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Transport in laminar flows is governed by chaotic stirring and striation in long thin
filaments. In turbulent flows, isotropic mixing dominates and tracers behave like
stochastic variables. In this paper, we investigate the quasi-turbulent, intermediate
regime where both chaotic stirring and turbulent mixing coexist. In these flows, the most
common in nature, aperiodic Lagrangian coherent structures (LCSs) delineate particle
transport and chaotic stirring. We review the recent developments in LCS theory and
apply these techniques to measured surface currents in Monterey Bay, California. In the
bay, LCSs can be used to optimize the release of drifting buoys or to minimize the impact
of a coastal pollution source.
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1. Introduction

In all the branches of mechanical sciences, the concept of ‘velocity’ plays a
central role. For example, Navier–Stokes equations describe how the velocity in a
fluid changes with time. But is a fluid problem really solved when we know the
velocity everywhere and at any given time?

Velocity and speed are abstract concepts that are not perceptible. While we
can measure distance and time, we cannot measure speed directly. All ‘velocity
sensors’ necessarily assimilate velocity with one of its effect. For instance, we
evaluate the velocity of an oil spill by measuring the distance it travels in a given
interval of time.

Not only is velocity difficult to measure, but also is a concept that neither a
scientist nor an engineer can use directly. A driver is much more interested in
knowing how much time it takes to travel a given distance rather than the speed
of a vehicle. Coastguards are unconcerned with the velocity of an oil spill;
instead, what they need to know is where the spill will be in a few hours and how
its shape will deform. Likewise, when we are searching for a drifting boat on
the ocean, the currents or the instantaneous velocity of the boat does not help in
the recovery mission. What is needed is a prediction of the path followed by the
drifting boat, and not its velocity.

In contrast to the classical Eulerian analysis of velocities, there is therefore
room for a Lagrangian point of view where interest in trajectories dominates. At
first, it seems that particle paths may be only a by-product of the velocity field.
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Indeed, if we know the velocity v(x, t) at any point x, and at any time t, we
can always compute the trajectory of a particle starting at the initial point x0 at
time t0 using

xðt; t0; x0ÞZx0C

ðt
t 0

vðxðt; t0;x0Þ; tÞdt;

where the notation x(t; t0, x0) indicates that the trajectory is a function of
time t, but also depends on the initial position x0 and the initial time t0.
Among all the solutions, x(t; t0, x0) is the one satisfying x(t0)Zx0. The
equation above shows that the particle trajectory is the solution of a
Volterra integral equation of the second kind (Arfken 1985, p. 865). Provided
that the velocity is smooth enough, one can always compute a unique
trajectory through any initial condition. Furthermore, a vast amount of
algorithms are available to compute the trajectories numerically (Cellier &
Kofman 2006).

This perspective seems to corroborate the fact that the Lagrangian description
of transport in a fluid can always be derived from the velocity. It prevailed until
the discovery of dynamical chaos in the early 1960s. Lorenz (1963) found out that
a slight error in the initial condition x0 could lead to dramatic errors in the
position at a later time x(t). This ‘butterfly effect’ was later detected in a vast
amount of physical systems: sensitivity to initial conditions is the rule and not
the exception.

Owing to the finite resolution of sensors, we cannot measure the initial
position x0 perfectly, and dynamical chaos interferes with our knowledge of
the world. Even if the velocity field v(x, t) was known perfectly everywhere
and at all times, it would still be impossible to predict, even approximately,
the path of a particle for an infinite time (Stewart 1989). Indeed, the
uncertainty on the position grows exponentially and eventually becomes
prohibitive.

Another consequence of dynamical chaos is the complexity of the
trajectories, which must eventually diverge and separate. Provided that
we integrate the particles for long enough, each trajectory is unique and
cannot resemble its neighbours. The Lagrangian description of the fluid
is therefore very complex and one would need to compute and analyse
millions of trajectories to characterize all the possible behaviours present in
the system.

Dynamical systems theory aims at finding transport barriers and a geometric
description of transport in the complexity of the trajectories. It provides a
few coherent structures from which the general behaviour of particles can
be deduced.

Advanced textbooks (Guckenheimer & Holmes 1983) give us recipes for
determining transport barriers in steady systems. This procedure can be
generalized to time-periodic systems (Smale 1980; Rom-Kedar 1990) and is
summarized in §3. Outside the steady and periodic laminar regimes, the
dynamical systems analysis requires a careful investigation of the relative
importance of stirring and mixing (see §2) and a generalization of the concept of
coherent structures, which we investigate in §§3 and 4.
Phil. Trans. R. Soc. A (2007)
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Figure 1. Stirring (transport and stretching) followed by diffusive mixing. Macroscopic patches of
dye are stirred by a velocity field: fluids with different dye colours are transported over long
distances, stretched and brought in close contact. Once chaotic stirring has stretched the tracers on
sufficiently small length scales, diffusion takes over and mixes the dye irreversibly.
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2. Stirred, then mixed

(a ) Advection and diffusion

The evolution of a passive tracer c(x, t) (e.g. dye, temperature, concentration of
spilled oil) in continuous media where the velocity field is v(x, t) is governed by
the advection–diffusion equation

Dc

Dt
Z

vc

vt
C v$Vc|fflffl{zfflffl}

advection:UC=l

Z kV2c|ffl{zffl}
diffusion: kC=l 2

C Jc|{z}
source

;

where k is the molecular diffusivity and Jc(x, t) is the (possible) source of the
tracer (forcing). The advection term represents the stirring of the tracer by the
velocity field v. It is a reversible process where fluid elements are transported
across the domain, rotated, stretched and folded (figure 1). Even for very simple
velocity fields, the combined action of stretching and folding of fluid elements
generates complex patterns, hence the name ‘chaotic advection’ or ‘stirring’.

The diffusive term generates irreversible mixing of the tracer. In the absence of
a source Jc, this term homogenizes the distribution of the tracer at an
exponential rate and blurs the structures present in the initial distribution as
well as the patterns created by chaotic stirring (see last step in figure 1).

Chaotic stirring and turbulent mixing are competing processes and it is critical
to evaluate their relative importance (Ottino 1999). If U and C denote a
characteristic velocity and a typical tracer concentration, and if the tracer varies
over length scales l, the stirring term is of the order UC/l. On the contrary, the
diffusive term behaves as kC/l2. The relative importance between stirring and
diffusion can therefore be approximated by

PeðlÞZUðlÞl
k

:

Both U(l ) and Pe(l ) vary considerably depending on the wavelength l of the
tracer. At the scales of the fluid domain, the ratio Pe corresponds to the Péclet
number and is almost always large except for extremely small-scale phenomena
with low velocities (Haynes 2003).

This does not, however, imply that diffusion is always negligible. For
instance, we all know that milk and coffee can be quickly mixed in a cup. The
key to understanding the subtle interaction between stirring and mixing is to
Phil. Trans. R. Soc. A (2007)
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realize that their relative importance is a function of the tracer length scale l.
For small length scales, both U(l ) and l are small and diffusion is more
important. From an initial macroscopic patch of tracer, or in a macro-
scopically forced tracer, the advective term is, initially, the absolute ruler of
the fate of the tracer (i.e. large Pe(l ) for large l ). Nevertheless, the advective
term stretches and folds parcels of fluid (figure 1). Two fluid elements containing
different tracer concentrations are stretched into long filaments which the
velocity field brings together at exponential rates, creating higher gradients. The
initially dominant advective term decreases the length scale of the tracer
variations and, as a result, increases the influence of the diffusive term. In highly
stretched regions, or hyperbolic areas, the length scale of the tracer becomes so
small that Pe(l ) drops below unity and isotropic diffusion is the only process
acting on the tracer distribution.

Dropping milk (i.e. the tracer) in a cup of coffee (i.e. the fluid) exhibits all the
aspects of the process described above. An initial macroscopic parcel of milk at
the surface of the coffee does not mix quickly on its own. At the length scale of
the cup, Pe does not allow any mixing. A spoon is an effective tool to get the
advection–diffusion machine in action. By stirring the coffee, we generate a
velocity field v on the surface. The advection creates long filaments of milk and
brings them close to areas where coffee is still pure. In these regions, the gradient
is high; on such small length scales, Pe favours diffusion and milk can finally mix,
irreversibly, with the coffee. We can also observe the direct effect of the
molecular diffusivity k: cold coffee (smaller k) requires more stirring since, at the
same length scale l, the ratio Pe is higher.

Note that, in this paper, we do not consider the effect of the source Jc on the
tracer distribution. Indeed, we aim at understanding the evolution of an oil spill,
the fate of drifting buoys or the impact of contaminants. In these cases, the tracer
is released at a specific time (initial condition) and the source term Jc is unused.
In most cases, external injection of tracer in the system does not modify the
framework presented in this paper. Indeed, injection or forcing at the
macroscopic length scales follows the same length-scale reduction process
described in figure 1. The situation is, however, different if the source also acts
on microscopic length scales (e.g. chemical or biological activity). In this case,
the presence of microscopic sources and sinks alters the tracer dynamics and
modifies the coherent structures (Giona et al. 2002; Tél et al. 2005).

As shown in figure 1, in the absence of microscopic sources, there are two
distinct steps in the evolution of a tracer. First, from a reference length scale L,
chaotic stirring stretches the fluid elements containing the tracer in thin
filaments. The duration of that process can be determined by following a
reference trajectory x(t) and a nearby particle x(t)Cd(t). Since diffusion is
negligible during the first stage, the difference between the two particles follows

dd

dt
Z

vv

vx|{z}
velocity gradient

d:

The fast reduction of length scale, or hyperbolic stretching, is possible due to
large negative eigenvalues in the velocity gradient. The magnitude of the velocity
gradient determines how fast advection can shrink the length scale of the tracer
down to the diffusive length scale.
Phil. Trans. R. Soc. A (2007)



3065Chaotic stirring in quasi-turbulent flows
(b ) Laminar, quasi-turbulent and turbulent regimes

Tounderstand the evolution of a tracer in continuousmedia, it is therefore critical
to investigate the velocity field v and determine the distribution of the velocity
gradient. Navier–Stokes equations reveal that the evolution of the velocity field is
governed by a balance between a convective term, a viscous term and external
forcing. The Reynolds number Re is the ratio between the magnitude of the
convective and viscous terms. At low Reynolds numbers, the viscous forces are high
and energy input from the forcing is dissipated easily; if a feature with a very small
length scale is created, it is immediately dissipated by the large viscous forces. Such a
laminarflowhas large, simple structures, and, fromthepoint ofviewofa scalar tracer,
transport is typically delineated by steady or periodic stretching structures.

On the contrary, a large Reynolds number indicates that viscous forces are not
important at the flow scale. The solution contains eddies with a broad range of
diameters. The smallest length scale contained in the velocity field v is referred to as
the Kolmogorov microscale ln. The kinetic energy in the flow cascades from the
macroscopic scale down to ln under the dynamics of smaller and smaller eddies.

Kolmogorov (1941) showed that the difference between the macroscopic length
scale and the Kolmogorov length scale is given by the Reynolds number.1 When
the Reynolds number is very large, the Kolmogorov scale becomes comparable to
the diffusion length scale. This is the turbulent limit where chaotic advection is
non-existent since tiny eddies immediately deform the tracer concentration on
length scales where diffusion takes place. Turbulent flows are characterized by
immediate diffusion. In such flows, studying advection is irrelevant; statistical
methods are more appropriate tools for studying isotropic turbulence.

But nature is far from being made exclusively of laminar, advective flows and
turbulent, stochastic flows. Most natural fluids and geophysical flows correspond to
an intermediate situation: the quasi-turbulent regime. In this case, the Reynolds
number is high and ln is small, but still much larger than the diffusion length scale. In
such flows, there is a phase of chaotic advection where fluid elements are stretched,
followedbyadiffusion stage (figure 1). In suchflows, stochasticmethods alone cannot
explain the distribution of a tracer; one needs to understand how the advection of the
velocity field delineates particle trajectories before diffusion takes place.

Can we ignore the small-scale features during the advection stage? Can we
approximate a quasi-turbulent flow with only its largest features and apply the
classical dynamical systems tools to study advection? Unfortunately, as shown by
Haynes (2003), and as we will verify in §5, the most significant stretching does not
usually occur at the largest macroscopic length scales, but at the smallest length
scale ln. At best, stretching is equally distributed among all the length scales of the
quasi-turbulent fluid. This is precisely what makes this problem so challenging:
transport, coherent structures and stretching in a quasi-turbulent fluid involve a
broad range of time scales and length scales, from themacroscopic length scale where
the velocity is high and the velocity gradient is small, down to the Kolmogorov
length scale, where the velocity is small and the velocity gradient is high
(Rom-Kedar & Poje 1999).

Another challenge of the quasi-turbulent regime is the finite-time nature of the
observed structures. At low Reynolds numbers, the flows exhibit steady, periodic
or quasi-periodic structures. The resulting coherent structures (eddies, transport

1Hinze (1975) showed that the ratio between the largest and smallest length scales is given by Re3/4.
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barriers, convection cells) last forever and are easily identified by classical
dynamical systems analysis. On the contrary, quasi-turbulent flows have a much
more complex time dependence. Not only do we find large velocity gradients on a
broad range of small time scales but also the large-scale features will vary and
wander between different regimes. One such example is the Antarctic ozone hole.
While the dynamics of ozone is well captured by a single vortex oscillating near
the South Pole, this structure splits regularly into smaller eddies (Varotsos
2002). Similarly, large anticyclonic rings detach regularly from the Gulf Stream.
These rings live for approximately 1 year during which they organize waters and
tracers in coherent gyres. None of these structures can be understood nor
detected by classical dynamical systems theory, which is based on the asymptotic
(i.e. infinite time) behaviours of particles. In the quasi-turbulent regime,
coherent structures may live and act only for a finite period of time. Not only
do we need to adapt to an aperiodic time dependence but also the theory must
allow for impermanent and changing coherent structures (Haller & Poje 1998;
Poje & Haller 1999). The notions of fixed points, invariant manifolds, exponential
stretching and chaotic dynamics must be understood in the context of systems
that are known or studied only for a finite-time window (Haller 2000).
3. Stirred, but not mixed

Classical dynamical systems theory provides an adequate framework for
transport in laminar flows: the large-scale features dominate and give rise to
Lagrangian coherent structures (LCSs), such as KAM tori, and the invariant
manifolds of hyperbolic fixed points or periodic orbits. The LCSs divide the
phase space into regions of qualitatively different dynamics (e.g. jets, eddies,
gyres, alleyways).

In this section, we summarize and illustrate classical dynamical systems
theory for laminar (steady, periodic and quasi-periodic) flows. Next, we
investigate how these methods extend to the quasi-turbulent regime where
many different length scales and time scales coexist. In such flows, ‘moving’ LCSs
continue to separate the flow into regions of qualitatively different dynamics and
their entanglement generates chaotic stirring.

(a ) Steady regime

Figure 2 illustrates the dynamical systems framework for a steady flow. The
flow corresponds to the stream function jZA sin(2x)sin(2y) and is a rough
dynamical approximation of the flow after the first instability in Rayleigh–
Bénard convection cells (Solomon & Gollub 1988). The fluid is heated on the
lower boundary (yZ0) and propagates upwards along xZp/2. When it reaches
the cold boundary at the top (yZp/2), the stream separates before it returns to
the lower boundary. As shown in figure 2, for a steady flow, Eulerian and
Lagrangian descriptions are equivalent: the Lagrangian streamlines in figure 2b
can be easily deduced from the Eulerian velocity vectors of figure 2a.

Two points in the flow are highly distinguished. On the bottom boundary, the
point (x, y)Z(p/2, 0) has zero velocity (fixed point) and corresponds to
the collision between the two streams propagating in opposite directions along
the lower boundary. On the top boundary, the point (x, y)Z(p/2, p/2) is also a
Phil. Trans. R. Soc. A (2007)
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Figure 2. Transport in a steady flow. There is an invariant manifold (thick line) connecting the two
saddle points (crosses) on the boundary and preventing any transport between cells. (a) Velocity
vectors and (b) streamlines jZA sin(2x)sin(2y). Solid lines correspond to anticlockwise motion and
dashed lines to clockwise rotation.
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fixed point and it marks the separation of the fluid into two streams travelling in
opposite directions. These points are called hyperbolic fixed points since, in their
vicinity, both stretching and shrinking coexist.

The two points have hyperbolic stable and unstable manifolds. The stable
manifold of the fixed point (x, y)Z(p/2, p/2) is the set of points that converge to the
fixed point. The unstable invariant manifold of the fixed point (x, y)Z(p/2, 0) is the
set of points that converge to the fixed point in backward time. As shown in figure 2a,
these two invariant manifolds are identical and delineate a vertical LCS that divides
the domain into regions of qualitatively different dynamics. In this case, the LCS
marks the boundary between the anticlockwise cell on the left and the clockwise cell
on the right. It also determines transport between these regions. In this case, and for
all two-dimensional steadyflows, there is nofluid exchangebetween the cells; theLCS
forms an uncrossable barrier between the two cells rotating in opposite directions.

This construction leads to an important conclusion: there is never any chaos in a
steady two-dimensional flow. Chaos can only occur if we add a third dimension or
when the system is unsteady (see Poincaré–Bendixon theorem in Guckenheimer &
Holmes (1983)).
Phil. Trans. R. Soc. A (2007)
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Figure 3. Hyperbolic invariant manifolds in a periodic system. The hyperbolic fixed points of the
Poincaré map have a stable and an unstable invariant manifold (solid curves) intersecting in many
lobes. A boundary (dashed line) between cells is constructed by picking one of the intersection
points (g) and joining segments of the two manifolds.
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(b ) Periodic regime

The convection cells of Solomon & Gollub (1988) can be made periodic by
setting jZA sin(2(xKg(t)))sin(2y) where g(t) is a periodic function. This flow is
identical to the steady case, except that the cell pattern is now oscillating
periodically. There are still points where the velocity is instantaneously zero on
the horizontal boundaries, but they are now moving. These critical points are no
longer fixed and are called stagnation points (Coulliette & Wiggins 2001).

To build coherent structures similar to the barrier in the steady flow, we use
the elegant theory of Poincaré maps (Poincaré 1890). For periodic systems,
Poincaré’s idea is to take ‘snapshots’ of the dynamics.2 Instead of following
particles continuously, he looks at the net displacement after a time step equal to
the period of the oscillations. There are no fixed points in the continuous system,
but Poincaré is interested only in points that return to their initial position after
a time equal to the period of the oscillation.

The invariants of thePoincarémapare periodic trajectories.As shown infigure 3,
there are two such hyperbolic trajectories located near the position of the saddles of
the steady system. In periodic systems, however, the associated invariantmanifolds
do usually not overlap, they intersect and form sequences of lobes.

As described in Smale (1980) and Guckenheimer & Holmes (1983), to define a
boundary between cells, it is convenient to pick one of the intersection points
(this so-called boundary intersection point or ‘bip’ is indicated as a circle and
marked g in figure 3). The separatrix between the cells is constructed by joining
a segment of unstable manifold (from the hyperbolic point on the lower boundary
to the bip) to a segment of stable manifold (from the bip to the hyperbolic point
on the top boundary).

Figure 4 investigates transport between the left and right cells in the periodic
system. The efficiency of the dynamical systems framework stems from the fact
that the lobes are mapped exactly onto themselves after a time equal to the

2 Henri Poincaré developed his methods for the three-body problem in the late 1880s. It is
conceivable that he came across chaos at that time, but the value of Poincaré maps for studying
chaos in periodic systems was discovered by Stephen Smale only in 1965 (Smale 1980).

Phil. Trans. R. Soc. A (2007)
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Figure 4. (a–d ) Transport in a periodic system. Dark dye in the left cell penetrates the right cell as
it fills the lobes between the LCSs. Each picture corresponds to a successive Poincaré mapping.
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period of the system. In figure 4, we follow the drift of dark dye released in the
left cell. The snapshots in figure 4 show that transport is governed by the lobes
comprised between the coherent structures.
Phil. Trans. R. Soc. A (2007)
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Figure 5. Lobe overlapping induces chaotic stirring.
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How is chaos generated in the periodic system?A general construction, known as
the Smale horseshoe, gives the paradigm for chaotic advection (Smale 1980;
Guckenheimer&Holmes 1983).Thekey ingredient is the entanglement of the lobes.
As shown in figure 5, the dyed lobes in the right cell (i.e. containing fluid that was
entrained from the left cell) eventually intersect with the other sequence of lobes
(i.e. fluid that will be detrained to the left cell). While our initial description of
transport in terms of lobes only took into consideration single-step transport from
one cell to the other, the intersections between lobes indicate more complex
dynamics. In the intersection between the lobes, the particles must obey the
dynamics dictated by each overlapping lobe.

Let us denote by 0 and 1 the position of a particle in the left and right cells,
respectively. Using this ‘symbolic dynamics’, the history of a particle can be
represented as a string of 0s and 1s. For example, a particle that crosses from
left to right contains ‘.01.’ in its string. The intersections between the lobes
guarantee that all possible strings (or histories) are possible. No matter how
complicated the desired sequence of 0 and 1 is, there is a particle in the system
that corresponds to it. Moreover, no matter what the history is up to the
present time, all future behaviours are possible (Guckenheimer & Holmes 1983).

Mathematically, the existence of chaotic dynamics in the system is proved by
showing that there is a chaotic invariant Cantor set in the entanglement of the
lobes. Smale’s geometric construction is universal: as long as lobes intersect, there
exists a fractal invariant set that is sensitive to initial conditions. The fractal
dimension and the location of the chaotic invariant set (also called ‘chaotic saddle’)
provide useful information about asymptotic mixing (see Tél et al. (2005) for a
recent review). The chaotic fractal set has also its own stable and unstable limit
sets, but these should not be confused with the stable and unstable manifolds
studied in this paper. As we will show in §4, generalizing the definition of chaotic
invariant sets to quasi-turbulent flows is difficult since the notion of invariance
must be replaced by the concept of boundedness, which is not Galilean invariant.
Instead of working directly on the chaotic set, we concentrate on generalizing
coherent structures for quasi-periodic systems. Once coherent structures are
properly defined and intersect in sequences of lobes, a construction similar to Smale
(1980) gives the corresponding chaotic sets, this time without any violation of the
Galilean invariance.
Phil. Trans. R. Soc. A (2007)
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Figure 6. Lobe dynamics in an aperiodic system. A boundary intersection point (bip) between the
invariant manifolds is selected and defines the cell interface (dashed line). (a–d ) As time evolves,
the bip moves up and the interface deforms to the point where it no longer describes an acceptable
boundary. (e) At this time, the bip must be changed, which triggers the switch of lobes from one
cell to another.

3071Chaotic stirring in quasi-turbulent flows
(c ) Quasi-turbulent regime

For steady and periodic flows, stable and unstable invariant manifolds of
hyperbolic fixed points and periodic orbits provide adequate LCSs. If the flow is
not periodic but very close to periodic, a similar framework can be derived in
second-order Poincaré maps (Parker & Chua 1989, ch. 2.3). But what can we do
for general systems that are far from the laminar limit?

In a quasi-turbulent flow, the energy spectrum is broad: the velocity gradient
is significant at all scales and it is never acceptable to restrict the flow to a few
periodic oscillations, precluding the use of Poincaré maps. Nevertheless, LCSs
continue to divide the flow into regions of qualitatively different dynamics and
govern chaotic transport (Voth et al. 2002).

Defining and computing the LCSs for such flows is an active area of
research which we discuss in §4. It is, however, worth taking a look at how
intersecting lobes continue to generate chaotic transport in the aperiodic case.
Figure 6 shows the LCSs in the aperiodic system. The stream function is still
jZA sin(2(xKg(t)))sin(2y), but this time the function g(t) is replaced by an
aperiodic function. To obtain a truly aperiodic (but smooth) function, we
proceed as follows: we compute the Fourier spectrum of a sequence
of uncorrelated random numbers and fit the amplitude of the spectrum to
that of a random process with Gaussian covariance. The inverse Fourier
Phil. Trans. R. Soc. A (2007)
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spectrum of the last spectrum gives us an aperiodic function g(t) which is a
smooth realization of a random process with prescribed covariance in time (see
Lekien & Haller (in press) for a complete description).

As in the periodic case, a bip g is selected to construct a boundary between the
cells (figure 6). However, in this case, the bip, the boundary and the lobes evolve
with time. In particular, the bip moves up towards the top boundary, and the
boundary quickly becomes obsolete as the unstable manifold oscillates near the
top boundary. At this time, the bip must be changed and a more acceptable
boundary must be reconstructed. When the bip and the boundary change, some
lobes will find themselves on the other side of the boundary.

This framework for transport in aperiodic systems was introduced by
Coulliette & Wiggins (2001) and generalized the Smale horseshoe to quasi-
turbulent systems: as long as we have intersecting lobes, chaotic stirring takes
place. Furthermore, a (moving) chaotic set is found in the entanglement of the
lobes (see §6 of Tél et al. (2005)). It is worth noting that the example of figure 6
was designed in such a way that the LCSs could be easily computed. While the
time dependence is truly aperiodic, the general structure of the convection cell
never changes and the analytic flow is known at all past and future times. In a
more realistic flow, such everlasting LCSs do not exist, and it is usually not
possible to find such everlasting hyperbolic trajectories on the boundary with
unique stable and unstable manifolds. In §4, we investigate the definition of LCSs
and take into account the finite-time nature of the structures.
4. Lagrangian coherent structures

As shown in the previous sections, advection in the laminar and quasi-turbulent
regime is well described by LCSs. The LCSs divide the fluid into regions of
qualitatively different dynamics; their entanglement and the resulting lobes
govern chaotic transport between the regions.

In steady and periodic laminar systems, LCSs correspond to hyperbolic invariant
manifolds of fixed points and periodic orbits (Guckenheimer & Holmes 1983); they
are easily computed and fully govern transport. Indeed, it takes a considerable
length of time for a laminar flow to stretch a tracer down to the diffusive length scale.

In quasi-turbulence, high velocity gradients at small scales trigger diffusion
more rapidly. Nevertheless, the LCSs from the advective stage remain active for
a significant time; even when diffusion takes place, the footprints of the LCSs
survive as they created inhomogeneous stretching and the relative importance of
diffusion varies depending on the position with respect to the LCSs.
Furthermore, most geophysical flows are fuelled by large-scale external forces.
The LCSs act constantly to stretch the incoming tracer. One such example is the
Gulf Stream: the constant cooling in the sub-polar gyre and the constant
warming in the subtropical gyre induce a sustained action of an LCS dividing
those two gyres. The dynamics of particles and tracers is dominated by this
everlasting LCS. Diffusion weakens the relevance of LCSs in quasi-turbulent
flows but rarely blurs the advective patterns completely.

In this section, we investigate how to identify LCSs in quasi-turbulence. The
broad range of length scales present in the quasi-turbulent regime makes it far
from being steady or periodic. We need a new definition of LCS for aperiodic
Phil. Trans. R. Soc. A (2007)
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flows. Furthermore, this definition has to accommodate finite-time LCSs, as well
as their appearance and disappearance.

Three approaches to this problem can be found in the literature. First, one can
seek strong, non-rotating, hyperbolic stagnation points that never bifurcate.
Haller & Poje (1998) showed that, near such a point, there exists a hyperbolic
trajectory and associated invariant manifolds. Sandstede et al. (2000) illustrated
this method. Unfortunately, the strong hypothesis on the stagnation points is
seldom satisfied for many flows of interest. Stagnation points often bifurcate or
spin rapidly near a smaller scale eddy. Both processes violate the hypothesis of
Haller & Poje (1998) and leave us no clue about the location, or even the
existence, of an LCS.

A second approach was proposed by Ide et al. (2002). Even for stagnation
points wandering over large areas, Ide et al. (2002) suggested linearizing the flow
inside the box where the stagnation point moves and restricts the analysis to the
Eulerian linearization of the flow inside the box. Unlike the full nonlinear flow,
the linearized approximation induces the same stretching everywhere in the box
and an infinite number of hyperbolic trajectories can be computed. To segregate
the hyperbolic trajectories in the linear flow, Ide et al. (2002) showed that only
one of the trajectories remains bounded in the linear approximation and elected
it to the status of distinguished hyperbolic trajectory.

As shown by Mancho et al. (2004), the method can be very powerful and
accurate in some flows. Its main weakness is the fact that it violates a
fundamental law of physics: Galilean invariance. No matter how we define LCSs,
one expects the definition to be invariant with respect to uniform translations of
the coordinate frame. But neither the stagnation points nor the notion of
boundedness is frame invariant. Following Ide et al. (2002), an observer standing
on shore and an observer flying at constant speed in an aircraft may be observing
the exact same flow and compute different distinguished hyperbolic trajectories.

Methods based on stagnation points were even more challenged recently when
specific examples dissociating LCSs and hyperbolic stagnation points were
discovered. Haller & Poje (1998) already noted that an LCS did not necessarily
exist in the neighbourhood of a hyperbolic stagnation point. But the discovery of
LCSs existing in the absence of any hyperbolic stagnation point discredited all
the methods based on stagnation points (Lekien & Haller in press). The elegant
theory of LCS for steady and periodic flows makes an intensive use of hyperbolic
stagnation points and this misled us into overestimating their role in quasi-
turbulent dynamics. In fact, stagnation points are important in steady and
periodic flows only because, in such flows, they are also the strongest hyperbolic
trajectories. In aperiodic flows, stagnation points are no longer trajectories and
are, hence, irrelevant in describing transport, stretching and LCSs. Stagnation
points are not Galilean invariant in quasi-turbulent flows; they disappear and
appear depending on the speed of the coordinate frame and they cannot,
therefore, participate in a coherent theory of stretching and LCSs that are
intrinsic, Galilean invariant properties of the fluid dynamics.

For the same reason, the direct generalization of the chaotic Cantor set (i.e.
the chaotic saddle delineated by the entangled LCSs) to quasi-turbulent flows is
difficult. For fixed obstacles in open flows, it is sometimes possible to find a
‘stagnant chaotic fractal set’ (see §7 of Tél et al. (2005)). Nevertheless, this
concept can hardly be applied to arbitrary flows. Notions such as ‘stagnation’ or
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‘boundedness’ eventually violate Galilean invariance and lead to contradictions.
Instead, we seek a Galilean invariant extension of smooth LCSs for quasi-periodic
flows. The generalized chaotic sets then follow naturally from Smale’s
construction.

The concept of locally strongest hyperbolic trajectory received its first
mathematical formalism in a seminal paper by Haller (2000) where the existence
of attached LCSs is formally demonstrated. Later, Shadden et al. (2005) showed
that the LCSs attached to the strongest hyperbolic trajectory were also very
close to the strongest attractive and repulsive lines in the flow, connecting with
the vast amount of dye experiments in fluid mechanics (Voth et al. 2002). The
theory of the strongest hyperbolic trajectories and the concept of the most
hyperbolic LCSs guarantee frame invariance. Furthermore, they no longer rely
on the capricious meandering of stagnation points. Their application is limited
only by the destructive effect of diffusion (an unavoidable limit) and aperiodic
LCSs quickly conquered transport problems in various fields of engineering and
science, from geophysical flows (Lermusiaux et al. 2006) to space travel (Ross
2006) and from algal blooms (Olascoaga et al. 2006) to underwater vehicle
control (Bhatta et al. 2005).

The LCS theory can be seen as an attempt at avoiding the pitfalls of the
other methods and as a retreat behind a more primitive concept: the
deformation tensor. If we consider a trajectory x(t), an infinitesimal perturbation
about its initial condition evolves as d(t)ZX(t; t0, x0)d0, where X(t; t0, x0) is the
fundamental solution matrix or the finite (linear) deformation tensor.
The advantage of this approach is that Galilean invariance is inherited from
the properties of the deformation tensor. Also, it does not require any
assumptions about the velocity field or its stagnation points since finite
deformations (and not infinitesimal changes due to the instantaneous velocity
field) are playing a central role. From the Volterra equation mentioned in §1, one
can derive the deformation tensor as

Xðt; t0; x0ÞZ
vxðt; t0;x0Þ

vx0

;

i.e. the matrix which gives the change in final position x(t; t0, x0) due to an
infinitesimal change in the initial condition x0. In the absence of the elegant
simplifications arising in steady and periodic flows, the aperiodic LCS theory
returns to its more primitive, but seminal, concept: sensitivity to initial
conditions.

It is worth mentioning that the LCS theory is far from being complete
and frozen. To compute the finite-time deformation tensor X(t; t0; x0), several
choices are possible. Haller (2000) and Shadden et al. (2005) used a fixed horizon
and approximated X(t; t0; x0) by numerically differentiating a grid of a particle
integrated for a constant time. But Koh & Legras (2002) showed that fixing the
size of the initial and final perturbations and computing the time it takes to go
from one to another can give a more pronounced approximation of the
deformation tensor in some cases. It is also possible to identify a fixed time
window and restrict the computation of the Lyapunov exponent to a specific time
interval. Such a procedure is particularly interesting when the flow can be
divided, a priori, into distinct regimes (Lekien & Leonard 2004).
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Furthermore, the stretching indicator used today is based on the polar
decomposition of the deformation tensor. The maximum singular value of X,

sZmax
d

kXdk2

kdk2
;

is used to approximate the stretching. This measure, known as the largest finite-
time Lyapunov exponent, is however not perfect as it incorporates both stretching
and shear. As noted by Lapeyre et al. (2001), the singular value ofX becomes a poor
measure of stretching when shear or solid body rotation is too large. Finding an
exact quantification of stretching in a given deformation tensor is an active area
of research.

Until a more efficient stretching indicator is developed, we use the Lyapunov
exponent to approximate stretching and compute LCSs. As shown in figure 7, all
the LCSs shown in §3 were computed using this simple method. Thin lines of
extremely high stretching are clearly visible and correspond to LCSs. At first,
one may be baffled by such plots where clear sharp LCSs become dim in some
areas (see, for example, the tip of the lobes in figure 7). The results of Shadden
et al. (2005) showed, however, that one should not seek lines of maximum
stretching. Instead, the LCS is characterized by stretching that drops rapidly in
the normal direction. The absolute value of the Lyapunov exponent is usually
large along the LCS, but the theory allows for significantly smaller stretching
too. What matters is the sharp lateral drop along the LCS, not the absolute value
of the exponent.

To get an idea of what an LCS is, it is useful to see the Lyapunov exponent as
an altitude field. In other words, one can view the colour map in figure 7 as a
topographic map where red denotes high altitude and blue the bottom of deep
valleys. The LCS corresponds to a ridge or a continental divide in this landscape.
If a walker follows a ridge, his on her fate is uncertain in the case of a fall.
Depending on the initial impulsion, the unfortunate walker may fall on either
side of the ridge. The notion of ridge is an essential ingredient in the definition of
the LCS and it connects with the dynamical properties of the LCS: they are lines
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F. Lekien and C. Coulliette3076
dividing regions of different dynamics (valleys) and, as a result, they are
‘hotspots’ where small perturbations can push particles into different valleys
(anticlockwise left cell or clockwise right cell).
5. Surface transport in Monterey Bay

(a ) A radar array in Monterey Bay

The concepts of the strongest hyperbolic trajectories and LCSs are not only
elegant and exciting mathematical concepts but also robust tools that can be
applied easily to many problems in continuous mechanics. To illustrate this
aspect, we consider a coastal current observation system in Monterey Bay along
the California coastline. The bay is equipped with an array of high-frequency
(HF) radar antennas that are able to determine the net displacement of surface
particles during 1 h time intervals (Paduan & Rosenfeld 1996). Every hour, the
radar data are averaged in circles of radii 3 km and mapped onto a 1 km!1 km
grid. The radar data are used directly to approximate the surface trajectories
x(t; t0, x0) and permits the computation of LCSs in real time, based on measured
ocean conditions.

We begin our study with modal analysis of the HF radar data (Lekien et al.
2004). It is, indeed, important to check the energy spectrum and determine
whether the flow regime is laminar, quasi-turbulent or turbulent. Haynes (2003)
showed that, if the velocity gradient is larger at small scales than at large scales,
then there may be patchy stretching areas (subject to turbulent mixing), rather
than organized coherent structures. After verifying these hypotheses, we present
the LCSs in Monterey Bay and describe the dynamics during an upwelling event.
Two applications of LCSs in the bay are presented: the optimal deployment of
drifting sensors and the control of the impact of a pollution source.

(b ) Energy spectrum in Monterey Bay

There are flows where turbulent diffusion dominates and LCSs are irrelevant.
We must determine whether the surface currents of Monterey Bay are laminar,
turbulent or quasi-turbulent. Lekien et al. (2004) derived a modified Fourier
transform that provides the energy spectrum (i.e. the kinetic energy per unit
of wavenumber) as a function of the wavenumber (kZ2p/l, where l is the
length scale).

In a laminar flow, the energy is confined to a small range of length scales. Figure 8
shows that the flow inMonterey Bay is not laminar; there is a significant amount of
energyat small length scales (i.e. at large k). Is it turbulent or quasi-turbulent?Most
theories on fully established turbulence require that the energy drops slowly
enough. This translates into energy spectra behaving as kK5/3 or kK1. In Monterey
Bay, however, the energy spectrum evolves as kK3 (figure 8), a much steeper slope
that is commonly observed in quasi-turbulence (Ishihara & Kaneda 2001; Tung &
Orlando 2003). Owing to the averaging in the radar installation, the signal vanishes
rapidly after the 6 km wavelength. Below 3 km (the radius of the averaging circle),
we cannot determine the kinetic energy. It should be clear that there is still a
significant portion of the energy in length scales shorter than 3 km, and that
improvements in sensing technologieswill gradually give usmore complete spectra.
Phil. Trans. R. Soc. A (2007)
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Figure 8. (a) Energy spectrum and (b) velocity gradient as a function of kZ2p/l.
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Defining a boundary between the quasi-turbulent and turbulent regimes is
still the topic of many debates but, in the context of the relative importance of
stirring and mixing, the velocity gradient gives us a rather clear demarcation
line. Recall that the velocity gradient is responsible for the stretching of fluid
elements. If the velocity gradient is high only at large scales, it takes a long time
to obtain thin filaments of fluid that can be diffused. These flows are dominated
by chaotic stirring and correspond to energy spectra kKg where gR3. At the
limit kK3, the velocity gradient is constant at all length scales. Figure 8 shows
that this is indeed the case for Monterey Bay. We conclude that Monterey Bay
is a quasi-turbulent flow where particle dynamics are governed by large-scale
LCSs, but it is also a complex flow that has features at all length scales and
time scales.

Note that we would still be able to apply the LCSs theory if the energy spectrum
was decreasing more slowly than kK3. In this case, however, chances are that the
dynamics would not be governed by large-scale LCSs. Furthermore, turbulent

mixing may overpower chaotic stirring and LCSs. For example, a kK5/3 spectrum
induces a velocity gradient that evolves as k2/3. In such a turbulent flow, the
velocity gradient is so high at the Kolmogorov length scale that diffusion is
immediate and chaotic stirring irrelevant (Haynes 2003). The case of Monterey
Bay is therefore an excellent test bed of the LCS theory: the flow is not fully
turbulent, but it has a broad energy spectrum requiring an aperiodic LCS theory.
(c ) Dynamics in Monterey Bay

As shown in figure 9a and in Lekien & Haller (in press), the dynamics of
particles at the surface of Monterey Bay in August 2003 is governed by a moving
repulsive LCS that attaches to the Monterey Peninsula. The LCS divides the
domain into two regions of qualitatively different dynamics: recirculation inside a
lobe of the LCS and quick escape to the Pacific Ocean on the other side of
the LCS.

During the summer months, the bay oscillates regularly between the
upwelling events (cold, salty water surfacing and strong southward jet) and
relaxation events (weaker, less organized currents and often narrow northward
band). The LCS shown in figure 9 is typical of the upwelling regime. It exists
Phil. Trans. R. Soc. A (2007)
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only for a 3–5 day period after which it is replaced by relaxation LCSs. Note
that the radar array captures only the surface dynamics. Strong divergence in
the data indicates that there is also a significant motion in the vertical direction
during upwelling events (Paduan & Rosenfeld 1996). The availability of
acoustic current profiler data at lower depths and recent theoretical
developments (Lekien et al. 2007) will eventually permit the computation of
three-dimensional LCSs in Monterey Bay. In the present paper, however, we
concentrate on surface dynamics. This setting is therefore appropriate for
studying drifters and floating contaminants. In particular, the divergence in the
surface flow is not filtered out and the tracers properly accumulate in the
regions with negative divergence.

It is also worth noting that there is an attractive LCS that shoots off Santa
Cruz during the upwelling regime. The two LCSs may or may not intersect but,
if they intersect, the resulting lobes are rarely observed as the lifetime of the
structures is often shorter than the advection time of the lobes. Nevertheless, the
repulsive LCS shown in figure 9 provides enough information about surface
particle transport and sensitivity to initial conditions for most applications.

Clearly the radar data are not perfect: there are poor and missing data
points. To compute LCS from the observed currents, several options are
available. First, one can ignore the gaps and assimilate them as immobile
particles. Second, one can use the nearest or natural neighbours interpolation
(Sibson 1981). It is also possible to fill the gaps and filter spurious data points
using optimal interpolation (Gandin 1963) or open-boundary modal analysis
(Lekien et al. 2004). The LCSs shown in figure 9 are obtained by filling the gaps
with immobile particles. Luckily, all these methods produce similar LCSs. This
robustness was investigated by Haller (2002) and corroborated by recent
studies. Lermusiaux et al. (2006) verified the existence of the LCS in figure 9
Phil. Trans. R. Soc. A (2007)
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using the Harvard Ocean Prediction System. Later, Shadden et al. (in press)
showed that paths of ocean drifters and LCSs in the radar data are in
remarkable agreement.

The robust dynamical framework delineated by the LCSs can be exploited for
various transport problems and we describe two of them: the deployment of
drifting sensors and coastal pollution mitigation.

(d ) Application: optimal drifter deployment

Monterey Bay is regularly the site of large-scale scientific experiments during
which scientists from various fields deploy and use aircraft, boats, underwater
vehicles, buoys and ocean models. Leonard et al. (2007) described field
experiments in Monterey Bay and highlight the importance of coordinating the
assets in such a way that they collect the maximum information. Indeed, two
buoys which are too close to each other measure data that are strongly
correlated and act almost as a single sensor. Leonard et al. (2007) also
emphasized the importance of using large arrays of cheap vehicles. Among those
weaker vehicles, we find underwater gliders and drifters. While typical
propelled underwater vehicles run only for a few hours and must be constantly
recovered and launched from a boat, underwater gliders use a buoyancy engine
and stay at sea for several weeks or months. This autonomy comes at the
expense of power: gliders move slowly, cannot always fight the strong currents
in the bay and must be operated carefully in order to profit from ocean
dynamics. As described by Bhatta et al. (2005), LCSs in Monterey Bay provide
a visual description of the flow and can assist in designing optimal control of
groups of gliders.

Figure 9b illustrates the use of LCS for deploying drifting buoys. In this case,
the sensors are not actuated at all. From the initial configuration, each drifter
follows the currents. Based on our analysis of the dynamics in the bay, these
drifters will typically have two types of behaviour: they either recirculate in the
bay or go out into the open ocean. During an experiment, vehicles should
remain inside the domain as much as possible. Indeed, when a drifter goes off
into the Pacific Ocean, one must either send a boat to pick it up or abandon
the asset. Both options are costly and waste available resources. Therefore, the
initial deployment of drifters requires careful planning in order to identify
the optimal strategy. As shown in figure 9b, the drifters are concentrated inside
the lobe of the LCS, which guarantees that they will recirculate in the bay
(Shadden et al. in press).

(e ) Application: optimal coastal discharge

Monterey Bay is a natural preserve confronted with several sources of
pollution. Two of them are located in the Moss Landing area: the Elkhorn Slough
and the Duke Energy power plant. In particular, warm water is expelled from the
power plant through a 600 m pipe (Coulliette et al. in press).

In figure 10, a pipe is represented and we follow the evolution of released
pollutants. Depending on the position of the LCS, the behaviour of the pollutants
may vary to a considerable degree. At 12.00 GMT on 10 August (figure 10a), the
end of the pipe falls inside the loop of the LCS, and the pollutants will recirculate
in the bay. This large amount of pollutants in a shallow area induces peaks of
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pollution and devastates the environment. The LCS is, however, mobile and, 6 h
later, it moved east of the pipe outlet (figure 10b). In this case, pollutants are no
longer released into the recirculation zone, but are quickly advected towards the
ocean. These pollutants mix with a large quantity of water and their impact on
the ecosystem is much less dramatic.

Smith (1998) suggested using holding tanks to reduce the impact of pollutants.
A source of pollution is virtually interrupted by diverting pollutants to the tank.
The tank can be emptied later when the pollutants will have a lesser impact. Using
LCS and, in particular, the position of the LCS with respect to the pipe outlet, we
are able to identify periods of recirculation (i.e. when the pollutants must be
diverted to the holding tank) and periods of quick clearance (i.e. when the tank is
emptied and the pollution released). Coulliette et al. (in press) showed how such a
combination of holding tanks and LCSmonitoring can reduce the impact of coastal
discharge while not changing the total amount of released pollutants.

This concept of ‘intelligent coastal discharge’ is becoming increasingly
appealing in the light of the many environmental threats faced by the planet.
Feeding the growing human population cannot be achieved without a minimal
pollution. At best, human activity will still generate thermal pollution. Once a
minimal discharge is achieved, understanding contaminant dynamics and fate
becomes our only option for minimizing environmental damages.
6. Conclusion

Chaotic stirring and turbulent mixing used to be studied separately in laminar
and turbulent flows, respectively. Most flows in nature are, however, found in an
intermediate regime. The discovery of these quasi-turbulent flows called for a
better understanding of the interaction of advection and diffusion.
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The nascent LCS theory aims at understanding chaotic stirring in these flows. Its
efficiency stems from its ability to dealwith large velocity gradients at all scales, and
its robustness with respect to velocity fluctuations and uncertainties. As a result, it
can already be used in conjunction with ocean sensing networks to optimize the
deployment of buoys or for coastal pollution mitigation.

To pursue our understanding of chaotic stirring in quasi-turbulent flows, LCS
theory must, however, still address the following three fundamental issues.

—The ambiguity between the notion of finite-time invariant and quasi-invariant
manifolds. Defining LCS using invariant manifolds gives a paradigm that is
closer to the transport properties of steady and periodic systems, as well as the
Smale horseshoe. Unfortunately, this also precludes bifurcations of the LCSs.
When LCSs are defined as ridges of a stretching indicator, such as the
Lyapunov exponent, they become almost invariant. These LCSs can bifurcate
and change according to seasonal variations in the flow dynamics. Physically,
the latter approach is more able to describe transport in aperiodic fluids that
oscillate between various regimes, such as upwelling and relaxation in
Monterey Bay. Mathematically, the notion of quasi-invariant manifold is not
well developed and LCSs suffer from this lack of formalism.

—The quantification of stretching in the finite deformation tensor to overcome
the deficiencies of the Lyapunov exponent.

—A deeper understanding of the subtle interaction between stirring and mixing.
The LCSs, which govern chaotic stirring, are lines of maximum stretching
and, as a result, are also zones where mixing is important. A global spectral
analysis alone cannot explain the subtle interaction between stirring and
mixing and local investigations of tracer transport near the LCSs are needed.
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the talks of Peter Haynes and Jacques Vanneste at the Tropical Scalar Transport Meeting of the
National University of Singapore. This research also profited from the help and comments of
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