2004]).
[10] Using our approximated formulae for the mode

length scales, we investigate reconstruction of surface
currents for the Gulf of Eilat. Because the gulf is a nearly
rectangular basin, with only one segment of open boundary,

it provides an ideal test site for the use of OMA modes, and
for studying the influence of the mode wavelength and the
grid resolution on the mapped currents. The analogy be-
tween the Gulf of Eilat and a rectangle enables us to
demonstrate the correspondence between the approximated
length scale formulas developed in this manuscript and the
length scales of the more familiar Fourier modes. The
results indicate that even in a relatively simple domain, a
significant amount of modes is needed to accurately recon-
struct the surface flow (several hundreds of modes at least).

2. Modal Analysis

[11] Following Kaplan and Lekien [2007], we decompose
the two-dimensional velocity field as

v x; tð Þ ¼ r � kyð Þ þ rf;

where y is the stream function, f is the velocity potential
and k is a unit vector orthogonal to the ocean plane. In most
geophysical flows, a free-slip boundary condition is applied
at the boundary of the domain (i.e., n � v = 0 where n is a
unit vector normal to the boundary). We enforce the
boundary condition by requiring t � ry = n � rf = 0.
Notice that t � ry = 0 implies that y is constant along the
boundary. We can therefore assume, without loss of
generality, that y = 0 along the boundary.
[12] For many flow problems on a rectangle, one can

further represent the stream function as an infinite sequence
of Fourier modes

y x; y; tð Þ ¼
X1
i;j¼1

aij tð Þ sin ip
x

L

� �
sin jp

y

W

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

yij

;

Figure 1. (left) Radial currents on 29 November 2005 at 1000 UT from the stations PORT (purple) and
IUI (black). (right) Approximated total vectors are computed in regions where radial coverage in two
distinct directions is available. In order to directly compute the total vector from the radials mea-
surements, we need to combine nearby radials from at least two different angles. As a result, there are
always more radial measurements than computed vector components.
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where L and W are the length (longest dimension) and width
(shortest dimension) of the rectangular box.
[13] Similarly, the velocity potential can be expanded as

f x; y; tð Þ ¼
X1
i;j¼0

i;jð Þ6¼ 0;0ð Þ

bij tð Þ cos ip
x

L

� �
cos jp

y

W

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

fij

:

[14] A valuable property of the Fourier decomposition is
the fact that each term satisfies, independently, the boundary
condition. As a result, one can modify the coefficients aij(t)
and bij(t) freely without any impact on the global boundary
condition. Experimental and numerical errors on the coef-
ficients aij(t) and bij(t) do not have any effect on the global
boundary condition.
[15] Open-boundary modal analysis is a generalized

Fourier transform for domains that are not rectangular.
Given a compact domain W and its boundary @W, the
generalized stream function modes are defined by the
functional eigenvalue problem with Dirichlet boundary
conditions

Dyn ¼ 
l2
n yn inside W and yn ¼ 0 on @W :

The generalized potential modes are defined as the solutions
of the Neumann eigenvalue problem

Dfn ¼ 
l2
n fn inside W and n�rfn ¼ 0 on @W:

[16] In both cases, we ignore the trivial and constant
eigenmodes corresponding to zero eigenvalues. If the do-
main W is a rectangle, the definitions above reduce to the
Fourier modes. They are, however, applicable to any
geometry and they provide free-slip modes also when the
domain is not a rectangle. Standard results in functional
analysis guarantee that any smooth (or piecewise smooth)
stream function y(x, t) vanishing at the boundary @W can be
written as

y x; tð Þ ¼
X1
n¼1

an tð Þyn xð Þ:

where yn are the generalized Dirichlet modes. Similarly,
any smooth velocity potential whose normal derivative
vanishes at the boundary can be written as a linear
combination of the generalized Neumann modes

f x; tð Þ ¼
X1
n¼1

bn tð Þfn xð Þ:

[17] When the domain is not a rectangle, the modes can
be computed using the finite element method [Aubin, 2000]
and Arnoldi iterations [Arnoldi, 1951; Lehoucq et al., 1998]
to solve the resulting generalized eigenvalue problem.
Selected Dirichlet and Neumann modes for the Gulf of
Eilat are shown in Figure 2. Note that while the gulf is
almost rectangular, the OMA modes are very different from
Fourier modes. Indeed, the modes are known to change
strongly in response to perturbations when their
corresponding eigenvalues are close to the next eigenvalue
[Golub and Van Loan, 1996]. Close to a rectangular shape
(with its repeated eigenvalues), the modes then vary a lot
under perturbation of the boundary.

[18] Note that the sensitivity of each individual OMA
modes to perturbations of the boundary is not an issue as the
ensemble of the modes continue to span the same velocity
space [Trefethen and Betcke, 2006].
[19] Another observation to make about Figure 2 is the

fact that the OMA modes do not contain closed contours
with highly anisotropic length scales. In comparison, Four-
ier modes

yij ¼ sin ip
x

L

� �
sin jp

y

W

� �
;

where i is small and j is large, have long anisotropic
contours. An advantage of OMA (and of working in a
region with a complex boundary) is therefore the fact that
each mode is associated with a very narrow band of length
scales.
[20] The modal decomposition presented above is valid

only for domains that are completely closed by a shoreline;
there cannot be any flux of fluid through the boundary of
the domain. In most practical applications and, in particular,
for coastal studies, the domain freely exchanges particles
and energy through segments of the boundary. For example,
the southwestern edge of the domain depicted in Figure 2 is
not a material coastline and the flow should let particles go
freely across this ‘‘open boundary.’’ As shown by Lekien et
al. [2004], new modes can be introduced to span the degrees
of freedom corresponding to the flow on the open boundary.
If we consider the sequence of modes defined by

Dfb
n ¼

I
@W
gn sð Þ ds

Area Wð Þ inside W and n�rfb
n ¼ gn sð Þ on @W;

where {gn(s)} is a basis for the functions defined on the
open boundary. Any velocity field, that is tangent to the
coastline and arbitrary along the open boundary, can then be
written as

v x; tð Þ ¼
X1
n¼1

an tð Þr � kyn xð Þð Þ

þ
X1
n¼1

bn tð Þrfn xð Þ þ
X1
n¼1

cn tð Þrfb
n xð Þ :

[21] The equation above is the generalization of a Fourier
transform for a velocity field defined on an arbitrary domain
W. It has been useful in many applications because of two
distinguished properties. First, every mode yn, fn or fn

b

satisfies the boundary condition, hence one can truncate the
sequence at any n (e.g., for filtering) without altering the
boundary conditions. The coefficients an(t), bn(t), and cn(t)
can also be modified (for example by numerical or exper-
imental error) without any influence on the global boundary
condition. Second, if the modes are ordered with respect to
their eigenvalue ln, the length scales are approximately in
decreasing order. This property is essential when one
truncates the sequence as only the length scales above a
certain threshold must be retained. It also permits to study
energy at specific length scales.
[22] Using the above generalized Fourier modes, any

bounded velocity field can, theoretically, be expanded using
an infinite number of modes. In practice, the number of
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available modes is finite and only signals with wavelengths
above a certain threshold are taken into account. One then
has to decide what the threshold length scale is and how
many modes are needed to represent the observed velocity
field accurately. This the main subject of this manuscript.

3. Modal Length Scales

[23] In this section, we consider the open-boundary
modes and present several approaches to define their

synoptic length scale. We start from the well-known wave-
length of Fourier modes in a rectangular basin. We then
extend the definition to arbitrary OMA modes and we
demonstrate the procedure in a nearly rectangular domain,
which enables a clear comparison to the Fourier modes.

3.1. Length Scales of Fourier Modes

[24] Before defining and investigating the length scales of
the generalized modes defined in the previous section, we
briefly review Fourier modes and their length scales. Let us
consider a rectangular box of length L and width W. Without

Figure 2. Selected (top) Dirichlet, (middle) Neumann, and (bottom) boundary modes for the Gulf of
Eilat. Circles indicate clockwise vorticity centers (Dirichlet) or point sources (Neumann). Squares
indicate counterclockwise centers (Dirichlet) or sinks (Neumann). Crosses indicate saddle points.
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loss of generality, we assume L � W. The Fourier Dirichlet
mode

yij ¼ sin ip
x

L

� �
sin jp

y

W

� �
;

delineates Nc = ij identical eddy-like structures. We will
refer to any large closed contour of the stream function as an
eddy although it does not necessarily correspond to a real
eddy in the current field. Rather than an actual physical
process, the eddies in this manuscript represent the atomic
features and, hence, the length scales of an observed mode.
[25] In the mode yi j, the eddies are arranged in i

columns and j rows. The length scale of the mode can be
defined as the width (or smallest dimension) of the eddies:

lmin¼
:
min L

i
;W
j

n o
. This is also the size of the smallest feature

in the mode.
[26] One could also think about defining the length

scale as the length (i.e., the largest dimension) of the eddies:

lh ¼: max L
i
;W
j

n o
or the diameter of the eddies: lmax ¼:ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2

i2
þ W 2

j2

q
(i.e., the largest straight segment contained entirely

in a single eddy). Nevertheless, as the arguments below show,
only the width or (the size of the smallest feature) is accept-
able and physically meaningful.
[27] 1. A basic requirement in defining modal length

scales is the ability to order the modes. In particular, the
set of modes whose length scale is smaller than a constant K
must be finite and the number must be increasing with the
constant K. To nowcast currents using OMA, one typically
puts a threshold on the smallest length scale and projects the
data on the modes whose length scales are larger than the
threshold. This is only possible if there are only a finite number
of modes whose length scale is smaller than the threshold.
From this point of view, only lmin is a valid definition.
[28] 2. For a mode corresponding to i = 1 and j = 1000,

we have lh = L and lmax � L. One would, however, not
attribute such a large length scale to this mode by looking at
a plot of its level sets. Indeed, the mode contains very long
but thin eddies whose widths are only H

1000

 L. Only lmin is

able to characterize this structure.
[29] 3. Two approximations of the length scale have been

proposed in the literature. These approximations will be
discussed in the next section, but we point out already that
the approximation of Lipphardt et al. [2000], in the context
of Fourier modes, states

lLKG00ij ¼ p
lij

¼ LWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2W 2 þ j2L2

p :

Figure 3. Length scale definitions for Fourier modes. lh is
the length or largest dimension of the eddies; lmax is the
diameter of the eddies. These two definitions lead to a
metric with which the modes cannot be ordered. l is the
square root of the area per eddy and does not correspond to
the actual length scale of the mode. lmin is the width of the
eddies and a valid, ordering definition of the length scale.
Previous length scale approximations [see Lipphardt et al.,
2000; Lekien et al., 2004] bracket lmin. Each panel
corresponds to a different aspect ratio: (top) r = L/W = 1,
(middle) r = L/W = 2, and (bottom) r = L/W = 5. Note that
the number of modes below a specific threshold for
definitions lh, lmax, and l is not necessarily finite.
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The length scale approximation of Lekien et al. [2004] for
Fourier modes gives

lLCBM04
ij ¼ W

l11

lij

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þW 2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2W 2 þ j2L2

p :

[30] These approximations tell us how the length scale
was defined in the context of operational modal reconstruc-
tion. Figure 3 shows the length scales lmin, lh, lmax, and l, as

well as the approximations lij
LKG00 and lij

LCBM04. The two
approximations used previously bracket lmin and are not
meant to represent the quantities lmax or lh.
[31] Note that in this paper, the eigenvalues are written


lij
2, and not just lij as in the works by Lipphardt et al.

[2000] and Lekien et al. [2004], hence the equations for the
approximated length scales in these papers differ slightly
from the equations above.

3.2. Length Scales of Dirichlet Eigenmodes

[32] We now turn to the generalized Fourier modes
defined in section 2. The solution of Dyn = 
ln

2yn and
yn = 0 at the boundary, is a countable set of functions
yn (ordered by increasing eigenvalues ln). Although these
modes reduce to the Fourier basis for a rectangular domain,
themultiple index is irrelevant for a general domainW. This is
the main difficulty in generalizing the length scale definition
to the eigenfunctions: we do not have access to the
exact distribution of the eddies in two independent directions
(i and j). How can we generalize the definition of the length
scale lmin to such modes?
[33] Let us consider the closed level sets of yn. Courant’s

nodal line theorem states that there is, at most, n closed zero
streamlines [Courant and Hilbert, 1953] and, hence, n eddy
centers. Given the mode yn , let us consider the Nc points xk

c

where yn is a local extremum. Figure 2 shows the distribu-
tion of the centers xk

c for selected modes. Numerically, we
solve the eigenvalue problems using the finite element
method and linear interpolation on the triangular elements.
As a result, the numerical modes are piecewise linear and
centers can be easily extracted [Tricoche et al., 2000]. For
each center xk

c, we consider the quantity

min
m¼1���Nc

m6¼k

d xck ; x
c
m

� �� �
;

where d(x1, x2) is the distance between two points in the
plane. This quantity gives the shortest distance between xk

c

and its neighbors. It is an approximation of the scale of the
eddy of center xk

c. The only discrepancies arise near
the boundary where the width might extend toward the
boundary, i.e., in a direction where there are not any
neighboring centers. For this reason, we define the
generalized eddy width as

mk ¼ min 2 d xck ; @W
� �

; min
m¼1���Nc

m 6¼k

d xck ; x
c
m

� �� �8><
>:

9>=
>; ; ð1Þ

where d(xk
c, @W) is the (shortest) distance between the center

xk
c and the boundary @W.
[34] The quantities mk give a length scale for each

eddy in the mode yn. We assume that those length
scales are similar for each eddy within a single mode
but there are still several options for defining a single
length scale from the Nc eddy length scales mk. We
investigate the following candidates: (1) Lmin = min

k¼1���Nc

{mk},

(2) Lmax = min
k¼1���Nc

{mk}, (3) Lavg = 1
Nc

PNc

k¼1

mk, and

(4) Lrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nc

PNc

k¼1

m2
k

s
. Note that all the definitions

above reduce to lmin when the domain is a rectangle (and for
any aspect ratio). Do these length scales remain close for
nonrectangular domains?
[35] Figure 4 also reveals that the gap between Lmin and

Lmax vanishes quickly. Note that all the quantities plotted in
Figure 4 behave asymptotically as 1/

ffiffiffi
n

p
, according to

Weyl’s law [Weyl, 1950; Courant and Hilbert, 1953].
Nevertheless, Figure 4 (bottom) also indicates that the
relative difference between Lmax and Lmin remains above
30% as n ! +1. In other words, even for a very large
mode index, the range of eddy length scales present in the
mode remains finite. When a rectangular domain is even
slightly perturbed (e.g., in the Gulf of Eilat), the generalized
Fourier basis does not only bend the streamlines near the
boundary and separate the degenerated eigenvalues. It also
blurs the spectrum, and eddies with different length scales
start coexisting within the same generalized mode.
[36] Which one of Lmin, Lavg, Lrms, and Lmax should then

be used to define the length scale of a mode?
[37] The analysis in the previous section shows that the

width of an eddy, and not its diameter or its length, must be
used to define the length scale of an eddy. Extrapolating this
conclusion indicates that the smallest eddy length scale,
Lmin, may be the most natural choice for the definition of the
mode length scale. Indeed, thresholding the length scale in a
modal decomposition process requires the ability to exclude
modes that contain eddy length scale smaller than the
threshold. Only Lmin could fulfil this requirement.
[38] There are, however, two strong arguments against

using Lmin as a length scale definition. First, it is a rather
noisy quantity and it is very sensitive to numerical errors.
To derive the graph in Figure 4, the eigenmodes were
computed on a mesh containing more than 100,000 trian-
gular elements. Smaller meshes lead to similar eigenmodes
but the extraction of the centers often leads to spurious or
duplicate centers. Since Lmin is given by the smallest eddy
length scale, a duplicate center or a spurious center near the
boundary can easily decrease Lmin by several orders of
magnitude. In Figure 4, the curves corresponding to Lmin

and Lmax are much noisier and sensitive to perturbations
than Lavg and Lrms which are averaged over all the eddies.
[39] The second argument against using Lmin as the

definition of the mode length scale is the fact that most
eddies in a mode have a length scale much larger than Lmin.
One of the eddies has a width Lmin but most of them have
scales closer to Lavg. This can already be deduced from
Figure 4 which indicates clearly that Lavg � Lrms. It is easy
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to check from the definition that we must have Lrms > Lavg
and that the variance of the eddy length scale is given by

s2 ¼ 1

Nc

XNc

k¼1

mk 
 Lavg
� �2¼ L2rms 
 L2avg:

[40] In other words, the fact that Lrms � Lavg implies that
the variance s2 is small and that the length scales mk are
clustered around their average Lavg. There are some eddies
with a length scale close to Lmin but the vast majority of the
eddies in a mode have length scales close to Lavg � Lrms.
Figure 5 gives the distribution of the eddy length scales mk

for 3 different modes and corroborates the fact that Lavg �
Lrms usually gives a better representation of the mode length
scale. We also note from Figure 5 that the upper end of the

spectrum is very sparse and that the width of the largest
eddy, Lmax, is not a relevant length scale since only one, or
very few, eddies are as broad as Lmax.
[41] Since both Lmin and Lavg � Lrms are valid candidates

for the definition of the mode length scale, we will study

Figure 4. Comparison of candidate length scale defini-
tions in the Gulf of Eilat. Lmin and Lmax are the length scale
of the smallest and largest eddy, respectively. Lavg and Lrms

are the average and the root means square of the eddy length
scales for each mode.

Figure 5. Distribution of the eddy length scale mk for
Dirichlet modes (top) 200, (middle) 275, and (bottom)
300 in the Gulf of Eilat. Lmin is the length scale of the
smallest eddy but most of the eddies in a mode have a
length scale close to Lavg � Lrms. Very few eddies have
scales comparable to the maximum length scale Lmax.
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both quantities in the remaining of the manuscript. The
various approximations will be compared to both Lmin and
Lrms. Note that the latter is so close to Lavg that a third
comparison is obsolete.

3.3. Length Scale for Neumann Eigenmodes

[42] Although we have discussed the length scale of only
Dirichlet Fourier modes in section 3.1, the results translate
almost immediately to Neumann Fourier modes. Indeed, the
length scale of

yij ¼ sin ip
x

L

� �
sin jp

y

W

� �
;

is the same as the length scale of

fij ¼ cos ip
x

L

� �
cos jp

y

W

� �
:

Following section 3.1, when i 6¼ 0 6¼ j, the length scale of
both Neumann and Dirichlet Fourier modes is given by

lmin ¼ min
L

i
;
W

j

� �
:

[43] The only difference between Neumann and Dirichlet
modes is the domain of the indexes i and j. For Dirichlet
modes, both i and j are strictly greater than 0. For Neumann
modes, there are also nondegenerate solutions correspond-
ing to either i = 0 or j = 0. Loosely speaking, for a given
range of length scales, there are always more Neumann
modes than Dirichlet modes. The length scale formula for
Dirichlet Fourier modes does not accommodate for vanish-
ing i and j, but we can generalize the formula as

lmin ¼

min
L

i
;
W

j

� �
if i > 0 and j > 0 ;

min L;
W

j

� �
¼ W

j
if i ¼ 0 ;

min
L

i
;W

� �
if j ¼ 0 :

8>>>>>>><
>>>>>>>:

The definition above is identical to that of Dirichlet Fourier
modes, except for the modes corresponding to i = 0 and j = 0.
When an index vanishes, we compute the length scale with
the other index, but the result cannot exceed the spatial
extent of the domain. Note that L � W, hence L � W

j
.

[44] Let us now turn to Neumann modes on an arbitrary
domain. The procedure depicted in section 3.2 for Dirichlet
modes can be applied to Neumann modes. For Dirichlet
modes, mk was, for each center xk

c, the smallest distance to
another center (or twice the distance to the boundary, if
smaller). For Neumann modes, we seek sinks and sources
instead of centers. Unlike centers, some of these sources and
sinks will be on the boundary. Taking this into consider-
ation, we define the eddy length scale as

mk ¼ min
m
1���Nc

m 6¼k

d xck ; x
c
m

� �� �
;

where, for Neumann modes, Nc is the number of sources
and sinks and xk

c is the position of the kth point of
divergence.
[45] Another approach consists of ignoring the sources

and sinks that are on the boundary. In this case, the eddy
length scale mk is given by the same formula as for Dirichlet
modes (see equation (1)). Numerically, this can be imple-
mented by ignoring sources and sinks that are within a small
distance from the boundary. Note that this approach is
consistent with the free-slip boundary condition which
implicitly neglects the narrow boundary layer.
[46] Similarly, one can count the saddle points of the

Neumann mode (instead of counting the sources and sinks)
to determine the length scale (see Figure 2). Index theory
[Guckenheimer and Holmes, 1983] guarantees that a saddle
will be found in each closed loop made by the union of
invariant lines between sources and sinks. Indeed, if we
consider the velocity field rf where f is a velocity
potential mode, there are heteroclinic connections between
sinks and sources. Any closed loop made by the union of
heteroclinic connections can be deformed into a smooth
loop that excludes the sinks and sources. The velocity
vectors along the loop will rotate clockwise by 360� as
the loop is traveled in a counterclockwise direction. As a
result the loop has index 
1 and it must contain at least one
saddle point, which is the only fixed point associated with a
negative index.
[47] If one counts the saddle points instead of the sources

and sinks, the length scale is still given by equation (1)
where Nc becomes the number of saddles and xk

c are the
positions of the saddles.
[48] Defining the length scale on the basis of the saddles

in the Neumann modes results in a better mapping between
Neumann and Dirichlet modes for a rectangular domain.
Indeed the centers of

yij ¼ sin ip
x

W

� �
sin jp

y

H

� �
;

correspond exactly to the saddles of

fij ¼ cos ip
x

W

� �
cos jp

y

H

� �
:

[49] On nonrectangular domains, using the saddles of the
Neumann modes to define their length scales guarantees
also that there is no discrepancy between the length scale
definitions for Neumann and Dirichlet modes. As an exam-
ple, Figure 2 shows the modes y1 and f3 which have the
same length scale. The saddle in the Neumann mode plays
the same role as the center in the Dirichlet mode. Index
theory guarantees that except for the first few Neumann
modes in which there might not be any source nor sink in
the interior of the domain, the three approaches above yield
similar results. We have implemented the three methods and
found that after the 10th mode, they yield indistinguishable
results. We note, however, that extracting saddle points is a
more complicated numerical operation than the computation
of sources and sinks (which are extrema of the velocity
potential modes).
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[50] Figure 6 compares the length scale of Neumann and
Dirichlet modes. Both Lmin and Lrms are investigated. As for
Dirichlet modes, the ratio between Lmin and Lrms remains
uniformly bounded above 1. Depending on the application,
one needs to select one of those two quantities as the
reference. It is also worth noting that for a given index n,
the length scale of the Neumann mode is always greater
than the length scale of the Dirichlet mode. Indeed, for a
given length scale threshold, there are always more Neu-
mann modes with features larger than the threshold than
there are Dirichlet modes. On a rectangle, these ‘‘extra’’
Neumann modes correspond to pairs of indexes (i, j) where
either i or j vanishes.
[51] Also note that the differences between Neumann and

Dirichlet modes vanish as the mode index, n, increases.
Indeed, Figure 6 shows that the quantity Lmin becomes the

same for Neumann and Dirichlet modes as n ! +1. Lrms

has the same asymptotic behavior.

3.4. Length Scale for Boundary Modes

[52] The boundary modes generate flux through segments
the of open boundary [Lekien et al., 2004]. They satisfy

Dfb
n ¼

I
@W
gn sð Þ ds

Area Wð Þ inside W and n � rfb
n ¼ gn sð Þ on @W;

where gn(s) is a basis of functions on the open boundary
(i.e., where the flux is nonzero). As in the works by Lekien
et al. [2004] and Kaplan and Lekien [2007], we assume that
a Fourier basis is used for gn. For example, one can use

gn sð Þ ¼ cos
nps
Lob

� �
;

where Lob is the length of the open boundary and n 2 N.
[53] As shown by Lekien et al. [2004] and by Kaplan and

Lekien [2007], in this case, the length scale of the nth
boundary mode is given by

Lobn ¼ Lob

nþ 1
: ð2Þ

[54] Determining the length scale of the boundary modes
is therefore a much simpler process than the corresponding
operation for interior Dirichlet and Neumann modes. The
formula above is exact and easily computed for any domain
W. In comparison, the ‘‘synoptic length scales’’ Lmin and
Lrms for interior modes are much more difficult to compute
as they require knowledge of the entire mode (as opposed to
just the mode index, n, or the eigenvalue, l) and the
computation of centers or saddle points.
[55] In the next sections, we derive approximations for

the length scale of the interior modes and we compare them
to Lmin and Lrms. The objective is to find simple approx-
imations that are readily computed (i.e., they depend only
on n, l, Area(W) and the aspect ratio r) for Dirichlet and
Neumann modes. A similar analysis for boundary modes is
unnecessary since equation (2) already provides the exact
length scale in terms on n and Lob.
[56] Many approximated formulas for an arbitrary domain

will require knowledge of an approximated length (largest
dimension of the domain), an approximated width (smallest
dimension of the domain) or the aspect ratio (ratio between
length and width). In the next section, we derive a meth-
odology for determining the width, length, and aspect ratio
of an arbitrary domain.

4. Width and Length of an Arbitrary Domain

[57] To derive approximated formula for modal length
scales, it is often convenient to start from a rectangular
domain where the eigenvalues and the modes are known
analytically. As a result, and as shown in the next sections,
an approximation of the length L of the domain, its widthW,
or the aspect ratio r = L/W are often needed to use these
approximations. These are obvious for a rectangular domain.

Figure 6. Comparison of the synoptic length scales for
Dirichlet and Neumann modes in the Gulf of Eilat. Lmin is
the length scale of the smallest eddy. Lrms is the root mean
square of the eddy length scales for each mode.
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However, how can we determine the ‘‘largest side’’ L
and the aspect ratio of an arbitrary, nonrectangular domain
W? In this section, we use the moment of inertia tensor of W
to give a precise definition of L and W for an arbitrary
domain.

4.1. Inertia Tensor

[58] If we consider a bounded open set W � R
2, its area is

given by

Area Wð Þ ¼
ZZ

W
dx ;

and the center of gravity of the domain is

xg ¼
1

Area Wð Þ

ZZ
W
x dx :

[59] Neither the area nor the center of gravity gives any
information about the length and the width of the domain.
The distribution of the domain about its center of gravity is
determined by moments of inertia. Suppose that we pick a
straight line in the plane that passes through the center of
gravity of W. Such a line is defined by a unit vector w
pointing in the direction of the axis. A measure of ‘‘how the
domain is distributed about the axis’’ is given by the
moment of inertia

~iw ¼
ZZ

W
x
 xg
� �

� w� x
 xg
� �� �

dx:

Themomentof inertiacanbecomputed foranyaxisw=(w x,wy)
using the moment of inertia along the x and y axes:

~iw ¼ wx wy

� � Ixx Ixy
Ixy Iyy

� �
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

I

wx

wy

� �
;

where Ixx = 1x �~ix is the x component of the moment of
inertia with respect to the x axis, and Ixy = 1y �~ix is the y
component of the moment of inertia with respect to the x
axis.
[60] By definition, we have Ixy = Iyx, hence the 2 � 2

inertia tensor is symmetric. As a result, the matrix I has two
real eigenvalues corresponding to two orthogonal eigenvec-
tors. The norm of the moment of inertia, k~iwk gives a
measure of ‘‘how far the domain extends in the direction
perpendicular to w.’’ The direction w is parallel to ‘‘the
largest side’’ of the domain if k~iwk is a minimum. The
direction w is parallel to ‘‘the smallest side’’ of the domain
if k~iwk is maximum. In other words, the distribution of the
domain can be represented by a rectangle whose sides are
parallel to the (orthogonal) eigenvectors of the inertia
tensor. The eigenvalues of the inertia tensor give the length
of the sides of the rectangle.

4.2. Length and Width of W
[61] The inertia tensor gives us a way to compute a

rectangle that fits the mass distribution inside an arbitrary
domain W. The real eigenvalues lmax and lmin encode
information about the size of this rectangle. To extract the

length and width, we seek a rectangle that has an inertia
tensor identical to the original domain W. Using a rotation
matrix R that maps the coordinates in the reference frame of
the eigenvectors of the inertia tensor, we rewrite the inertia
tensor as

I ¼ R
lmax 0

0 lmin

� �
R>:

[62] The inertia tensor of a rectangle whose sides are L
and W and are aligned with the same eigenvectors is given
by

I ¼ 1

3
R

L3W 0

0 LW 3

� �
R>:

We require that the rectangle used to approximate the
domain has the same area as the original domain W, hence
Area(W) = LW and we rewrite the equation above as

I ¼ Area Wð Þ
3

R
L2 0

0 W 2

� �
R>:

For the inertia tensor of the domain W to match that of the
approximating rectangle, we need to set

L ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lmax

Area Wð Þ

s
;

W ¼:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lmin

Area Wð Þ

s
:

[63] The formula above gives the length and width of the
rectangle that has the same center of gravity, the same area,
and the same moment of inertia as the domain of interest, W.
Given W, it provides a way to compute the length and width
directly using the eigenvalues of the moment of inertia
tensor. The orientation of the rectangle is given by the
eigenvectors of the tensor.
[64] It is worth noting that computing the eigenvectors

becomes a singular problem when the eigenvalues are
identical or very close to each other (i.e., when the aspect
ratio of the domain is close to 1). The largest eigenvalue,
which gives the ‘‘largest side of the domain’’ is, however,
continuous, independently of the aspect ratio of the domain.
In other words, it might be difficult to plot the actual
approximating rectangle when the aspect ratio is close to
1, but determining the largest length scale of the domain and
its aspect ratio is never a singular problem [Dieci and
Eirola, 1999].

4.3. Examples

[65] Figure 7 shows the results of two numerical appli-
cations: the nearly rectangular basin of the Gulf of Eilat
(that we study in this manuscript) and Monterey Bay which
has a more complex coastline [see, e.g., Paduan and
Rosenfeld, 1996]. The surface currents in these two regions
are sampled using coastal radar stations. For using some of
the approximated length scale formula derived in the next
sections and selecting the number of OMA modes to use,
one needs to evaluate the ‘‘largest side’’ and the ‘‘smallest
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side’’ of these domains. According to the method described
above, these lengths are (L, W) = (8.17 km, 6.26 km) for the
Gulf of Eilat, and (L, W) = (47.6 km, 36.7 km) for Monterey
Bay. Figure 7 also shows the corresponding approximated
rectangles (dashed rectangles). On both panels, a thick line
indicates the boundary of a computational domain W where
enough data is available for modal analysis. OMA modes
and nowcasts are computed for these domains.

5. Approximated Length Scales

[66] Both the smallest eddy width (Lmin) and the average
eddy width (Lrms) are acceptable definitions for the mode
length scale. These quantities are, however, difficult to

compute since they require intensive and subtle computa-
tions to extract centers and saddles. In this section, we
investigate several approximations of the length scale and
compare them to Lmin and Lrms.

5.1. A Lower Bound: LLKG00

[67] Let us consider a rectangle and the corresponding
Fourier eigenvalues

l2
ij ¼ p2

i2

L2
þ j2

W 2

� �
: ð3Þ

For a given l, there might be several couples (i, j) satisfying
the equation above but we always have

1 � i � L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

p2

 j2

W 2

s
< L

l
p
; ð4Þ

and

1 � j � W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

p2

 i2

L2

s
< W

l
p
: ð5Þ

The length scale of a Fourier mode is given by

Lmin ¼ min
L

i
;
W

j

� �
;

hence we need to treat the couples (i, j) differently on the
basis of the relative magnitude of L/i and W/j. From
equation (3), we deduce that L/i � W/j if and only if

i � lLffiffiffi
2

p
p
:

In this case, we have

Lmin ¼
L

i
>

p
l
;

where we have used the last inequality in (4).
[68] Similarly, when L/i > W/j, we find

j >
lWffiffiffi
2

p
p
;

and

Lmin ¼
W

j
>

p
l
;

by the last inequality in (5).
[69] In other words, we have shown that p/l is always

strictly smaller than Lmin for a Dirichlet mode on a rectan-
gle. This lower bound was used as an approximation of the
length scale used by Lipphardt et al. [2000], hence we
define

LLKG00¼: p
l
;

as a first candidate approximation of Lmin.

Figure 7. Computation of the width and length for the HF
radar covered regions in (top) the Gulf of Eilat and (bottom)
Monterey Bay. The solid line indicates the computational
domain where modes and nowcasts are computed. The
dashed line is the rectangle built on the inertia tensor of the
domains that provides width and length for each domain.
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[70] Note that the lower bound is valid for any rectangle;
it does not depend on the aspect ratio r = L/W. In general,
LLKG00 does not need to remain a lower bound of Lmin when
the domain is not a rectangle. Nevertheless, as demonstrated
in the next section, we expect this quantity to provides an
approximate lower bound of the length scale.
[71] The lower bound LLKG00 is valid for both Dirichlet

and Neumann modes. In the case of a Neumann mode,
however, the last inequalities in equations (4) and (5) are not
strict and the lower bound is not strict. For some Neumann
modes, Lmin becomes equal to the lower bound LLKG00.

5.2. An Upper Bound: Lup

[72] We have established that when L/i � W/j, we have
i � lLffiffi

2
p

p
. In this case,

Lmin ¼
L

i
�

ffiffiffi
2

p p
l
:

When L/i > W/j, we have j > lWffiffi
2

p
p
and

Lmin ¼
H

j
�

ffiffiffi
2

p p
l
:

In both cases, and for any rectangle, we have the upper
bound

Lmin �
ffiffiffi
2

p p
l

¼: Lup:

[73] The upper bound Lup is only valid for a rectangular
domain, but we also expect it to overestimate the length
scale of a mode for a nonrectangular region. Note that
contrary to the lower bound LLKG00, the upper bound is not
strict. For any rectangle, an infinite number of modes have a
length scale equal to Lup.
[74] Note that Lipphardt et al. [2006] use the length scale

formula 2p
l instead of the formula LLKG00 = p

l from previous
work [Lipphardt et al., 2000]. The quantity 2p

l is always

greater than the upper bound Lup =
ffiffiffi
2

p
p
l and is not a good

approximation of the mode length scale in the sense
developed here. All the formulas and definition in this
manuscript attempt to define the eddy diameter, or half
the wavelength of the modes. Indeed, a full period of an
oscillating mode has both a minimum and a maximum,
hence two eddies. The formulas used by Lipphardt et al.
[2006] describe the full wavelength of the modes and,
hence, translate into p

l in the context of this study. Similarly,
any definition and formulas from this manuscript can be
multiplied by two to obtain results in terms of full wave-
lengths.

5.3. A Dimensional Approximation: LLCBM04

[75] In the work by Lekien et al. [2004], an approxima-
tion of the modal length scale is derived on the basis of
Buckingham’s P theorem [Buckingham, 1914; Curtis et al.,
1982]. If nothing but the eigenvalue (
ln

2) is known,
Buckingham’s dimensional analysis provides a strong con-
straint on the relationship between ln and the length scale,
Ln, of the nth mode: their product is a constant that does not
depend on the mode index n. We can therefore find the

length scale of any mode on the basis of a reference mode as
follows

Ln ¼ Lref
lref

ln

;

[76] For Dirichlet modes, the reference is naturally the
first mode [Lekien et al., 2004; Kaplan and Lekien, 2007].
Indeed, the first mode corresponds to a single gyre with
length scale L1 = W (e.g., for a rectangle, y11 = sin(px/L)
sin(py/W)). As a result, on the basis of Buckingham’s P
theorem, the length scale of any Dirichlet mode is approx-
imated by

Ln ¼ W
l1

ln

;

which is the result given by Lekien et al. [2004].
[77] For Neumann modes, using the same formula usually

underestimates the length scale [Kaplan and Lekien, 2007].
This is a consequence of the fact that the reference Dirichlet
mode does not correspond to the first Neumann mode. For a
rectangle, the first Dirichlet mode is y11. The corresponding
Neumann mode (with the same length scale W) is f11 but it
is not the first Neumann mode. At least f01 and f10 have
smaller eigenvalues than f11.
[78] We can therefore apply Buckingham’s P theorem

also to Neumann modes, provided that we use the correct
reference f11. Let us denote by m the index of f11 in the list
of Neumann modes ordered by eigenvalues. The length
scale of the nth Neumann mode is then given by

Ln ¼ W
lm

ln

:

[79] The formula above is not very useful since the
index m of the reference mode is usually unknown. For a
square (L = W), there are only 2 modes with eigenvalues
smaller than that of f11, hence m = 3. When the aspect ratio
r = L/W > 1, the reference index can be larger than 3. For the
Gulf of Eilat (r � 1.3), Figure 2 shows that we have m = 3:
the third Neumann mode has the same length scale as the
first Dirichlet mode.
[80] Fortunately, one does not need to compute the exact

index m to evaluate the eigenvalue lm and use the formula
above. Indeed, on a rectangle, we have

l2
m ¼ l2

11 ¼ p2
1

L2
þ 1

W 2

� �
:

Since we assume L �W, the smallest eigenvalue l1 is given
by

l2
1 ¼

p2

L2
;

hence the approximated Neumann length scale can be
rewritten

Ln ¼ W
lm

l1

l1

ln

¼ W
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p l1

ln

;
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where r = L/W is the aspect ratio.
The dimensional approximation can then be summarized as

LLCBM04 ¼ nW
l1

l
; ð6Þ

where n = 1 for Dirichlet modes and n =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
for

Neumann modes.

5.4. An Exact Formula for Fourier Modes: Lrect

[81] For Fourier modes, the number of centers (or sad-
dles) inside the domain is given by

Nc ¼ i j:

Since equation (3) gives another equality involving i and j,
it is possible to determine i and j from l and Nc. We have

i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2l4

2p2
� L2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

p4

 4

N2
c

W 2L2

svuut
;

j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2l4

2p2
�W 2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

p4

 4

N 2
c

W 2L2

svuut
:

8>>>>>>>><
>>>>>>>>:

As a result, we get

Lmin ¼ min
L

i
;
W

j

� �
¼

ffiffiffi
2

p p
l

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p4N2

c

l4W 2L2

s0
@

1
A


1
2

:

The formula above gives the exact length scale Lmin for any
Fourier mode as a function of its eigenvalue l, the number
of eddy centers Nc, and the area of the domain Area(W) =
LW. The formula is only exact for rectangular domains but,
for arbitrary regions, we define the candidate approximation

Lrect ¼:
ffiffiffi
2

p p
l

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p4N2

c

l4Area2 Wð Þ

s !
1
2

: ð7Þ

Note that for Neumann modes, Nc is the number of saddle
points, not the number of centers.

5.5. Variants of Lrect

[82] Equation (7) gives the exact length scale when the
domain is a rectangle and is expected to perform very well
on other domains. It does, however, require the computation
of Nc, the number of centers (or saddles for Neumann
modes). Since Nc is difficult to compute and is subject to
a high numerical error, it is often preferable to approximate
Nc using the eigenvalue l or the mode index n. We note the
following distinguished values for Nc:
[83] 1. The first value is Nc

max. On a rectangle, we have

j2 ¼ W 2 l2

p2

 i2

L2

� �
;

hence,

N2
c ¼ i2 j2 ¼ W 2 i2

l2

p2

 i4

L2

� �
;

which is maximum when i = lWffiffi
2

p
p
. As a result, for a given

eigenvalue l, the maximum value of Nc is

Nmax
c ¼ l2 Area Wð Þ

2p2
:

Substituting the expression above in equation (7), we find

Lrectmax¼
: ffiffiffi

2
p p

l
;

which is identical to the upper bound Lup.
[84] 2. Similarly, one can determine that the minimum

value for Nc is Nc
min = lH/p. As a result, we have

Lrectmin ¼
ffiffiffi
2

p p
l

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p2

l2rArea Wð Þ

s !
1
2

:

The expression above becomes asymptotically (i.e., for
l ! +1) identical to the lower bound LLKG00 but
improves the estimate for eigenmodes corresponding to
small eigenvalues.
[85] 3. Since we have both the minimum and maximum

value for Nc, we can also use the average

N avg
c ¼ Nmax

c þ Nmin
c

2
¼ l2Area Wð Þ

4p2
þ lW

2p
:

Substitution in equation (7) gives

Lrectavg¼
: p
l

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
 4 p2

l2 rArea Wð Þ 
 4 p
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rArea Wð Þ

p
rs :

Notice that as l ! +1, we have

Lrectavg !
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffi
3

pp p
l
� 1:035

p
l
;

which is almost identical to LLKG00. As a result, the
approximation Lavg

rect is, asymptotically, very similar to the
lower bound LLKG00, but it provides a better estimate for
low eigenvalues for which the lower bound LLKG00 is
usually too conservative.
[86] 4. Another estimate for Nc can be obtained by

‘‘counting’’ the modes for which the number of centers is
smaller than Nc. Recall that we have 1 � i � Nc + 1, and the
number of modes, n, which have less than Nc centers is
approximately equal to the area under the curve Nc/i in the
(i, j) plane. This gives

n �
Z Ncþ1

1

Nc

i
di ¼ Nc ln Ncþ1ð Þ:

One can check that the function x ln(x + 1) is strictly
increasing for positive x. As a result, one can compute its
inverse,

Nc ¼ g nð Þ;
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which gives the number of centers (or saddles) as a function
of the mode index n. Notice that the inverse of x ln(x + 1)
does not have an analytic expression, hence one needs to
evaluate g numerically or build a seek table. Given the
mode index n, we can then approximate Nc using the
tabulated function g, and the expression

Lrectg ¼:
ffiffiffi
2

p p
l

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p4g2 nð Þ

l4 Area2 Wð Þ

s !
1
2

is an estimate of the length scale of the mode.
[87] At first, one would expect the approximation above

to yield poor results as the argument used to derive it is
flawed: we have computed the number of modes which
have less than Nc centers, but this quantity cannot be easily
related to the mode index n. Indeed, the mode index n

depends on the position of the mode in a sequence that has
been ordered by length scale or by eigenvalue. However, the
computation above assumes that the index n gives the
position in a sequence ordered by Nc. There is no guarantee
that the ordering by eigenvalue is even close to the ordering
by number of centers. In fact, for rectangular domains, one
can show that the two orderings (and the two definitions of
the mode index n) are very different.
[88] As a result, when one evaluates Nc as g(n) where n is

the actual mode index (i.e., ordered by eigenvalue), the error
can be quite large. Nevertheless, the next section will reveal
that only Lavg

rect outperforms Lg
rect. We cannot fully explain

this result but, intuitively, the reason is that in a non-
rectangular domain, the eigenmodes rearrange in such a
way that long eddies are replaced by (more numerous)
isotropic eddies. Provided that the boundary of the domain
is complex enough, most modes tend to be uniformly

Figure 8. Comparison of the synoptic length scales for (top) Dirichlet and (bottom) Neumann modes in
the Gulf of Eilat. Lmin is the length scale of the smallest eddy. Lrms is the root means square of the eddy
length scales for each mode. Both Lmin and Lrms can be considered as a synoptic length scale and we seek
their best approximation.
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distributed [Shnirelman, 1974]. For example, on a square,
the modes (i, j) = (100, 1) and (i, j) = (1, 100) corresponds to
Nc = 100, a relatively small number of centers for a large
eigenvalue. The configurations with thin eddies are, how-
ever, unstable and any perturbation of the domain will
modify the pair immediately in such a way that the number
of centers is higher in the perturbed modes (see, e.g.,
Trefethen and Betcke [2006, Figure 5] for an illustration
of this process on a square with a snipped corner).
[89] The accuracy of Lg

rect is therefore not a consequence
of its accuracy for a rectangular domain. It is, in fact less
accurate than the other approximations for a rectangle.
Instead, its strength comes from its ability to model a
complex phenomena that takes place when one deforms a
rectangular domain into a complex domain W: the mode
index with respect to Nc becomes more and more similar to
the mode index with respect to l as the domain W looks less
and less like a rectangle.

6. Comparison

[90] Figure 8 shows Lmin and Lrms for Dirichlet and
Neumann modes in the Gulf of Eilat. Recall that depending
on the application, either Lmin or Lrms could be selected as
the ‘‘true synoptic length scale.’’ Superimposed on each of
these plots are the approximations developed in the previous
section.
[91] We draw the following conclusions:
[92] 1. If one uses the average eddy width Lrms as the true

length scale, then the best approximation is LLCBM04. It is
worth noting that this conclusion only holds for domains
whose aspect ratio is close to 1.5. For the Gulf of Eilat, the
tensor of inertia reveals that the aspect ratio r � 1.3 and
LLCBM04 performs well. Inspecting Figure 3 reveals that
LLCBM04 is no longer the best approximation of Lrms when
r � 1 or r > 2. For r � 1, LLCBM04 overestimates the length
scale. For r > 2, LLCBM04 tends to LLKG00, which under-
estimates the length scale. None of our approximations are,
however, close to Lrms for r > 2. Lavg

rect is the closest but there
is a significant error. In these cases, we suggest to use the
average between the upper and lower bounds: 1/2 (Lup + Lmin

rect).
[93] 2. If one uses the smallest eddy length scale Lmin as

the truth, then the best approximation is Lrect, which requires
counting the exact number of centers (or saddle points for
Neumann modes).
[94] 3. If one uses the smallest eddy length scale Lmin as

the truth and does not want to extract features such as cen-
ters and saddle points, then the best approximation is Lavg

rect.
[95] 4. If one is interested in a lower bound of the

minimum length scale Lmin, the approximation LLKG00 is
rather conservative (both asymptotically and for small
eigenvalues). At almost no extra computational cost, Lg

rect

and Lmin
rect provide much better lower bounds on Lmin.

[96] It is worth noting that Lipphardt et al. [2006] used

the approximation LLSK06 = 2p
l which is twice the lower

bound LLKG00 = p
l. Since LLSK06 = 2p

l >
ffiffiffi
2

p
p
l = Lup, the

quantity LLSK06 overestimates the length scale. Figure 8
confirms that LLSK06 is not a good approximation of the
length scale (in the context of this manuscript). The formula

LLSK06 = 2p
l should be seen as a lower bound for the full

oscillation wavelength (double the eddy length scale). It is

equal to two twice LLKG00 and should be compared to the
double of the quantities in this manuscript.
[97] Note also that the formulas LLKG00, LLSK06 and Lup

have, however, an invaluable advantage: they depend only
on the eigenvalue l, which is readily available from the
mode solver. All the other formulas require the computation
of the area of the domain, the width W, the aspect ratio r or
other less trivial quantities.

7. Nowcasting in the Gulf of Eilat

[98] The northern tip of the Gulf of Eilat is a nearly
rectangular, deep, and semienclosed basin in the northeast
region of the Red Sea. Two 42 MHz HF radar (SeaSonde)
stations are installed on the western coast of the gulf, one at
the InterUniversity Institute and the other at the Port of Eilat
(separated by approximately 5 km). This network enables
observing the 6 km � 10 km region at a spatial resolution of
about 300 m and a temporal resolution of 30 minutes (see
Figure 1). More details on the deployment and validation of
this network are given by Gildor et al. [2009].
[99] To proceed with OMA nowcasting, we begin by

plotting the length scale as a function of the mode index
for Dirichlet, Neumann, and boundary modes in Figure 9.
Using this plot, we can determine the number of modes
needed on the basis of the desired resolution. On the basis
of Nyquist criterion, the smallest mode must be larger or
equal to the spatial resolution of the data to avoid aliasing.
(Note that Nyquist criterion states that the sampling fre-
quency must be at least twice the frequency of the signal. In
our case, however, the mode length scale is half the wave-
length, hence the factor 2 disappears from the criterion.)
One must, however, also ensure that the number of modes
used does not exceed the number of radial currents avail-
able. This second requirement is usually more constraining
than Nyquist criterion. For the Gulf of Eilat, it is typically
possible to assimilate radial data down to a 350 m resolu-
tion. Wherever we have two nearby radial measurements,
we can directly recombine the radial data into total vectors
[Barrick, 2002]. The resulting total vectors count for two
radial measurements and can also be assimilated using the
OMA modes. In this case, however, fewer modes can be
used since some unpaired radial currents have been dis-
carded. It is typically possible to assimilate total currents
down to a 400 m resolution in the gulf. Because there are
many more radials than totals, it is therefore more advan-
tageous to do the OMA nowcasts using radial data [Kaplan
and Lekien, 2007]. Another advantage of this procedure is
that it circumvents the errors that result from the way radials
are combined into totals, specifically the Geometric Dilution
Of Precision (GDOP [Barrick, 2002; Kim et al., 2008]).
Using the radials, we avoid the errors in totals and we use
more data. Note that as a result, the OMA analysis which
assimilates radial data can also be seen as another way to
combine radials into totals. Recently, Kim et al. [2008] pre-
sented a generalized optimal interpolation method to com-
pute surface currents from radials.
[100] We selected 4 different resolution lengths (400 m,

600 m, 1 km, and 2 km) and, using the curves shown in
Figure 9, we determined the number of Dirichlet, Neumann,
and boundary modes for each case (Table 1). It is worth
noting that the plot in Figure 9 can be easily checked or
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approximated using the closest rectangle. On the basis of
the method described in section 4, we have determined that
a rectangle of 8.17 km by 6.26 km has the same moment of
inertia as the Gulf of Eilat. For the rectangle, one can easily
plot the length scale of the Fourier modes as a function of
the mode index. Figure 10 compares the length scales for
the modes in the gulf and the Fourier modes. Clearly, the
length scales of the Fourier modes corroborates our com-
putations in the gulf and can be used as an approximation of
the length scale. This conclusion becomes very important
when one works with very large sequences of modes. In this
case, the eigenvalues of the modes and our length scale
approximation may become imprecise when n ! +1. The
behavior of the Fourier modes for the closest rectangle can be
used to verify the results or to extrapolate the curves for large n.
[101] Given a set of Dirichlet modesyi (i = 1 � � � ny), a set of

Neumannmodes fj (j = 1 � � � nf), and a set of boundary modes
fk
b (k = 1 � � � nb), the nowcast (i.e., the reconstructed velocity

field) is a linear combination of all the modes. The velocity at
point x is given by

v xð Þ ¼
Xny
i¼1

ai r� kyi xð Þð Þ þ
Xnf
j¼1

bj rfj xð Þ þ
Xnb
k¼1

gk rfb
k xð Þ:

ð8Þ

To perform the nowcast, one needs to determine the
coefficients ai, bj, and gk in such a way that the linear

combination best represents the measured radar data. This is
typically done by defining a cost function, such as

Ftot ¼
XN
n¼1

k v xnð Þ 
 vn k2;

where N is the number of total vectors in the radar data, xn is
the position of the nth measurement and vn is the nth total
vector. When assimilating radial measurements (as opposed
to total vectors), the data set is a sequence of N radial angles
qn and the corresponding radial currents vn. As depicted by
Kaplan and Lekien [2007], a cost function for radial data
assimilation is given by

Frad ¼
XN
n¼1

k 1qn� v xnð Þ 
 vn k2;

where 1qn is the unit vector oriented along the nth radial qn.
In both cases the cost function is the difference between the
nowcast (reconstructed velocity field which depends on the
coefficients ai, bj and gk) and the observed velocity
components. We view this cost as a function of the
coefficients ai, bj and gk and the nowcast is obtained by
minimizing the cost function. The corresponding optimal
coefficients ai, bj and gk determine the linear combination
of the selected modes that best fit the data [Lekien et al.,
2004].
[102] In practice, however, Kaplan and Lekien [2007]

showed that two critical improvements must be brought to
the cost function. First, each term must be weighted
inversely proportional to the local measurement density.
This modification aims at avoiding the lack of sensitivity of
the cost function to regions where data collection is sparse.
The second major modification is the introduction of a
smoothing term which forces the minimum to correspond to
coefficients ai, bj and gk of reasonable magnitude. Indeed,
Kaplan and Lekien [2007] showed that without any smooth-
ing term, unphysical large coefficients could correspond to

Table 1. Resolution and Number of Modes Used for Current

Reconstruction

Resolution ny nf nb Total Number of Modes (N)

2 km 11 18 5 34
1 km 46 62 9 117
600 m 134 163 14 311
400 m 307 354 22 683

Figure 9. Length scale for the Dirichlet, Neumann, and
boundary modes in the Gulf of Eilat using the approxima-
tion Lavg

rect. By drawing a horizontal line at the desired
resolution on this plot, one determines the number of modes
needed in each sequence of modes.

Figure 10. Comparison of the modal length scales for
OMA modes in the Gulf of Eilat and the Fourier modes of
the rectangle approximating the gulf.
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Figure 11. OMA nowcast on 29 November 2005 at 1000 UT based on radial data. (a–d) Recombined
total vectors (red) and reconstructed OMA currents (blue). (e–h) Reconstructed divergence. (i– l) Recon-
structed vorticity. The nowcast resolution is 400 m (683 modes) in Figures 11a, 11e, and 11i; 600 m
(311 modes) in Figures 11b, 11f, and 11j; 1 km (117 modes) in Figures 11c, 11g, and 11k; and 2 km
(34 modes) in Figures 11d, 11h, and 11l.
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Figure 12. OMA nowcast on 29 November 2005 at 1000 UT based on total data. (a–d) Recombined
total vectors (red) and reconstructed OMA currents (blue). (e–h) Reconstructed divergence. (i– l) Recon-
structed vorticity. The nowcast resolution is 400 m (683 modes) in Figures 12a, 12e, and 12i; 600 m
(311 modes) in Figures 12b, 12f, and 12j; 1 km (117 modes) in Figures 12c, 12g, and 12k; and 2 km
(34 modes) in Figures 12d, 12h, and 12l.
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Figure 13. OMA nowcast on 22 June 2006 at 1430 UT based on radial data. (a–d) Recombined total
vectors (red) and reconstructed OMA currents (blue). (e–h) Reconstructed divergence. (i– l) Reconstructed
vorticity. The nowcast resolution is 400 m (683 modes) in Figures 13a, 13e, and 13i; 600 m (311 modes)
in Figures 13b, 13f, and 13j; 1 km (117 modes) in Figures 13c, 13g, and 13k; and 2 km (34 modes) in
Figures 13d, 13h, and 13l.
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Figure 14. OMA nowcast on 22 June 2006 at 1430 UT based on total data. (a–d) Recombined total
vectors (red) and reconstructed OMA currents (blue). (e–h) Reconstructed divergence. (i– l) Reconstructed
vorticity. The nowcast resolution is 400 m (683 modes) in Figures 14a, 14e, and 14i; 600 m (311 modes)
in Figures 14b, 14f, and 14j; 1 km (117 modes) in Figures 14c, 14g, and 14k; and 2 km (34 modes) in
Figures 14d, 14h, and 14l.
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the minimum error for a set of radar measurements. These
coefficients lead to unphysical large velocity vectors away
from the cloud of measurements. The updated cost function
for radial measurements is given by

F ¼
XN
n¼1

1

An|{z}
weights

k 1qn� v xnð Þ 
 vn k2

þ K
Xny
i¼1

a2
i þ

Xnf
j¼1

b2
j þ

Xnb
k¼1

g2k

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

smoothing

; ð9Þ

where K = 10
9 is a smoothing coefficient and An is the
inverse of the measurement density at xn (in this manu-
script, the coefficients An are equal to the area of the
Voronoi cell of the nth measurement). Note that other cost
functions than the one above can be used. For, example, in
the work by Chu et al. [2003], the weights are modified to
take into account an evaluation of the error at each point.
Recently, Kim et al. [2008] presented a general optimal
interpolation method to compute surface currents from
radials, which can be used with either regular grid
interpolation or with OMA expansion. When used in
conjunction with OMA, the method of Kim et al. [2008]
provides directly the coefficients ai, bj and gk and
associated errors without the need for using the cost
function above. In this manuscript, however, we concentrate
on studying the effect of length scales and we derive the
OMA coefficients from the quadratic cost function in
equation (9), so as to eliminate variations due to other factors.
[103] Given the radar data and a set of modes, we

minimize the cost function given in equation (9) to obtain
the coefficients ai, bj and gk. Once the coefficients are
computed, the velocity, divergence and vorticity can be
computed everywhere using the linear combination in
equation (8). Figures 11–14 show the OMA nowcast at
the 4 selected resolutions. Figures 11 and 12 are performed
for 29 November 2005 at 1000 UT. Figures 13 and 14
analyze the data for 22 June 2006 at 1430 UT.
[104] To study the influence of the input data set, we have

performed two OMA nowcast for each date. Figures 11 and
13 assimilate the radial current data. In Figures 12 and 14,
we used recombined total vectors as input.
[105] The velocity nowcasts are in good agreement: they

are similar whether radial data or total data were used and
they are qualitatively similar for all resolutions. It is worth
noting that all the nowcasts are compared to the total
vectors, hence the nowcast based on radial data may appear
less accurate. In fact, OMA nowcasts based on radial data
are more accurate: they use more data points and avoid the
difficulties and errors due to the process of recombining
radial data into total vectors. Detailed analysis of the
residual error and more extensive comparisons are given
by Kaplan and Lekien [2007].
[106] Another important aspect of the nowcasts in

Figures 11–14 is our apparent inability to reconstruct diver-
gence and vorticity fields. As we increase the resolution,
small features of increasing magnitude keep appearing. In
the next section, we compute the energy spectrum and we

uncover why, in this case, we can reconstruct the velocity
field, but not the divergence and the vorticity field.

8. Energy Spectrum in the Gulf of Eilat

[107] The modal decomposition given in equation (8) is
analogous to a Fourier transform. It gives the velocity field
as an infinite sum of components, each with a specific
length scale. Using the coefficients ai, bj, and gk, together
with the knowledge of the length scale of the corresponding
modes, we can then reconstruct the energy spectrum.
[108] In a Fourier transform, each direction has its own

wave number (kx and ky). One can then either plot a two-
dimensional energy spectrum or combine the two directions

using the scalar wave number k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
. For OMA

modes, the anisotropic plot is not currently an option since
the modes are not associated with multiple index wave
numbers. Each OMA mode accounts for a single wave
number k = 2p

L
, where L denotes the unique length scale. A

disadvantage of using OMA modes to compute energy
spectrum is therefore its current inability to identify aniso-
tropic processes (such as alongshore and cross-shelf varia-
tions). On the other hand, OMA is a powerful tool for
computing isotropic energy spectrum with a single scalar
wave number. Indeed, the OMA modes contain features
whose length scales are all close to a single reference length
scale (see, e.g., Figure 5). In comparison, a Fourier trans-
form does not provide such a length scale segregation. For
example, the Fourier mode sin(kxx) sin(kyy) is typically

associated with the scalar wave number k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
but

when kx and ky are much different, this mode spans a large
range of length scales.
[109] We define E(k) dk as the quantity of energy

contained in modes whose wave numbers are in the interval
[k, k + dk]. To illustrate the computation of the spectrum, we
consider the month of July 2005. We can compute the
average velocity field during month of July by averaging
the nowcast coefficients. We then subtract the average of
each coefficient to study the fluctuations. The resulting
energy spectrum is shown in Figure 15. Linear regression
of the data and Scheffé’s simultaneous confidence bands
[Seber, 1977; Kosorok and Qu, 1999] reveal k
5/3 behavior
over the range [400 m, 3 km] that we studied. Such a
spectrum is typical for established turbulence but, as far as
we know, not for in situ current measurements using HF
radar. The evolution of the flow field toward the fully
developed turbulence state will be studied in the future.

[110] The energy spectrum E(k) � k
5/3 decreases with
the wave number. Accordingly, the magnitude of the veloc-
ity, given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k E kð Þ

p
� k
1/3, is therefore also decreasing

with k. This explains why the velocity nowcast of the
previous section are not sensitive to the number of modes
used. Provided that sufficiently many modes are used, the
large-scale velocity field is invariant if we add more modes.
[111] On the other hand, the velocity gradient does not

decrease with the wave number [Lekien and Coulliette,
2007]. Indeed, the magnitude of the derivative of the velocity

behaves as k
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k E kð Þ

p
� k2/3. Figure 16 shows the distribution

of the velocity gradient across wave numbers and corrobo-
rates the fact that the velocity gradient is higher at small
scales. This explains why we cannot properly characterize
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vorticity and divergence in the nowcast of the previous
section. As we increase the resolution of the OMA nowcast,
the minimum length scale decreases and we find smaller-
scale features in the vorticity and in the divergence, with
magnitudes higher than that of the large scale. As a result, the
estimates of the vorticity and divergence should be viewed
with caution as it varies with the selected nowcast resolution
[Ramp et al., 2008].
[112] This result is also critical for Lagrangian studies.

Whether one studies a drifting body or the evolution of a
tracer, the velocity gradient creates significant stretching
and induces particle separation [Lekien and Haller, 2008].
We cannot ignore small-scale features in the velocity
gradient if its magnitude does not decrease with k. When
studying advection and Lagrangian properties, velocity
fields must be reconstructed with a large number of OMA
modes. Using only few modes may lead to an acceptable
qualitative velocity field, but a long sequence of modes is
needed to capture the significant amount of velocity gradi-
ent at the small scales.

9. Conclusion

[113] In this paper, we analyzed the modes used in the
open-boundary modal analysis (OMA) method and deter-
mined synoptic length scales for each mode. The length
scale of an OMA mode depends on the features of the mode
(width of the eddies, position of the saddle points, . . .) and
is difficult to compute, in particular for large mode indexes.
For this reason, we have also derived approximated formula
that give the mode length scale as a function of quantities
that are more readily available (such as the number of
eddies or the number of saddle points for the most accurate
formula, or only the mode index and the mode eigenvalue
for the most convenient formula).

[114] We have tested the approximated length scale for-
mula on rectangular domains of various aspect ratio. In
addition, the quantities are also compared for the Gulf of
Eilat, a nearly rectangular domain, where we find excellent
agreement.
[115] The new approximated length scales gave us the

ability to improve the performances of OMA techniques for
two specific applications. First, we are better equipped to
select appropriate modes that correspond to all the length
scales below a certain threshold. As a result, the OMA
nowcasts that result from the projection of the HF radar data
on the selected OMA modes are more accurate and filtered
with a precise scale. Second, we are now able to compute
very accurate energy spectra for coastal regions using OMA
modes. Whether the flow is laminar, quasi-turbulent, or tur-
bulent, we can reconstruct the energy density as a function
of the length scale for any length scale where there is a
sufficiently strong HF radar signal. Using the approximated
formula is particularly efficient when studying the asymp-
totic behavior of the energy spectrum. Indeed, all the
approximated length scale formula presented in this paper
are asymptotically approaching the synoptic length scale.
For small length scales (that is, for large wave numbers),
behavior with respect to an approximated wave number is
therefore identical to the behavior with respect to the
synoptic wave number.
[116] It is also worth noting that the new developments in

this manuscript did not provide much improvement in
reconstructing the divergence and vorticity fields in the
quasi-turbulent Gulf of Eilat. While the nowcast of the
surface currents improved, the vorticity and divergence
fields remain strongly influenced by the selected scale
threshold. This is a fundamental issue due to the fact that

Figure 15. Solid curve indicates energy spectrum for the
Gulf of Eilat based on OMA nowcasts (July 2005). Dashed
line indicates least square linear regression which gives the
slope 
1.53. . . � 
5

3
. Light dashed curves indicate 90%

confidence bands for the linear regression [Seber, 1977].

Figure 16. Solid curve indicates magnitude of the velocity
gradient in the Gulf of Eilat based on the OMA nowcast
(July 2005). Dashed line indicates least square linear
regression which gives a slope 0.688. . . � 2

3
. Light dashed

curves indicate 90% confidence bands for the linear
regression [Seber, 1977].

C06024 LEKIEN AND GILDOR: LENGTH SCALES OF HARMONIC MODES

22 of 24

C06024



the energy does not decrease fast enough in quasi-turbulent
flows. As shown by Lekien and Coulliette [2007], quantities
based on derivatives of the velocity (such as velocity
gradient, divergence and vorticity) are often distributed over
a wide range of length scales and can hardly be recon-
structed by a set of modes filtering high wave numbers. This
phenomena is critical in understanding transport and mixing
in quasi-turbulent flows [see, e.g., Mathur et al., 2007] and
further research is planned to understand and overcome this
phenomena.
[117] The aim of this manuscript is to associate a length

scale with each mode. Given a prescribed cutoff length
scale, our formulas can determine efficiently and accurately
which modes must be included in the nowcast. We did not,
however, address the question of how to select the cutoff.
Indeed, in addition to geometric considerations, the choice
depends on external factors such as native resolution and
noise levels in the HF radar data.

Notation

Domain and geometries
W � R

2 Domain of interest.
Area(W) Area of the domain W.

@W Boundary of the domain.
@W0 Portion of boundary made of ‘‘solid coastline.’’

n � v = 0 on @W0.
@W1 Open boundary where in/outflow is allowed.

@W1 = @W\@W0.
n Unit vector normal to the boundary @W and

pointing outward.
L Length (largest side) of the domain. If the

domain W is not a rectangle, L is the length of
the rectangle that has the same area and the same
moment of inertia tensor as W.

W Width (shortest side) of the domain. If the
domain W is not a rectangle, W is the width of
the rectangle that has the same area and the same
moment of inertia tensor as W.

r = L
W

Aspect ratio of the domain. Without loss of
generality, r � 1.

Modes and eigenvalues
yij Dirichlet Fourier mode: yij = sin(ipx

L
) sin(jp y

W
).

fij Neumann Fourier mode: fij = cos(ipx
L
) cos(jp y

W
).


lij
2 Eigenvalue of a Fouriermode:
lij

2 =
p2 ( i
2

L2
+ j2

W 2).

yn nth Dirichlet mode on a domainW:Dyn =
ln
2 yn

in W. yn = 0 on @W.
fn nth Neumann mode on a domain W: Dfn =


ln
2fn in W. n � rfn = 0 on @W.


ln
2 Eigenvalue of the nth Dirichlet or Neumann

mode. The eigenvalues are referred to as ‘‘
ln
2’’

since, for both problems, they are real and
negative.

fn
b nth open-boundary mode on a domain W.

Dfn
b =

H
@W

gn sð Þ ds
Area Wð Þ in W. n � rfn

b = gn(s) on @W.

Eddy length scales
lmin Width (smallest dimension) of the eddy.
lh Length (largest dimension) of the eddy.

lmax Diameter of the eddy.
l Square root of the area of the eddy.

Modal length scales
Nc Number of eddies in a mode.
mk Length scale of the kth eddy.

Lmin Minimum eddy length scale. Lmin = min
k
{mk}.

Lmax Maximum eddy length scale. Lmax = max
k

{mk}.

Lavg Average eddy length scale. Lavg =
1
Nc

PNc

k¼1

mk.

Lrms RMS eddy length scale. Lrms =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Nc

PNc

k¼1

m2
k

s
Approximated length scales

LLKG00 Lower bound [from Lipphardt et al., 2000].
LLKG00 = p

l .
Lup Upper bound. Lup =

ffiffiffi
2

p
p
l .

LLCBM04 Dimensional approximation [from Lekien et al.,

2004]. LLCBM04 = nW l1

l . n = 1 (Dirichlet) or n
=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

p
(Neumann).

Lrect Exact length scale for the closest rectangle.

Lrect =
ffiffiffi
2

p
p
l 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p4 N2

c

l4 Area2 Wð Þ

q� �
1
2

. Nc =

number of eddies (Dirichlet) or saddles (Neumann).
This formulagives the exact length scale forFourier
modes but requires the difficult computation ofNc.

Lmax
rect Same as Lrect but Nc is replaced by its upper

bound. Lmax
rect =

ffiffiffi
2

p
p
l = Lup.

Lmin
rect Same as Lrect but Nc is replaced by its lower

bound. Lmin
rect =

ffiffiffi
2

p
p
l 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p2

l2 rArea2 Wð Þ

q� �
1
2

.

Lavg
rect Same as Lrect but Nc is replaced by its average

value. Lavg
rect = p

l
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 
 4p2

l2 rArea Wð Þ

 4p

l
ffiffiffiffiffiffiffiffiffiffi
rArea Wð Þ

p
qr .

Lg
rect Same as Lrect but Nc is replaced by the g estimate

(see first two equations in paragraph 86). Lg
rect =ffiffiffi

2
p

p
l 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 4p4 g2 nð Þ

l4 Area2 Wð Þ

q� �
1
2

where n is the

mode index.
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