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[1] High-frequency radar currents are assimilated in a West Florida Shelf (WFS) model
based on the Regional Ocean Model System (ROMS), which is nested in the Atlantic
Hybrid Coordinate Ocean Model (HYCOM) for the purpose of including both local
and deep-ocean forcing, particularly the Gulf of Mexico Loop Current. Tides are not
included in this model. An ensemble simulation of the WFS model is carried out under
different wind-forcings in order to estimate the error covariance of the model state
vector and the covariance between ocean currents and winds. Radial currents measured by
high-frequency radar antennas near Saint Petersburg and Venice, Florida, USA, are
assimilated using this ensemble-based error covariance. Different assimilation techniques
using a time-average ensemble, a filter to reduce surface-gravity waves and an
extended state vector including wind stress were tested. Results of the WFS model
assimilating surface currents show an improvement of the model currents not only at

the surface but also at depth.
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1. Introduction

[2] High-frequency (HF) radar is a relatively new remote
sensing technique with a large potential for describing
coastal ocean surface currents. Unlike deep-ocean models
where surface currents can be estimated from satellite
altimetry, the accuracy and temporal resolution of sea
surface height measured by altimetry are too low for coastal
applications [Volkov et al., 2007]. HF radar measurements
(see Barrick et al. [1977] and Barrick [1978] for early
accounts of the technique) have the potential to fill the gap
and to provide surface current estimates on the shelf with
broad spatial coverage (i.e., several hundreds of km).

[3] In numerous places, the surface circulation in coastal
regions is primarily driven by winds. Regional ocean
models generally use numerical weather prediction wind
fields whose accuracy is limited near the coast because of
complex coastline geometry, coarse resolution and missing
physics in the coastal regions. As a result, errors in the wind
field are transferred to the model currents. In addition to
errors in wind-forcing, errors in the turbulence parametri-
zation, stratification and the pressure gradient scheme
degrade coastal ocean model simulations. In this work,
HF radar currents are used to constrain the evolution of a
model by data assimilation.
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[4] Several approaches to assimilate HF radar currents
have been proposed. Lewis et al. [1998] assimilated the
surface current estimates for an HF radar system in an ocean
model of the Monterrey Bay, California. The observations
were incorporated by nudging the surface currents toward
the observed currents using a pseudostress. The wind stress
was not directly taken into account in this approach. This
method appears to be a practical way of ingesting the
overall, qualitative characteristics of the current observa-
tions, but problems arise if errors in the observations
generate unrealistically large divergence and convergence
in the model. Lewis et al. [1998] proposed to remove the
nondivergent signal from the observations before assimila-
tion. In the present paper, we will leave the observations as
they are, but we will reduce the gravity waves from the
correction introduced by the assimilation [Barth et al.,
2007b].

[s] Breivik and Satra [2001] assimilated HF radar cur-
rents in a high resolution Princeton Ocean Model of the
Fedje area of the Norwegian Sea. An ensemble of model
states sampled from a reference run was used to prescribe
the error covariance of the model. The zonal and meridional
velocity components at the intersection of the coverage of
both HF radars were used. They showed that the assimila-
tion of the HF radar currents had a positive impact on the
model forecasts but that the beneficial impact of the
assimilation disappeared after a time-scale of about 6 h.

[6] Oke et al. [2002] used an ensemble of 18 different
summer model states to assimilate HF radar currents into a
shelf circulation model off the Oregon coast. The model and
the observations were both time-averaged and the analysis
increment distributed over time (TDAP, time-distributed
averaging procedure). The authors found that the assimila-
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Domain of the WFS ROMS model delimited by the black dash-dotted line and the maximal

range of the CODAR antenna at the Redington Shore (solid line) and Venice sites (dashed line). The

locations of the ADCP stations C10, C12, C15, and

tion compensated for unrepresented components of the
applied wind stress and wind stress curl.

[7] A technique based on physical and statistical princi-
ples is the approach of Paduan and Shulman [2004]. The
statistical method Physical-space Statistical Analysis Sys-
tem [Cohn et al, 1998] was used to obtain a surface
velocity correction over the model domain, as well as
physically based assumptions to project it vertically. In
one approach, a wind stress correction was computed such
that the work of the wind on the ocean surface is conserved.
Another procedure consisted in using the Ekman solution of
the wind-driven ocean surface to project the surface velocity
increment to depth. Both approaches showed an overall
improvement of the model solution relative to unassimilated
ADCP current measurements.

[8] An ensemble of model states at different times is often
used to prescribe the error covariance. The underlying
assumption is that the time variability can be related to
the error covariance. However, in most cases, the error
covariance is expected to be smaller than the time variability
and the time variance needs to be scaled to a realistic level.
This is particularly evident for the annual temporal vari-
ability of temperature which contains the seasonal cycle, but
this procedure generates also long-range spatial correlations
due to the fact that the ocean heats or cools in a spatially
uniform way. In the present paper, we will estimate the
model error covariance by an ensemble of model simula-
tions using different wind-forcings. This avoids the problem
of dealing with model states at different times. However,
since this approach is computationally intensive, the model
ensemble is generated once and kept constant over time, in
analogy to an optimal interpolation approximation.

[9] The model simulations are realized for an entire year
to test the assimilation scheme under different flow regimes.
Tides are removed from the surface current observations
and we choose to average the currents over 2 d. This
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C16 is also shown.

conservative choice was guided by the fact that an assim-
ilation performed too frequently can also degrade the model
solution [Talagrand, 1972]. Consequently, tides are not
included in the model either.

[t0] The model used for this study will be presented in
section 2. In section 3 the computation of the model error
covariance is explained. Section 4 details the assimilation
scheme used. The results are presented in section 5 and we
summarize our findings in the conclusions (section 6).

2. West Florida Shelf Model

[11] The West Florida Shelf (WFS) model is based on
ROMS (Regional Ocean Model System [Shchepetkin and
McWilliams, 2005]), a hydrostatic, three-dimensional, prim-
itive equation, free-surface model using an s-coordinate in
the vertical. The horizontal curvilinear grid resolution varies
from 4 km near the coast to 10 km at the open boundary,
which matches approximately the resolution of the outer
model. The model domain is shown in Figure 1. The
vertical grid of the WFS ROMS model contains 32 terrain-
following levels. The barotropic and baroclinic model time
steps are 6.6 s and 400 s respectively. This model is nested
(one-way) into the North Atlantic Hybrid Coordinate
Model (NAT HYCOM) run by the Naval Research Labo-
ratory, MS, USA [Chassignet et al., 2007]. The model
nesting allows for the inclusion of a realistic Loop Current
(LC) in the WFS model. Like the NAT HYCOM, the WFS
model surface heat flux is forced by NOGAPS (Navy
Operational Global Atmospheric Prediction System) varia-
bles, in particular, air temperature, relative humidity, cloud
fraction and short-wave radiation. The other heat flux
components (latent and sensible heat flux and long-wave
radiation) are computed by the WFS model internally
using bulk formulae [Fairall et al., 1996]. As wind-forcing
the model uses an optimal interpolated (OI) wind field
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combining NCEP NAM winds (National Centers for Envi-
ronmental Prediction, North American Mesoscale Model)
with in situ wind measurements [Alvera-Azcdrate et al.,
2006]. The model currents are in general more accurate with
this wind-forcing than the model solution obtained with
NOGAPS winds [He et al., 2004; Barth et al., 2008b].

[12] The model surface temperature is relaxed to a cloud-
free Ol SST based on AVHRR (Advanced Very High
Resolution Radiometer), GOES (Geostationary Operational
Environmental Satellites), MODIS (MODerate Resolution
Imaging Spectroradiometer) and TMI (TRMM Microwave
Imager), as described by He et al. [2003]. The heat flux
correction has the following form [Barnier et al., 1995]:

Qe =a(T(z=0)-T17) (1)

where 77 is the observed SST, 7(z = 0) is the model surface
temperature and the coefficient a = —47 W m > K~ '. The
model is also forced by river inflow using the US
Geological Survey climatological river runoffs from for
the Mississippi, Mobile, Apalachicola, Suwannee, Hillsbor-
ough, Caloosahatchee and Shark Rivers.

[13] Finally, the WFS ROMS model implementation uses
the Mellor-Yamada 2.5 turbulence scheme [Mellor and
Yamada, 1982] and the horizontal pressure gradient is
computed using the spline density Jacobian formulation
by Shchepetkin and McWilliams [2003]. More details about
the model implementation, in particular of the model nest-
ing, are given by Barth et al. [2008a, 2008b].

3. Model Error Covariance and Ensemble
Generation

[14] An ensemble of model states reflecting the model
error has been generated to provide an ensemble represen-
tation of the model error covariance P.

1
P= ﬁx’x’T (2)

where X' is a n x N matrix. The size of the model state
vector is n and N is the ensemble size. Each column of this
matrix represents an ensemble member minus the ensemble
mean. In principle, the ensemble members are generated
taking all possible model imperfections (including its
forcings) into account. This model error covariance can
thus be obtained independently from the assimilated
observations. However, in practice only a small subspace
of the model error space can be constrained by the
observations. Any error mode x with no (significant)
projection on the space controlled by the observations
(i.e., the columns of the observations matrix H),

Hx =0, (3)

will not contribute to the model analysis. For efficiency, it
therefore makes sense to only include error modes in the
ensemble that can be controlled by the observations. For
example, the heat fluxes have certainly errors, but it is not
expected that the assimilation of HF radar currents can
control those errors. The heat fluxes are therefore not
perturbed to create the ensemble of model states.
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3.1. Ensemble of Wind Fields

[15] The assumption is made that most of the model
surface current error on the shelf can be attributed to
erroncous wind-forcing. The ensemble of model states are
consequently obtained from an ensemble model run with
perturbed wind-forcing. All model states produced this way
will have different surface currents and therefore each
associated error mode will have a significant projection to
the vector space controlled by the observations.

[16] An ensemble of 100 wind fields is obtained by
perturbing the central OI wind field. The spatial structure
of these perturbations is given by EOFs (Empirical Orthog-
onal Functions). The matrix W containing the zonal u“ and
meridional v* wind components, is defined as:

Wi = uj; (4)

W,-H,,J = V; (5)

where i is the spatial index (1 <i < m) and is the temporal
index (1 <j < n). The size of the matrix W is thus 2m X n.
We used the wind fields over the WFS domain for 2004 at a
6-h frequency. Wind fields anomalies W’ are formed by
removing the temporal average. A classical multivariate
EOF decomposition is performed with those wind anoma-
lies, limited to the » dominant EOFs (here » = 60 based on
the eigenvalue spectrum),

W ~ Uzv7 (6)

[17] The EOFs U are used to produce multivariate, spatial
perturbations of the wind field:

Wk =w 4+ UzA® (7)

where A® is a » x n matrix containing random time series
and where the superscript & represents the ensemble
member. All properties of the spatial wind fields that can
be expressed by a linear relationship,

DW,; =C, forall 1 <j<n (8)

where W; is the jth column of matrix W, and D and C are
matrices of appropriate size, are also respected by the
perturbed wind fields:

(k) _ ;
DW” =C, forall 1 <j<n 9)

[18] In particular, the divergence of the perturbed wind
field is of the same order of magnitude than the divergence
in the unperturbed wind. This desirable property would not
have been obtained if both wind fields components were
perturbed independently.

[19] The random time series (rows of A®) in equation (7)
have a standard deviation of % and a correlation timescale of
L =7 d, meaning that the expected error in the wind field is
one third of its variability.

3 of 15



C08033

30°N | 08
29°Nf 0.6
28°NT 04
27°N| 0.2
26°N| 0
25°N i -0.2
90°W  88°W  86°W éﬁvﬁ Jﬂéz“’w
Figure 2. Instantaneous correlation between the u-velocity

at a specific location marked by the circle and the u-velocity
at all other model grid points for the ensemble members on
30 January 2004.

3.2. Model Ensemble

[20] The ensemble simulation starts on 1 January 2004
from initial conditions obtained from NAT HYCOM. Each
ensemble member uses the same initial conditions but
different wind-forcings. In theory, the integration period
of the ensemble should be related to the interval between
assimilation cycles. Since errors in the initial conditions
were not taken into account in this ensemble simulation,
each ensemble member was integrated for 30 d in order to
develop a realistic large ensemble variance. The ensemble
standard deviation of the surface current is about 7.2 cm/s
on the WFS.

[21] It is also interesting to study the spatial structure of
the covariance. Figure 2 shows the correlation of the zonal
velocity at a given point (marked with a circle) and the
zonal-velocity at all other surface grid points. The structure
of this spatial correlation pattern is surprisingly rich. Near
the location of the chosen point, the correlation exhibits
sinusoidal variations. The observed AVHRR SST and the
modeled SST of the first member of the ensemble are shown
in Figure 3. The chosen point for the correlation is located
in a temperature front and meandering small-scale structures
are visible in the model SST. The position and the presence
of these small scale features are qualitatively confirmed by
AVHRR SST observations. The instabilities of this temper-
ature front are related to baroclinic instabilities. This front is
present in each member of the ensemble simulation, but the
phase of the wave-like temperature front is different. This
situation results in the particular correlation structure of
Figure 2, since the velocity of a chosen grid point is
negatively correlated with the velocity at a half-wavelength
distance and positively correlated with the velocity at an
entire wavelength distance.

[22] This particular correlation pattern can also be derived
analytically under idealized conditions. We assume that the
x-coordinate is parallel to the mean axis of the front. For
baroclinic instabilities, the space and time dependent stream
function can be written as:

,(/) _ % + awei(wt—kx+®) (10)
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[23] As usual, the physical variables correspond to the
real part of the complex quantities. 1 is the stream function
of the background flow balancing geostrophically the den-
sity gradient. The exact relationship between frequency w
and wave number k& of the meanders is not important for the
following derivation. The velocity perpendicular to the front
is obtained by:

_ aw_ 8E - i(wi—kx+)
V= = 8x+zave (11)

where a, is the velocity amplitude of the meander. The
frontal system will be in a slightly different state in every
ensemble member. The background state () will be similar
but the phase ¢ and to a lesser degree the wave number &
will be different from one ensemble member to another.
Parameters v and k are treated as random variables, and
each ensemble member corresponds to a realization of these
parameters. In particular, we assume that k£ follows a
Gaussian distribution with mean &’ (the true wave number)
and variance o7, and that the phase follows a uniform
distribution with values between 0 and 27. The ensemble
mean of the velocity v in such system is the velocity of the
background flow,

%

Ep] =— % + ia,E [ei(”’_k“+‘o>] =

12
o (12)
since one value for the phase v and its opposite phase are
equally likely. The mesoscale variations are averaged out by
the ensemble mean as expected. The deviation around the
statically mean state is therefore:

!

V = v — Ep] = ia,e o)

(13)
[24] The spatial covariance between the v-velocities at

two given positions (x; and x,) at the same time ¢ can be
written as:

E [V(x1 )/v(xz)/*} = Rt () gl o}/2. (14)

where the star (*) denotes the complex conjugate. This
spatial correlation is directly related to the spatial covariance

AVHRR SST

Model SST
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Figure 3. AVHRR SST and model SST on 29 January
2004.
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since the variance is a’ everywhere. The correlation
between the velocity at x; and x, can thus be written as,

(15)

[25] Without an uncertainty in the wave number (o = 0),
the analytical correlation pattern would behave like a
cosine. The cosine term in equation (15) is therefore due
to the uncertainty in the phase of the meanders in the frontal
system. The second term is a Gaussian function depending
on the distance between the two points and it stems from an
uncertainty in the wave number. A Gaussian correlation
function is indeed chosen in several applications of the
optimal interpolation scheme and it reflects our intuition
that only nearby points are correlated. However, the sinu-
soidal variations of the correlation are intrinsic to frontal
systems. They arise in the ensemble correlation through
constructive and destructive interference of the several
wave-like current structures associated to the frontal system.
This is similar to the interference pattern of light in the
classical double-slit experiment of Young, where the co-
variance behaves like the light intensity (both are indeed
quadratic quantities).

corr(v(x1 ), v(x2)) = cos(k! (x — x1))e 2 1) 70/

4. Data Assimilation
4.1. Analysis Scheme

[26] The data assimilation scheme is based on the Kalman
filter analysis. The best linear unbiased estimator (BLUE) of
the model’s state vector given the model forecast x/ with
error covariance P/ and the observations y° with error
covariance R is given by x“:

x“ =x/ +K(y’ — Hx/) (16)

K =P/H’ (HP/H +R) ' (17)

P’ = P/ — KHP/ (18)
where H is the observation operator extracting the observed
part of the state vector. If P/ has a low rank, then the error
covariance can be efficiently expressed in form of its square
root matrices [7Zippett et al., 2003]:
P/ = stfT (19)
[27] The Kalman gain can then be written as [Brankart et
al., 2003]:

K=S/UI+A)"'U"(HS/) R (20)
where U and A are defined by the following eigenvector-
decomposition:

(HS/) 'R (HS/) = UAUT (21)
[28] If we insert the Kalman gain (20) in equation (17),
we obtain the expression for the a posteriori state:

x = x/ +8/UI+A) U (BS) R (v —HY)(22)
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[29] This equation shows that the correction introduced
by the analysis is a linear combination of the columns of $7.
This property is common to all assimilation methods based
on a reduced rank error covariance of the model state. This
approximation assumes that the model is perfect along the
directions not included in the error space defined by the error
covariance. It is therefore not surprising that the correc-
tion term can only lie inside the space formed by the
columns of S,

[30] The derivation of the assimilation scheme is mathe-
matically equivalent to the SEEK filter [Pham, 2001] and
has been used previously in a number of studies [e.g.,
Brasseur et al., 1999; Brankart et al., 2003; Testut et al.,
2003; Barth et al., 2007a; Vandenbulcke et al., 2006].

4.2. Surface Gravity Waves in the Analysis Increment

[31] Surface gravity waves may be produced by the data
assimilation if the analysis produces a dynamically unbal-
anced state. Their dynamics can be described by the
linearized shallow water equation model:

a_ ou ov

o Ox Oy (23)
ou on
— = —gh— 24
5 =V —eghy, (24)
av an

where 7 is the surface elevation, U and V are the depth-
integrated horizontal velocity components, H the water
depth and g the acceleration due to gravity. The propagation
speed of these waves is /gH. For an approximate water
depth of 100 m, the speed of the barotropic waves is 31 m/s.
This means that barotropic waves cross the footprint of an
HF radar antenna (about 200 km) in only 2 h. In this work,
we use two-day averaged current fields, and therefore they
contain no useful constraint for barotropic waves. Since the
assimilated data set does not resolve these fast-moving
waves, we implemented a filter to ensure that the assimila-
tion does not introduce barotropic waves in the model.

[32] For a constant depth, the previous equations (23)—
(25) can be solved analytically. The general solution is a
linear combination of two types of modes: a stationary
mode representing the geostrophic equilibrium and a fast
moving mode representing inertia-gravity waves. The
amplitudes of the later are explicitly set to zero in the
assimilation increment. It can be shown that this procedure
leads to the following differential equations [Barth et al.,
2007b] for the filtered quantities 7/, U’ and V"

8_2 a_z_ﬁ ,_l{“)_V_l@_U_f_z (26)
o2 a2 gh)! Thax hay gh

) gh on’

,  ghon'
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Figure 4. Radial velocities measured from the Redington
Shore and Venice sites on 9 December 2005. Positive values
represent a current toward the antenna.

[33] This approach conserves potential vorticity, which is
used to generalize the previous equation to an arbitrary
topography. Numerical tests show that this approach can be
used to reduce gravity waves even in the presence of an
abrupt shelf break. In the present work, this method is used
for the assimilation of observations located on the shelf and
we will test its benefit in this context.

[34] The filter is integrated in the assimilation algorithm
in the following way. '

[35] 1. The analysis increment x’ is computed according
to:

X =K(y - Hx') (29)

[36] 2. The depth-integrated velocity is calculated and the
surface elevation is extracted from x".

[37] 3. Equations (26)—(28) are solved. 4

[38] 4. The filtered quantities are replaced in x'.

[39] 5. The increment x’ is added to the model forecast x/

to obtain the analysis x“.
[40] Since all operations are linear, the filter can be for-
mally written as:
x* =x/ + FK(y’ — Hx/) (30)
where the filter is expressed as a n X n matrix F performing
the previous operations on the analysis increment.

4.3. Observations

[41] HF radar sites at Redington Shore and Venice mea-
sure the radial velocity components of the ocean surface
relative to the HF radar antennas. The CODAR instruments
operate at a 26 kHz frequency band centered at 4.55 MHz.
The azimuthal resolution is 5° and the radial resolution is
6 km. Radials were generated from the raw spectra data
using the SeaSonde processing suite, and were calibrated
using measured antenna patterns [Ullman et al., 2006;
Ohlmann et al., 2007]. The radials were used at the
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measured locations and no subsequent spatial interpolation
was performed.

[42] The zonal and meridional velocity components can
be derived from the radial velocity maps where the range of
the antennas intersects. A velocity vector can thus be
computed only if the velocity of a water parcel at a given
location and at a given time is measured by both antennas.
The coverage (in space and time) of the velocity vectors is
thus smaller than the coverage of the radial velocity maps.
Therefore we choose to assimilate directly the radial cur-
rents instead of the total currents. Furthermore, the error
between the derived zonal and meridional currents is
correlated. This correlation between the observations should
be specified in the observations error covariance matrix R.
This difficulty does not arise when the original radial
currents are used.

[43] Since the model runs do not include tides, the tidal
variability has to be subtracted from the HF radar data
set. On the basis of all available data from April 2004 to
April 2006 at a hourly frequency, tidal parameters of the
radial velocity are determined using the T TIDE package
[Pawlowicz et al., 2002]. Only the mayor constituents, i.e.,
01, K1, M2, and S2 are included in this analysis. Once these
tidal parameters are known, the tidal variation for the four
mayor constituents are subtracted from the radial currents.
These hourly subtidal currents are then averaged over a two-
day time window to reduce the noise inherent to the HF radar
currents (see Barth et al. [2008a] for more details).

[44] Along with the hourly radial currents, an error map is
provided by the HF radar instrument. Since the tidal
constituents are computed using a large data set, we assume
that the error in the estimated tidal currents is negligible
compared to the error in the subtidal currents. The error of
the hourly currents is thus used as the error of the subtidal
currents. The error variance of the two-day currents is
computed as the mean error variance of current maps within
the two-day time period.

[45] An example of the radial velocities is shown in
Figure 4 for 9 December 2005. Positive radial currents
represent a movement toward the CODAR antenna. On this
date, the general current is directed northwestward. Despite
the two-day averaging period, the radial currents are still
quite noisy. The CODAR data therefore presents an inter-
esting and challenging task for data assimilation which aims
to optimally reduce the error by combining the model and
the data.

4.4. Implementation

[46] The model state vector is composed by the sea level
elevation, temperature, salinity and the two horizontal
curvilinear velocity components. All those variables are
used on the native Arakawa-C model grid.

[47] For each single (scalar) radial HF radar measure-
ment, the model horizontal surface currents components are
interpolated bilinearly on the location of the HF radar
measurement and then the velocity vector is projected to
the radial direction. The velocity perpendicular to the radial
direction is thus not directly constrained by the observations
but a correction is obtained based on the model error
covariance linking all elements of the state vector. Several
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Figure 5. Diagram showing the different sequential steps of the data assimilation algorithm. The
computation of the analysis increment is represented as two boxes in the diagram for the displaying
purposes, but the analysis increment of the model variables and of the wind stress are performed together

in a single step.

assimilation experiments with slightly different setups are
conducted.

[48] AssimRef: In this experiment the assimilation is
performed with 100 member ensemble of instantaneous
fields. No postprocessing is applied to the correction.

[49] AssimAvrEns: The same as AssimRef, except that the
ensemble is composed by 100 members of daily averaged
fields.

[s0] AssimFilter: The same ensemble as AssimRef is
used, except that the filter reducing gravity waves is used
as a postprocessing step.

[51] AssimWind: The state vector at time 7 now also
contains the wind stress components averaged over a two-
day interval centered at 7z, otherwise the experiment is
identical to AssimRef. The inclusion of the averaged wind
stress vector is a novel aspect of this data assimilation
implementation. This allows the data assimilation to correct
also the wind stress and therefore the influence of the
correction will last after the assimilation.

[52] AssimAIl: This ensemble is based on daily averaged
fields. A gravity wave filter is used and the wind stress is
included in the state vector.

[53] The standard sequential assimilation scheme is com-
plicated by the fact that the assimilated currents are two-day
averages and cannot be treated as instantaneous and that the
two-day averaged wind stress is also part of the state vector
in some experiments. Figure 5 shows the adopted assimila-
tion procedure of the experiment AssimAll. Observations (if
available) are assimilated every 2 d. The different steps
involved in a single assimilation cycle can be listed as
follows.

[54] 1. The model is started at # — 2 and runs for 3 d.

[55] 2. The forecast model currents are averaged from ¢ — 1
tor+ 1.

[s6] 3. The wind stress is also averaged from ¢ — 1 to £+ 1.

[57] 4. The analysis increment is computed based on the
model error covariance expressed as an ensemble.

[s8] 5. The inertia gravity wave filter is applied to the
correction.

[59] 6. This correction is added to the instantaneous
model field at 7 to produce a new initial condition (IC).

[60] 7. The wind stress correction is applied uniformly to
the wind-forcing between ¢ and ¢ + 1.

[61] For the other assimilation experiments this procedure
is accordingly simplified by removing the step 4 or 7 or by
using instantaneous fields instead of averaged fields for the
ensemble.

[62] The time averaging of the model results computed to
match the filtered observations is similar to the approach of
Oke et al. [2002]. The difference here is that the corrections
are not introduced incrementally as it is done in the Time-
Distributed Averaging Procedure [Oke et al., 2002] or
Incremental Analysis Update [Bloom et al., 1996]. Instead,
we implemented the spatial filter [Barth et al., 2007b] and
averaged the ensemble fields in an attempt to remove
spurious variability before it is introduced into the model.

5. Results

[63] In addition to the data assimilation experiments, a
free model run without assimilation was carried out. Re-

7 of 15



C08033

30°N
200N
28°N
27°N

26°N

25°N + 0.1m/s —

82°w

90°W 88°W 86°W 84°wW

Figure 6. Velocity increments on 9 December 2005.

ferred to as x“ for control run, this experiment serves as a
baseline for assessing the benefit of the assimilation. The
mean square error skill score MSESS [Murphy, 1988] is
used to quantify the improvement over this baseline:

a 0 2
MSESS = 1 — MS(,y)° (31)
RMS(x¢,y?)
where x represents the results from the control run, y°
represents the observations and x“ are the results from an
assimilation experiment. The model simulations are initi-
alized on 1 January 2005 and run for 1 year. The analysis
time step is in general 2 d. At some time-instances, no data
are available and therefore no assimilation is performed but
this occurred only 7 times. In total, 175 assimilation cycles
are performed.

[64] To illustrate the impact of the HF radar assimilation,
the velocity correction of the 9 December 2005 (cor-
responding to the HF radar observation of Figure 4) is
shown in Figure 6. From the increments, the effective
coverage of the HF radar antennas is visible. In particular,
this figure illustrates that a large fraction of the shelf
circulation is constrained by the HF radar observation.

5.1. Comparison With HF Radar Currents

[65] In a first test, we compare the model forecast
(typically two-day forecasts) with the not yet assimilated
observations. The model forecast is not yet influenced by
the observations and the forecast is therefore statistically
independent from the observations of the same point in time
(provided that the time correlation in the observational error
can be neglected. We consider a two-day average a suffi-
ciently long time interval for this to be the case). This error
measure is useful to assess the benefit of previous assimi-
lation cycles (i.e., how effectively was the information
contained in the observations transferred into the model)
but also to determine if the assimilation procedure produced
a dynamically balanced state, which is particularly impor-
tant in the assimilation of velocity measurements. Both
characteristics are competing requirements since direct
insertion of the observations would represent a perfect
transfer of the information contained in the observations
to the model, but this procedure would result in an unbal-
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Table 1. Forecast Skill Score Relative to the Free Model Run

Experiment Skill Score
AssimRef 0.16
AssimAvrEns 0.17
AssimFilter 0.17
AssimWind 0.19
AssimAll 0.21

anced state and thus lead to a poor model forecast. In the
other extreme, the free model run does not suffer from
dynamic imbalance (except during the initialization) but the
observations are not used at all.

[66] The RMS error is computed in the observational
space, meaning that the ROMS model currents are interpo-
lated to the location of the observations and locally rotated
according to the model grid orientation and the direction of
the HF radar antenna.

[67] The RMS error of the free model run relative to the
HF radar is 8.55 cm/s and the MSESS values in Table 1 are
obtained relative to this value. The simulation AssimRef has
a skill score of 0.16 which means that its MSE is on average
16% smaller than the free model run.

[68] The skill score is slightly improved by using the
average ensemble members instead of the instantaneous
fields. Instantaneous states contain some high-frequency
variations (notably inertia-gravity waves) which cannot be
appropriately constrained by the observations. By averaging
the ensemble over 24 h, those variations are filtered out. The
small improvement is probably related to the fact that
observations are only assimilated every 2 d (or more). Over
this time interval, high-frequency variations probably have
sufficient time to dissipate. It can be expected that averaging
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Figure 7. Scatterplot of the top-most ADCP current
measurements (4 m depth) at station C10 and HF radar at
this station. Both currents are averaged over 2 d. The ADCP
currents are rotated to the direction of the HF radar antenna.
The velocity generated by Hurricane Dennis is marked with
an asterisk. The correlation () and regression coefficient
(b), which is the slope of the dashed curve, are also shown.
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Table 2. MSESS of the Different Assimilation Experiments
Relative to the Free Model Run at Different ADCP Stations and
the Total Skill Score (Computed by Summation Over Time, Depth
and Stations)

Experiment C10 Cl12 Cl15 Cl6 Total Skill Score
AssimRef 0.21 0.37 0.02 0.28 0.27
AssimAvrEns 0.23 0.36 —0.01 0.32 0.28
AssimFilter 0.24 0.36 0.02 0.31 0.28
AssimWind 0.30 0.37 0.03 0.29 0.29
AssimAll 0.30 0.37 —0.02 0.33 0.30

ensemble members has a larger impact if the observations
are assimilated more frequently.

[69] AssimFilter represents also only a small improve-
ment. The purpose of this filter is similar to the averaging of
the ensemble members. Its benefit over the approach of
AssimAvrEns is the fact that it operates only spatially. In the
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context of an EnKF [Evensen, 2003] with time-varying
ensemble, one would need to integrate the ensemble for
some time after the assimilation of the observations is
carried out to construct centered time averages, a procedure
that can significantly increase the CPU time. The spatial
filter does not need this since it operates only on instanta-
neous fields.

[70] The inclusion of the wind field represents the largest
single improvement. This is attributed to the fact that most
velocity errors in the model are indeed related to errors in
the wind-forcing: the benefit of a correct ocean state
obtained through data assimilation is rapidly lost if the
model continues to be forced by the same (imperfect) wind
field. The ocean surface currents adjust to the wind-forcing
on a time-scale of 1/f according to the Ekman dynamics.
This can be considered as the timescale over which the
model “forgets” the surface currents initial condition. By
correcting the wind-forcing using the covariance between
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Figure 8. Zonal velocity (u) and meridional velocity (v) at station C10 of the ADCP observations, of
the free model run and of the model run with data assimilation as a function of depth (m) and time.
Velocities are expressed in m/s. The asterisks on the time axis of the fourth panel represent Tropical
Storm Arlene, Hurricane Dennis, Hurricane Katrina and Hurricane Ophelia, in this order.
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Figure 9. Time-averaged RMS error between ADCP
observations at C10 and the model run without assimilation
(free model) and with assimilation. The RMS values in the
legend represent the depth-averaged RMS error in cm/s.

surface currents and wind stress obtained by the ensemble
simulation, the benefit of the assimilation lasts longer.

[71] The experiment AssimAll includes all previous
approaches. This simulation is 21% better (in terms of
MSE) than the free run and 5% better than the reference
assimilation run. This shows that the improvements
obtained by the previous tests are not mutually exclusive
and that the techniques can be applied together.

5.2. Comparison With Independent ADCP Currents

[72] The previous section compared the model currents
to the HF radar currents. Here we will compare the model
results with ADCP currents. Several ADCP velocity meas-
urements are available on the WFS at various locations as
shown in Figure 1. These observations constitute an
independent data set for validating the assimilation proce-
dure in the sense that these data are not used during the
model run. The ADCP instruments measure the velocity
from the near surface to the near bottom. An error
reduction of the surface velocity is to be expected but an
improvement of the currents in the remaining water column
has yet to be demonstrated.

[73] First, the consistency of the HF radar velocity
measurements and the ADCP observations is assessed.
Figure 7 shows, as an illustration, the scatterplot of the
radial HF radar currents at station C10 from the Redington
Shore site and the corresponding surface velocity from
station C10 (see Figure 1 for its location). The correlation
is in general good and the slope of the regression is not
significantly different from 1. The 95% confidence interval
of the slope [following Wilks, 1995] is [0.91, 1.28] which
contains the ideal value of 1. A more extensive comparison
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has been made by Kelly et al. [2003] using the full velocity
vector retrieved at the intersection of both antennas, while
Figure 7 shows the radial component used in this study. The
authors found a correlation of 0.9 for the along-shelf
velocity component and 0.62 for the across-shelf velocity
component at station C11 (20 m isobath).

[74] Table 2 shows the skill score of the model (by
summation over depth and time) for stations C10, C12,
C15 and CI16 and the total skill score, for the different
model experiments. The basic conclusion obtained in sec-
tion 5.1 is also valid for the ADCP stations: every variant of
this assimilation experiment slightly improves the results
and the best results are obtained when all are applied
together. The improvement of the AssimWind is not as
large as previously which is understandable since the wind
influences primarily the near surface currents and its impact
is smaller when the RMS error is computed over the entire
water column.

[75] There is almost no improvement at station C15 (10 m
isobath) which lies outside of the domain covered by the HF
radar antenna. It should be also noted that the coverage in
Figure 1 is the ideal coverage and that the antenna covers
most of the time a smaller area (in average 69% of the
shown area). The largest improvements are obtained as
expected within the range of the HF radar antennas, i.e.,
at stations C10, C12 and C16.

[76] Surprisingly, the improvement relative to the ADCP
currents is larger than the improvement relative to the
surface HF radar currents. This can be explained by the
fact that the expected error of both instruments is quite
different. The purpose of data assimilation is to approach
the model simulation to the true ocean state and not to the
observations. From the typical error variance of the HF
radar and ADCP instruments it is expected that ADCP
measurements are closer to the true ocean state than the
HF radar velocity measurements.

[77] Next, the temporal and spatial variability of the
model and observations are examined for stations C10
and C12. The observed zonal velocity along with the model
zonal velocity without and with assimilation (AssimAll) at
station C10 is shown in the first three panels of Figure 8.
The last three panels of this figure show the corresponding
fields of the meridional velocity.

[78] The free model is already in good agreement with the
observations at this station. Not only the events with
barotropic flow are in good agreement with the observa-
tions, the free model is also able to represent to some degree
the baroclinic events related to strong currents. The time-
averaged RMS error between observations and model
results for different depths is computed:

1
N

1 2 212
RMSE; = [N > (s = 120) + (vak =5 ] (32)

n=1

where £k is the depth index (1 < &£ < K) and # is the time
index (1 < n < N) and the subscript o refers to the
observations. It should be noted that different conventions
exist to compute the RMS velocity error. Some authors
divide by 2N instead of N. In that case the RMS error
represents the expected average error of the velocity
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along-shelf (V') current at different depths. The color scale
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components. Here we use equation (32) which is the RMS
error of the complex quantity w = u + iv [Kundu, 1976]. The
depth and time averaged RMS errors are computed using:

2 2
(“n,k - ”Z,k) +(Vn,k - Vﬁ,k) ]

[79] The RMS errors computed by equations (32) and
(33) are shown in Figure 9 for station C10. The error
reduction of the model currents is indeed largest at the
surface but the error is also reduced over the entire water
column. The improvement in relative terms can be quanti-
fied using the MSESS, which is 0.33 near the surface and
0.18 near the bottom.

[s0] At several occasions from January to May and from
September to December, a substantial vertical shear in the u
velocity component is observed, coinciding with a strong
southward component over a large part of the water column

1

2

K
) (33)
k=

n=1 1

1 N
RMSE = {ﬁ Z

represents the depth (in m).

except near the bottom (Figure 8). This current structure
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Figure 11. Zonal velocity (u) and meridional velocity (v) at station C12 of the ADCP observations, of
the free model run and of the model run with data assimilation as a function of depth (m) and time.

Velocities are expressed in m/s.
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Figure 12. Time-averaged RMS error between ADCP
observations at C12 and the model run without assimilation
(free model) and with assimilation. The RMS values in the
legend represent the depth-averaged RMS error in cm/s.

corresponds to the classical bottom Ekman layer. This
feature is in general already well reproduced by the free
model simulation which gives us some confidence in the
wind-forcing field used (which incorporates in situ winds)
and the friction parametrization (surface drag, turbulence
closure and bottom drag).

[81] The error covariance is derived from a simulation in
January and takes thus the most prevailing situation into
account. Figure 10 illustrates the depth dependence of the
velocity covariance at station C10 using the ensemble
simulation. To facilitate the interpretation, a rotated coordi-
nate system (', V') is used. The #’ component represents the
across-shelf velocity (positive means onshore) and the V'
component is the along-shelf velocity (positive means a
movement to the northwest). Currents on the shelf are
predominantly in the along-shelf direction. The covariance
between the along-shelf component at the surface (V/(z = 0))
and both velocity components at depth is represented in
Figure 10. A hypothetical measurement of the along-shelf
surface velocity component (with the across-shelf velocity
not being measured and thus unconstrained) would yield a
correction at depth proportional to the functions given in
Figure 10. Over the entire water column, the covariance
between the surface along-shelf component and the along-
shelf component at depth is positive and decreases. It is
indeed expected that an along-shelf measurement produces
a correction of the same sign in the along-shelf direction
over the entire water column and that the correction
decreases with depth. However, the covariance between
the surface along-shelf component and the across-shelf
component is positive at the surface and becomes negative
as depth increases. According to the orientation of the
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rotated coordinate system, this correlation structure implies
that a northwest (southeast) surface current correction
would yield an onshore (offshore) current at the surface
and an offshore (onshore) current near the bottom. This
response of the surface and bottom Ekman layer corre-
sponds to downwelling (upwelling) conditions in agreement
with the observed wind-driven circulation on the WFS
[Weisberg et al., 2000, 2001; Liu and Weisberg, 2005].
The ensemble simulation is thus able to reproduce the
dynamical relationship between surface and subsurface
currents according to the Ekman balance between friction
and Coriolis force.

[s2] At station C10, the free model reproduces already
quite closely the observations as mentioned earlier. The
impact of the assimilation is more visible at station C12,
where the model shows an unrealistic northwestward cur-
rent from April to May (Figure 11). An analysis of the
different terms of the momentum equation at these locations
reveals that the major forces at this station are the Coriolis
force and the vertical friction and that these forces approx-
imately balance themselves according to the Ekman dynam-
ics. The surface current variations are also in phase with the
wind variations which indicates that the unrealistic north-
westward current is due to errors in the wind field. In the
model simulation with data assimilation, the currents during
this period are reduced to a more realistic level according to
the ADCP observations.

[83] Figure 12 shows the time-averaged RMS errors at
station C12. As expected, the RMS error is most signifi-
cantly reduced at the surface and its impact decreases with
depth. Near the bottom (at 40 m depth), the assimilation of
the surface currents has almost no impact at this station.

5.3. Tropical Storms and Hurricanes

[s4] The 2005 hurricane season was a very active season.
The signal of tropical storms and hurricanes is clearly
visible in the ADCP measurements. The ADCP record
(Figure 8) shows Tropical Storm Arlene (2005-06-11),
Hurricane Dennis (2005-07-11), Hurricane Katrina (2005-
08-29) and Hurricane Ophelia (2005-09-09). Most storms
passed to the west of the WFS and produced a strong
northward and northwestward current when closest to the
shelf. Hurricane Ophelia, which stayed on the Florida east
coast, generated a southward flow on the WFS. Most
tropical storms and hurricanes generated a flow over the
entire water column at the shelf stations C10 and C12. In
some circumstances, bottom friction weakens the flow at
depth. The timing of these events is in general well
reproduced by the model. The bottom Ekman layer current
structure described in the previous section is not observed
during extreme events such as Hurricanes Dennis and
Katrina. The high turbulent viscosity created by these
hurricanes inhibits a vertical shear. The current is uniform
over the whole the water column and it is subjected to the
resultant force of the surface and bottom drag.

[s5s] The currents on the shelf generated by Hurricane
Dennis are quite uniform horizontally. The spatial depen-
dency of the radial current pattern is induced by the bearing
of the antenna. Station C10 is well located and oriented
relative to the HF radar antenna to confirm the HF radar
measurements. At this location, the HF radar measures a
radial current of 0.381 m/s. This value is in good agreement
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Figure 13. Scatterplots of the model surface currents and HF radar (experiment AssimAll) currents for
the Redington Shore site. Model velocities are interpolated to the radial velocities positions and then
rotated. The correlation () and regression coefficient (), which is the slope of the dashed curve, are also
shown. The contours show the density of the points of the scatterplot. Units are m/s.

with the currents obtained at station C10 rotated toward the
antenna, namely 0.377 m/s at the surface bin (Figure 7).
[s6] A scatterplot of the radial currents of the Redington
Shore site for the entire year 2005 and for Hurricane Dennis
is shown in Figure 13. The regression coefficient of the
model forecast is 0.7 which indicates that, in average for
2005, the model currents are smaller than the HF radar
observations. As expected, the analysis increases the corre-
lation between model and observations, improves the re-
gression coefficient and reduces the spread around the ideal
45° line. Interestingly, the model forecast correlates better
with the HF radar observations during Hurricane Dennis.
This can be attributed to the fact that events which are so
strongly externally forced are easier to predict as long as the
forcing is sufficiently accurate. The wavefield is also more
energetic so the backscattering signal at the HF radar
antenna is higher. However, the model overestimates the
currents generated by Hurricane Dennis. The effect of
waves induced by the Hurricane can indeed explain a
reduction of the drag coefficient [Kara et al., 2007] during
high wind regimes. The assimilation of HF radar currents

compensates to some extent the missing wave effects but
an improved parametrization for strong wind regimes
would have most likely a beneficial impact under these
circumstances.

6. Conclusions

[87] The present work describes an assimilation system
for HF radar currents in a nested West Florida Shelf (WFS)
model. The model error covariance is estimated using an
ensemble simulation with different wind-forcings. The
resulting ensemble contains rich small-scale structures near
fronts which can be described as a superposition of ensem-
ble members with different phase, creating a pattern similar
to wave interference.

[ss] Different variants of the implemented assimilation
scheme have been tested using a time-average ensemble, a
filter to reduce surface-gravity waves and an extended state
vector including wind stress. Each of the techniques
improves the two-day model forecast compared to not yet
assimilated surface current measurements. The best model
simulation is obtained when all of the variants are used
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together showing that the obtained benefit is not mutually
exclusive.

[so] HF radar currents is a promising data set to constrain
the circulation of coastal models providing significant
coverage over the WFS model domain. HF radar currents
estimates correlate well with more traditional ADCP meas-
urements, even during extreme events such as hurricanes.

[90] The motivation of using the spatial filter to remove
spurious barotropic waves from the assimilation increment
is similar to the idea of Lewis et al. [1998] to remove the
divergence from the HF radar observations. We preferred
however to filter the assimilation increment which is essen-
tially the model-observation misfit smoothed by the model
error covariances since estimating spatial derivatives from
noisy observations is in general a delicate task. To remove
the divergence it would be also necessary to assimilate total
currents. However, if total fields would be used in the
present study, the amount available observations would be
substantially reduced (since total fields can only be derived
at the intersection of the coverage of the two antennas and
both antennas have to be operational at the same time).

[01] The vertical error structure was assessed by compar-
ing the model results with independent ADCP measure-
ments. As expected, the largest improvement was observed
at the surface but the model skill relative to the free model
run was significantly improved also at depth. The currents
on the shelf are mostly governed by Ekman dynamics. The
vertical structure of the ensemble error covariance reflects
this characteristic and to an along-shelf correction at the
surface corresponds indeed an across-shelf correction at
depth.

[92] Several research directions for improving the assim-
ilation system are possible. In particular, future studies will
assess the benefit of a time-varying ensemble using the fully
model dynamics. In this case, the error covariance will be
adapted to different circumstances and flow regimes (e.g.,
strong or weak stratification). Also, the combination of HF
radar data with other observations needs further research.
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