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Abstract

The surface outflows from the Long Island Sound are examined from one-year records of HF radar (CODAR) observations. Synoptic flow
patterns are identified using manual classification, empirical orthogonal function (EOF) decomposition, and self-organizing maps (SOM). Four
characteristic flow patterns for the spring/summer and fall/winter seasons each are obtained through a 2 ! 2 SOM array. The SOM is confirmed
by comparison with manual classification, and is shown to be a significant improvement over EOF classification. It is suggested that the degrees
of freedom of the leading EOF modes can be used as a constraint on the otherwise arbitrary SOM dimension. The relationship between the flow
patterns and the winds also can be conveniently examined in SOM. The outflows are shown to interact strongly with the ambient coastal currents,
both of which are under the influence of the winds. This result challenges the conventional wisdom which often treats the outflows independent
of the ambient currents. The advantage of using SOM in synthesizing and interpreting synoptic HF radar observations is clearly demonstrated.
! 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In synoptic meteorology, it is common to partition the atmo-
spheric states (winds, sea level pressure, geopotential heights,
etc.) into some broad patterns, and to relate these synoptic pat-
terns to local environmental variables such as temperature and
precipitation. Synoptic classification can be used in statistical
(empirical) weather forecasts. An experienced forecaster, for
example, might spot an atmospheric circulation pattern as pre-
conditioning for local severe weather. Synoptic classification
also can be used to motivate process studies to examine the
relationship between circulation patterns and local weather.
Variations in the frequency of occurrence of synoptic patterns
also can provide a measure of regional climate changes
(Hewitson and Crane, 2002).

Synoptic oceanography has not been very common, as ocean
observations traditionally are process oriented. However, the
societal need to more accurately describe and forecast the
ocean state is spurring fundamental changes on howwe observe
the ocean. Harms and Winant (1998) were probably the first to
adopt synoptic classification to coastal observations. From 10
long-term (>1 year) current meter mooring observations in
the Santa Barbara Channel (SBC), they manually identified
six synoptic patterns, corresponding to the upwelling, relaxa-
tion, cyclonic eddy, etc. (Winant et al. (2003) later extended
the analysis to a larger, multi-year, multi-basin data set.)
They also proposed a classification scheme based on EOF, by
adding and subtracting the first three EOF modes (which
exclude the mean flow), scaled with their respective standard
deviations, to the mean flow. They found that EOF classifica-
tion is consistent with the manual patterns. They showed that
the synoptic flow patterns could be meaningfully related to
the wind and along-channel subsurface pressure difference.

The self-organizing map (SOM) technique is a non-linear
cluster analysis mapping tool based on artificial neural network
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(Vesanto et al., 2000). Patterns are extracted and arranged in
a two-dimensional array such that similar patterns are placed
nearby and dissimilar patterns far apart. The SOM is widely
used as a pattern recognition tool. Hewitson and Crane
(2002) first introduced SOM in synoptic meteorology. Richard-
son et al. (2003) followed a similar approach in oceanography
to identify the wind and SST patterns from satellite data. Most
recently, Liu andWeisberg (2005) have applied SOM to coastal
current observations. From an array of long-term moored
acoustic Doppler current profilers (ADCP) in the west Florida
shelf, they identified three synoptic patterns, corresponding to
the southeast flow (‘upwelling’), northwest flow (‘relaxation’)
and a transition.

Among emerging ocean observing technologies, the shore-
based HF radar has provided for the first time a true synoptic
view of coastal surface currents. In this study, synoptic classi-
fication is applied to one year of daily-averaged HF radar
(CODAR) observations of Long Island Sound outflows in Block
Island Sound and the adjacent coastal ocean. In Section 2,
the observations are described, and the CODAR data quality
is examined by comparing with moored ADCP measurements.
In Section 3, characteristic flow patterns are determined, and
in Section 4, the relationship between the flow patterns and
winds is examined. The results are discussed in Section 5.

2. Observations

2.1. Data

Block Island Sound (BIS) is situated at the junction of
Long Island Sound (LIS) and the inner shelf of the New

York Bight. During the Front-Resolving Observational
Network with Telemetry (FRONT) study, three HF radars
(CODAR), located at Montauk Point on the eastern tip of
Long Island, Misquamicut on the western Rhode Island coast,
and Block Island, were available continuously (Fig. 1). In
addition, an array of bottom mounted ADCP moorings was
deployed (Codiga and Houk, 2002) at the mouth of BIS for
spring/summer (MarcheMay; 4 ADCPs) and fall/winter
(SeptembereDecember; 5 ADCPs). Ullman and Codiga
(2004) described the seasonal flow patterns based on the
CODAR and ADCP observations. Most of the LIS outflows
move southward through the BIS and turn right along the
Long Island south shore. The outflows sometimes also move
eastward and exit around Block Island. The mean southwest-
ward flows are about 0.2e0.3 m/s in spring and summer, and
0.15 m/s in fall and winter.

The CODAR data used in this study cover a one-year
period from January 1 to December 31, 2001. Data at grid
points with percent coverage greater than 10% are used
(Ullman and Codiga, 2004). Missing data are interpolated
from neighboring grids using a standard optimal interpolation
(OI) (Daley, 1991). The CODAR and ADCP data are low-
pass filtered using a Butterworth filter with a cutoff period
of 36 h. The winds are from National Data Buoy Center
(NDBC) buoy 44025, located about 120 km from BIS
(Fig. 1). Examination of all available regional NDBC buoys
indicates that the winds are highly coherent over the entire
northeast coast. Hence, only buoy 44025 is used. Wind stress
is calculated following Large and Pond (1981). Hourly wind
stress is low-pass filtered in a similar manner as for the
currents.

Fig. 1. Triangles are land-based CODAR HF radar stations: Montauk Point (MP), Misquamicut (MQ), and Block Island (BI). ADCP mooring stations for spring/
summer (crosses) and fall/winter (circles) respectively.
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2.2. CODAR data quality

HF radar measurements are subject to many potential errors
(Graber et al., 1997; Emery et al., 2004). Mau et al. (2007)
compared the tidal ellipses derived from CODAR with a care-
fully validated, high-resolution barotropic tidal model. They
found that the CODAR data generally are trustworthy except
in the mouth of the LIS and at the periphery of the radar range.
Here, we compare the non-tidal currents between CODAR and
ADCP at the five common ADCP sites. Two common periods,
spring (March 15eMay 26) and fall (October 12eDecember
6, 2001), are used in the analysis. The CODAR currents are
averages across the shallowest 0.5 m that is weighted toward
the surface values, and the ADCP surface currents are from
the shallowest useful bin (1e5 m below the surface).

The empirical orthogonal function (EOF) analysis is ap-
plied separately to the CODAR and ADCP data. Table 1 lists
the basic statistics. The mean currents agree well, and the EOF
modal amplitudes also are comparable. Fig. 2 shows the first
two EOF modes for the two periods; the modal amplitudes
are normalized by their respective standard deviations for
easy comparison. In spring, the CODAR and ADCP are sig-
nificantly correlated with g ¼ 0.67 and 0.58 for the first and
second modes. In fall, the first EOF modes also are highly cor-
related (g ¼ 0.9), but the second modes are marginally corre-
lated (g ¼ 0.3). Since the first mode dominates (w70%) the
total variance, the non-tidal currents derived from the CODAR
observations are considered reasonably accurate. These results
are consistent with the findings in Mau et al. (2007).

3. Characteristic flow patterns

The wind regime shifts dramatically with season. Fig. 3
shows along-shore (towards 65#T) and cross-shore (towards
335#T) wind stress computed from surface wind measure-
ments at buoy 44025. The winds are relatively mild in spring
and summer, whereas in fall and winter the strong synoptic
wind events, the northeasters, dominate. Since coastal currents
are expected to respond profoundly to the wind, it is sensible
to take the seasonal wind regime changes into account. In the
subsequent analysis the one-year CODAR record is divided
into two parts, the ‘summer’ period (196 days) between Julian
day 91 and 286 (April1eOctober 13, 2001), and the ‘winter’
period (169 days) the rest of the year. The classification is
applied to the daily velocity maps.

3.1. Manual classification

Manual classification by visual inspection is laborious, but
provides a ‘truth’ to compare with the automated procedures.
Of a total of 365 days, 226 days (w62%) can be categorized
into seven synoptic states. The remaining days mark the tran-
sition between the different synoptic states. The synoptic flow
pattern is the average of all the daily data in the same state. In
what follows, the states are presented and described in an
order that is not based entirely on the frequency of their occur-
rence, but rather has been chosen for its ease of comparison to
later EOF and SOM results.

In summer, three synoptic flow patterns, S1eS3, can be
identified (Fig. 4). In S1 (61 days), LIS outflows move
through BIS, turn right and merge with strong south-west-
ward ambient coastal currents. In S2 (35 days), LIS outflows
split into two branches, one moves eastward and the other
turns right and merges with modest ambient coastal currents.
In S3 (20 days), LIS outflows also split into two branches,
one moves north and forms a recirculation in BIS, and the
other turns right and merges with strong ambient coastal
currents.

In winter, four synoptic flow patterns, W1eW4, can be
identified (Fig. 4). The W1 (24 days) is similar to S1, but
the outflows are much weaker compared to the summer condi-
tion. In W2 (22 days), both LIS outflows and ambient coastal
currents have strong offshore (southerly) component. In W3
(32 days) and W4 (32 days), the ambient coastal currents are
reversed to flow east. In W3, LIS outflows move southeast-
ward and merge with weak ambient coastal currents, whereas
in W4, LIS outflows move northeastward and merge with
stronger ambient coastal currents.

3.2. EOF classification

The EOF modes are calculated for the summer and winter
separately. The entire region with HF radar coverage is used,
in contrast to the EOF calculation for comparison to ADCP
data discussed above. In summer the first two modes account
for 45% and 13% of total variance, and in winter they
account for 56% and 16%. The spatial EOF modal structures
are similar in both seasons (figure not shown). The 1st mode
shows uniform alongshore flows (positive towards the
northeast) and the 2nd mode uniform cross shore flows
(positive towards the shore). The principal components
(PC), normalized by the standard deviations, are shown in
Fig. 3.

To obtain synoptic patterns, following Harms and Winant
(1998), the first two EOF modes, scaled by their standard de-
viations, are combined with the (seasonal) mean flow. Four
summer (S1eS4) and winter (W1eW4) patterns are obtained,
corresponding to mean (summer or winter) $ mode 1, mean $
mode 2, mean þ mode 2, and mean þ mode 1 (Fig. 5). The
EOF classification captures almost all the manually identified
patterns, except for S4 and W3. Even the detailed structures
are similar. For example, the recirculation feature identified

Table 1
The mean and the amplitudes of the first two EOF modes for ADCP and
CODAR in spring and fall (units in m/s). Note that the CODAR data are for
the 5 ADCP sites only

Mean Mode 1 Mode 2

ADCP Spring 0.19 0.21 0.10
Fall 0.07 0.20 0.08

CODAR Spring 0.16 0.20 0.13
Fall 0.05 0.25 0.13
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in manual S3 also shows up in EOF S3. On the other hand, the
‘new’ S4 found in EOF is not recognized in the manual
classification, and the W3 in EOF is different from that in
the manual classification.

3.3. SOM classification

Before using SOM, the observed surface currents are first
fitted to a stream function using multivariate optimal

Fig. 2. First two principal components for ADCP (thick/black lines) and CODAR (thin/red lines) for spring/summer (upper two panels) and fall/winter (lower two
panels). The CODAR data are for the ADCP sites only. The modal amplitudes are normalized by their respective standard deviations.

Fig. 3. Time series of one-year (2001) along- (towards 25#T) and cross-shore (towards 335#T) wind stress (upper two panels) and normalized first two principal
components from CODAR.
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Fig. 4. Summer (left) and winter patterns (right) determined from manual classification.
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Fig. 5. Summer (left) and winter (right) patterns determined from EOF classification.
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Fig. 6. Summer (left) and winter (right) patterns determined from SOM classification.
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interpolation (Daley, 1991). Basically, the non-tidal surface
currents are assumed non-divergent,

u¼$vj

vy
; n¼ vj

vx
ð1Þ

where j is a two-dimensional stream function. An OI is ap-
plied to fit the observed velocity vectors to the stream func-
tion. Converting velocity vectors into stream function
eliminates apparent inconsistencies (unrealistic flow diver-
gence, for example) that are not uncommon in the CODAR
data.

A 2 ! 2 SOM array is applied to the summer and winter
separately. The SOM program package is available from
http://www.cis.hut.fi/projects/somtoolbox. The program as-
signs each data vector (daily stream function map) to one of
the four (2 ! 2) nodes. We define a synoptic pattern as the av-
erage of all the data in the same node, in analogy to manual
classification. Fig. 6 shows characteristic flow patterns for
the summer and winter; the velocity vectors are computed
from the stream function.

There are striking similarities between SOM and manual
classification. The S1 (44 days), S2 (47 days) and S3
(55 days) from SOM are characterized by respectively a strong
LIS outflow with strong ambient coastal currents, a strong out-
flow with modest ambient coastal currents, and a modest out-
flow and recirculation with strong ambient coastal currents.
They correspond nicely to the respective summer manual pat-
terns. The W1 (39 days), W2 (44 days), W3 (32 days) and W4
(54 days) from SOM also match well with the corresponding
winter manual patterns. Note that since the SOM patterns
are constrained by non-divergence their flow structures appear
to be smooth compared to the manual patterns.

The S4 (50 days) from SOM has no correspondence in
manual classification. Interestingly, this flow pattern is almost
identical to S4 found in EOF classification. Superficially, it
would appear that manual classification has missed a summer
flow pattern characterized by no ambient coastal currents. This
however is not the case. In fact, strong ambient coastal cur-
rents are present in S4 except that they tend to fluctuate up
and down the coast, and hence, average to near zero. In other
words, S4 is marked by an eastward outflow in BIS with vari-
able (bi-directional) ambient coastal currents. Since manual
classification attempts to identify persistent flow features
over the entire domain, it fails to recognize S4 as a distinct
category.

3.4. Relation between EOF and SOM

The EOF and SOM classifications agree well except for
W3. This suggests that the two methods likely are related.
In SOM each data vector (daily map) is uniquely allocated
to a particular node. In EOF, each data vector also can be
approximately identified by their first two principal compo-
nents. The relationship between SOM and EOF can be easily
visualized by labeling each data vector from SOM in the two-

dimensional first (PC1) and 2nd (PC2) principal component
space (Fig. 7).

It is indeed amazing that the SOM nodes are nicely separated
into the four quadrants in the PC1-PC2 space. The S1eS4 nodes
correspond respectively to the 3rd (PC1 < 0, PC2 < 0), 4th
(PC1 > 0, PC2 < 0), 2nd (PC1 < 0, PC2 > 0) and 1st
(PC1 > 0, PC2 > 0) quadrant, and the W1eW4 nodes corre-
spond respectively to the 2nd, 3rd, 4th and 1st quadrant. Some
data do cross the boundary, but to a large extent there is a clear
one-to-one correspondence between SOM and PC1ePC2.

In Harms and Winant (1998), each node in EOF classifica-
tion is determined by a single PC. In contrast, in the 2 ! 2
SOM each node is determined by two PCs. In other words,
SOM is able to take advantage of the extra degree of freedom
in the PC space. Thus, for example, while in SOM both S1 and
W1 are associated with PC1 < 0 (which is consistent with
EOF classification), S1 is with PC2 < 0 but W1 is with
PC2 > 0. This accounts for the difference between SOM and
EOF classification in the present application.
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Fig. 7. SOM patterns plotted in the coordinates of the EOF principal compo-
nents. Upper panel: summer patterns of S1 (circles/red), S2 (squares/blue), S3
(crosses/black) and S4 (triangles/green); Lower panel: winter patterns of W1
(circles/red), W2 (squares/blue), W3 (crosses/black) and W4 (triangles/green).
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Fig. 8. Wind vectors for each SOM pattern: summer (left) and winter (right). The direction is towards which the wind blows. The wind magnitude is scaled to
0.16 N/m2 and 0.3 N/m2 for summer and winter respectively.
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3.5. Relation of flow patterns to winds

The flow response is examined by comparing the principal
components with the wind. The correlation is calculated for
the winds in all directions. For summer PC1 the maximum
correlation (g ¼ 0.85) is for the wind towards 60#T, and for
summer PC2 the maximum correlation (g ¼ 0.63) is found
with wind towards 300#T. For winter PC1 the maximum cor-
relation (g ¼ 0.83) is for the wind towards 40#T, and for win-
ter PC2 the maximum correlation (g ¼ 0.73) occurs with wind
towards 320#T. In other words, the alongshore currents (1st
EOF mode) are driven by the alongshore winds, and the
cross-shore currents (2nd EOF mode) by the cross-shore
winds. The high correlation between the principal components
and the winds also can be readily seen in Fig. 3, which shows
the along- (towards 65#T) and cross-shore (towards 335#T)
winds and the first two PCs.

In SOM each data vector is allocated to a particular node;
hence, it is possible to group the daily winds in each node
to analyze the flow response. Fig. 8 shows the wind vectors
in polar coordinate for each synoptic pattern; the wind direc-
tion is towards which the wind blows. During summer, when
the winds are from the north and northeast (S1 and S3), the
southwestward ambient coastal currents are strong and the out-
flows turn right and move down the coast. Also, the recircula-
tion in BIS (S3) appears to be consistent with Ekman transport
to the right of the wind. On the other hand, when the winds are
from the southwest, the ambient coastal currents are weakened
(S2) or they fluctuate in both directions (S4). Since the wind
regimes are similar between these two nodes, the difference
in flow response likely is due to the external (non-local) influ-
ence such as the strength of buoyant outflow (Codiga, 2005)
and the large-scale coastal circulation.

In winter the surface flow patterns follow more closely with
the local winds.When thewinds are from the northeast (W1) the
outflows move down coast, and when the winds are from the
northwest (W2), the outflows are towards the southwest. With
more persistent northwest winds (W3), the ambient currents
disappear and the entire outflows move southeastward. Finally,
when the winds are from the west (W4), the eastward outflows
are joined by eastward ambient coastal currents.

4. Discussion

Observations of estuarine outflows have mostly based on
ship surveys (e.g., Whitney and Garvine, 2006) and moored
current meter arrays (e.g., Lentz and Largier, 2006). These
studies however are necessarily limited by the temporal and
spatial resolution of the data. In this study, one year of
daily-averaged CODAR surface velocity data are analyzed.
Complex flow patterns emerge, showing strong interaction be-
tween the outflows and ambient currents under the influence of
the winds. While it is beyond the scope of this study to spec-
ulate on the dynamics, there is little doubt that the ambient
currents are an integral part of the outflow response as it is im-
possible to separate the outflows from the ambient currents in
the synoptic patterns. This result is in contrast to the

conceptual model which often ignores the response of the am-
bient current (Fong and Geyer, 2001; Whitney and Garvine,
2006). The advantage of having continuous, high-resolution
synoptic observations is evident.

Synoptic classification is essential in digesting the large
data set. Previously, Harms and Winant (1998) proposed to
combine the EOF modes with the mean flow to generate char-
acteristic flow patterns. We show that SOM is far superior as it
is able to take into consideration of the full 2 ! 2 degrees of
freedom in the PC space. Application of SOM to synoptic
oceanography has just begun, and it is no surprise that there
is a lot of confusion (Liu et al., 2006). One particularly diffi-
cult question with SOM is the apparent arbitrary choice of the
array size. Drawing the link between SOM and EOF, we sug-
gest that the SOM dimension probably should not exceed the
degrees of freedom of the leading EOF modes.

The EOF has been a standard approach in relating the flow
response to the winds. While the regression of individual prin-
cipal components to the wind is useful, it says nothing about
what the flows would look like given a wind forcing. In this
study, a different approach is used by grouping the winds ac-
cording to the SOM patterns. The results clearly demonstrate
the sensitive dependency of the flow patterns to the wind
regimes. A diagram such as Fig. 8 has strong theoretical impli-
cations, as one could try to understand how a specific wind re-
gime leads to a particular flow pattern. The response diagram
also serves practical purposes. In a search and rescue mission
or during the response to an oil spill, for example, one could
anticipate the flow patterns by knowing how the wind regimes
might change.
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