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[1] An important aspect of particle trajectory modeling in the ocean is the assessment of
the uncertainty in the final particle position. Monte Carlo particle trajectory simulations
using surface currents derived from standard-range and long-range CODAR HF radar
systems were performed using random-walk and random-flight models of the unresolved
velocities. Velocity statistics for these models were derived from the covariance functions
of differences between CODAR and drifter estimates of surface currents. Comparison
of predicted trajectories and drifter tracks demonstrate that these predictions are superior to
assuming the drifters stay at their initial position. Vertical shear between the effective
depth of long-range CODAR measurements (�2.4 m) and that of drifters (0.65 m) causes
the drifters to move more rapidly downwind than predicted. This bias is absent when
standard-range CODAR currents (effective depth �0.5 m) are used, implying that drifter
leeway is not the cause of the bias. Particle trajectories were computed using CODAR data
and the random-flight model for 24-hour intervals using a Monte Carlo approach to
determine the 95% confidence interval of position predictions. Between 80% and 90% of
real drifters were located within the predicted confidence interval, in reasonable agreement
with the expected 95% success rate. In contrast, predictions using the random-walk
approach proved inconsistent with observations unless the diffusion coefficient was
increased to approximately the random-flight value. The consistency of the random-flight
uncertainty estimates and drifter data supports the use of our methodology for estimating
model parameters from drifter-CODAR velocity differences.
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1. Introduction

[2] Accurate prediction of Lagrangian trajectories in the
coastal ocean is valuable to search and rescue (SAR)
operations as well as for improving our understanding of
how physical processes influence coastal ecosystems. The
SAR challenge is to make a prediction of the path of a
drifting search target given estimates of an initial location
and the evolution of the velocity field. In addition, it is
essential that the statistics of the prediction uncertainties be
provided so that search planners can use available assets
most effectively.
[3] Understanding the role of circulation variability in the

coastal ocean on the recruitment of benthic species with
pelagic larval stages poses a related ecological question
[see, e.g., James et al., 2002]. Given a source area and an

Eulerian description of the circulation, what are the trajec-
tories of larvae and how do the uncertainties in measure-
ments and unresolved motions determine the statistics of the
dispersion? Coastal radars and numerical models can pro-
vide estimates of the evolution of the velocity field, how-
ever, the dispersion or spread of particles, the uncertainty
region in the SAR example, is more difficult to specify.
[4] The recent proliferation of coastal high frequency

(HF) surface wave radar installations for mapping surface
ocean currents provides a rapidly expanding capability for
near real-time observation of surface currents. These data
have the potential to dramatically improve the efficiency
and success rate of SAR operations in coastal waters. For
this reason, the U.S. Coast Guard (USCG) Research and
Development Center has initiated a program to assess the
effectiveness of trajectory predictions using currents derived
from HF radar, and if warranted to implement the use of this
technology on an operational basis. Preliminary work to-
ward this end was reported by Ullman et al. [2003] and
O’Donnell et al. [2005].
[5] Trajectory modeling applied for SAR operations must

provide a measure of the uncertainty in the surface current
portion of drift of the SAR object in order for an optimal
search area to be delineated. The search area is a compro-
mise between the need to define a large enough area to
ensure that it encloses the target and the fact that search
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resources are finite. The size of an operational search area is
related to the magnitude of various uncertainties including
those introduced by poorly known initial target position and
time, velocity errors, and target leeway.
[6] The main objective of this paper is to evaluate a

methodology for estimating uncertainty regions for simu-
lated particle trajectories. The focus is on the uncertainty
region, or search area in SAR terminology, due only to
uncertainties in the drifter advective velocity provided by
HF radar systems. The velocity uncertainties are modeled
as a stochastic component representing a combination of
unresolved or subgrid-scale motion and errors in the HF
radar velocity retrieval. The parameters describing the
stochastic variability are determined using a comparison
of radar velocities and velocities of all available drifters
passing through the radar domain. A secondary focus is
the evaluation of the accuracy of trajectory predictions
simulated using HF radar currents. Although the motiva-
tion of the project was the improvement of SAR trajectory
predictions, we believe that the methodology described
here is also applicable to the general Lagrangian prediction
problem.
[7] Uncertainty regions are estimated using a Monte-

Carlo approach whereby the trajectories of an ensemble of
1000 particles are simulated for 24-hour intervals. The
Eulerian velocity is decomposed into a deterministic,
large-scale component measured by the radar plus a sto-
chastic component representing a combination of subgrid-
scale motion and errors in the radar velocity. To simulate the

Lagrangian motion, we make use of the hierarchy of particle
trajectory models outlined by Griffa [1996], in particular the
random-walk and random-flight models.

2. Data Sources

2.1. Drifter Trajectories

[8] A number of drifter releases in the mid-Atlantic Bight
were performed by the U.S. Coast Guard Research and
Development Center over the period 2002–2004 with the
objective of providing a data set with which to assess
trajectory predictions. Drifters were released in Block Island
Sound within the coverage region of the standard-range
CODAR system operated by the Universities of Rhode
Island and Connecticut (Figure 1). Some of these drifters
eventually passed through the coverage region of Rutgers
University’s long-range CODAR system and a number of
additional drifters were released within that zone as well
(Figure 2).
[9] Drifters were deployed in December 2002 in the

Block Island (BI) region and again in March 2003. A subset
of the latter group subsequently moved southwest on the
shelf and passed through the New Jersey (NJ) shelf CODAR
coverage region. A deployment of drifters was also made in
March 2003 within the NJ shelf domain. A final set of
deployments was made during July 2004 in both regions,
however the drifters released in the BI region rapidly exited
that domain and did not provide useful trajectory segments.
Table 1 summarizes the drifter deployments. Separate
analyses are presented for each of three drifter data sets:
(1) drifters within the BI region during winter-spring
2002–2003, (2) drifters within the NJ shelf region during
early spring 2003, and (3) those within the latter region
during summer of 2004.
[10] The drifters employed were self-locating datum

marker buoys (SLDMB) which are a USCG operational
version of the Coastal Ocean Dynamics Experiment (CODE)
drifter [Davis, 1985]. The physical dimensions of the
SLDMB are identical to those of a CODE drifter except that
the height of the drag vanes is reduced from 1.0 m to 0.7 m
[Allen, 1996]. The center of the drag vanes is located at a
depth of 0.65m, which is assumed to be the effective depth of
a velocity estimate from the drifter. The drifters recorded
Global Positioning System (GPS) fixes at 1=2 hour intervals
and the fixes were transmitted to shore via the Argos com-
munications network. With 1=2 hour sampling and a nominal
GPS position uncertainty of 10 m, the uncertainty in the
velocity of the drifter due to position uncertainty is O(1 cm/s).
Davis [1985] concluded, from comparisons of drifter veloc-
ities with near-surface vector measuring current meters, that
the drifter velocity is accurate to approximately 3 cm/s.
More recent measurements, using small current meters
mounted within either end of the body tube of a CODE
drifter, indicate that drifter slippage relative to the water
is in the range of 2–5 cm/s (P. Poulain, personal
communication, 2005).

2.2. HF Radar Surface Currents

[11] HF radar surface currents were obtained with
CODAR SeaSonde systems located in the mid-Atlantic
Bight in the region around Block Island and on the shelf
east of New Jersey. A 3-site standard-range (�25 MHz)

Figure 1. Trajectories of surface drifters deployed during
December 2002 and March 2003 in the BI CODAR region.
The black dots show the release points of each drifter (note
that some were retrieved and redeployed). The black
diamonds show the locations of the CODAR sites and the
dashed line shows the approximate 10% coverage region.
The location of NDBC buoy 44017 is denoted by the
triangle.
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system in the BI region provided hourly surface currents at
1.5 km resolution over the region shown in Figure 1. Radial
velocities observed at each of the 3 sites were obtained with
the MUltiple SIgnal Classification (MUSIC) algorithm
[Schmidt, 1986] using measured antenna patterns. The
radial components were combined to produce vector veloc-
ities using the manufacturer’s (CODAR Ocean Sensors)
software. The NJ shelf surface currents were provided by a
4-site long-range (�5 MHz) system with spatial resolution
of 6 km in the area shown in Figure 2. Radial velocities
averaged over 3-hour periods, estimated using measured
antenna patterns, were output on an hourly basis and were
combined using the Naval Postgraduate School’s HF Radar
Toolbox. A screening methodology, utilizing a threshold on
the estimated geometric dilution of precision (GDOP)
[Gurgel, 1994], was used to remove current vectors derived
from combinations of radials with poor geometry. The
GDOP, a nondimensional scalar was calculated for every
grid point in the field at each time step. Larger GDOP
values indicate poor geometry in which the available radial
component vectors do not adequately resolve both compo-
nents of the current. For the analysis in this paper, an
empirically determined threshold of 1.25 was used, whereby
vectors for which the GDOP was greater than the threshold
were eliminated from consideration.
[12] HF radar estimation of surface currents relies on

Bragg scattering from surface gravity waves having a
wavelength exactly 1=2 the radar wavelength and traveling
either towards or away from the radar site [Stewart and Joy,
1974]. The backscattered signal is Doppler shifted by an
amount proportional to the sum of the wave phase velocity,
which is known via the deep-water dispersion relation, and
the radial component of the surface current upon which the
Bragg waves are carried. The surface current is then the
difference between the velocity of the Bragg waves esti-

mated from the measured Doppler shift and the computed
phase velocity. The effective depth of the surface current
measurement depends on the wavelength of the Bragg
waves, and thus on the radar frequency. Stewart and Joy
[1974] showed that, for a linear surface current vertical
profile, the effective measurement depth is given by:

deff ¼
lbragg

4p
¼ lradar

8p
ð1Þ

Using this equation, the effective depths of the current
measurements are estimated to be �0.5 m for the 25 MHz
standard range system in the BI region, and �2.4 m for the
5 MHz long range system along the NJ coast.
[13] Estimates of the uncertainties associated with surface

currents derived from CODAR systems have been provided
using in situ velocity observations from acoustic Doppler
current profilers (ADCPs). Chapman and Graber [1997]
cite differences of O(15 cm/s) between HF radar current
estimates and in situ current measurements. However, as
Kohut et al. [2006] point out, these error estimates include a
large component that is due to the different spatial scales
and depths sampled by HF radar and ADCPs. They estimate
the intrinsic CODAR radial uncertainty to be of O(5 cm/s)

Figure 2. Trajectories of surface drifters deployed during March 2003 (left) and July 2004 (right) which
passed through the NJ shelf CODAR domain. The black dots show the release points of each drifter. The
black diamonds show the locations of the CODAR sites. The dotted line shows the nominal coverage
zone, and the dashed line shows the approximate 10% coverage region. The location of NDBC buoy
44025 is indicated by the arrow.

Table 1. U.S. Coast Guard Research and Development Center

Mid-Atlantic Bight Drifter Releases During 2002–2004

Date Region Number Notes

16–18 Dec 2002 BI 9 Retrieved and redeployed several.
27 Mar 2003 BI 4 Passed through NJ Shelf region.
27 Mar 2003 NJ Shelf 8
27 Jul 2004 BI 3 Rapidly left domain.

Passed through NJ Shelf region.
27 Jul 2004 NJ Shelf 4
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for the NJ shelf long-range systems used in the present
study. Vector uncertainties for the BI region were estimated
to be 3–15 cm/s with the larger values observed along the
outer boundaries of the coverage regions where the com-
bining geometry is nonoptimal and where signal to noise
ratios increase [Ullman and Codiga, 2004].
[14] Interpolation of velocities from theCODARgrid to the

location of a drifter was performed using a weighted, nearest
neighbor scheme in which velocities from the 4 nearest
neighbor grid points were weighted inversely with distance.
This method is more robust than bi-linear interpolation
because it tolerates some data gaps and allows for
extrapolation beyond the instantaneous zone of CODAR
coverage if desired. In our analysis, we restrict the
trajectory prediction evaluation to those drifter tracks that
start within the nominal coverage zones shown in Figures 1
and 2. There is, however, variability in the extent of the area
within which long range CODAR data is available and
Figure 2 also shows where current estimates are available
at least 10% of the time during the drifter deployment
periods. Note that in the BI region the 10% coverage
region and the nominal coverage region were the same.
The 10% coverage regions were used to perform more
stringent screening of the trajectories, confining them to
regions of more reliable CODAR currents.

2.3. Comparison of Surface Currents From Radar
and Drifters

[15] Drifter velocities at times (hourly) corresponding to
CODAR observations were computed from time series of
drifter positions at half-hour intervals using a central dif-
ference scheme. CODAR velocities were then spatially
interpolated to the drifter location using the weighted
nearest neighbor method described above. Velocities at
locations outside of the 10% coverage zones (see Figures 1
and 2) were eliminated from the analysis.
[16] Velocity differences (drifter minus CODAR) were

rotated into a right-handed coordinate system with x oriented
in the direction of the instantaneous wind and y oriented in
the cross-wind direction. Hourly wind measurements from
National Data Buoy Center buoys 44017 and 44025 were
used for the BI and NJ shelf regions respectively (see Figures
1 and 2 for the location of these buoys). Winds were assumed
to be spatially uniform over each of the CODAR domains. In
the NJ shelf region, downwind drifter-CODAR differences
are weakly correlated (r = 0.28) with wind speed indicating a
tendency for the drifters to move faster downwind than the
CODAR measurements (Figure 3a). The correlation is
significantly different from zero assuming N/24 degrees of
freedom, where N = 5895 is the number of hourly data points
in Figure 3a and the factor 24 is the estimated integral
timescale in hours of the wind speed (not shown). In the
BI region, downwind drifter-CODAR differences are uncor-
related with the wind speed, and crosswind differences are
uncorrelated in both regions (Figure 3).
[17] The effective depth of the 25 MHz BI region

CODAR (�0.5 m) is very close to the effective depth of
the drifters (�0.65 m). The lack of correlation between
downwind drifter-CODAR difference and wind speed in
this case suggests that drifter leeway is indeed small. The
positive correlation exhibited in the NJ shelf region with
long-range CODAR measurements at �5 MHz is consistent

with the presence of vertical shear between the drifter
depth and the effective depth of the CODAR measurement
(2.4 m). To demonstrate this, we estimated the vertical
shear between the drifter and CODAR effective depths as
a superposition of a steady-state Ekman spiral and the
Stokes drift. Ekman currents were computed using a
constant eddy viscosity of 10�2 m2/s at 40� N and the
Large and Pond drag coefficient formulation [Large and
Pond, 1981]. The Stokes drift was estimated using the
Pierson and Moskowitz [1964] n = 4 spectrum for a fully
developed wave field following Kenyon [1969]. To sim-
plify the calculation, angular spreading of the energy
spectrum was neglected. The estimated velocity difference
between z = 0.65 m and z = 2.4 m from the combined
Ekman and Stokes currents is plotted in Figure 3a as a
function of wind speed (green line). Although the scatter is
large, the estimated difference appears to explain the
general trend, suggesting that the correlation between
drifter-CODAR differences and wind speed arises due to
vertical shear between the depths of the drifter and the
CODAR measurements.

3. Trajectory Modeling

3.1. Monte-Carlo Trajectory Prediction

[18] The motion of a particle in a two-dimensional
velocity field can be described by the equation:

dr

dt
¼ u t; rð Þ; ð2Þ

where r = (x, y) denotes the position of the particle and u =
(u, v) is the Eulerian velocity at position r and time t. The
velocity can be decomposed into a large-scale, slowly
varying component U, and a component ut representing
subgrid-scale deviations which will be referred to as
turbulence:

u ¼ U þ ut: ð3Þ

Surface current mapping radars such as CODAR can
provide estimates of U at spatial scales of approximately
1.5 km (6 km) and temporal scales of 1 hour (3 hours) for
standard-range (long-range) systems, thus the turbulent
component represents velocity fluctuations on scales
smaller than these. The radar-derived velocity is subject to
significant uncertainties and so the large-scale component
can be expressed as:

U ¼ Uradar þ du; ð4Þ

where Uradar is the radar measurement and du is the
measurement error. Combining (3) and (4), the total
Eulerian velocity can be written:

u ¼ U radar þ ut þ du ¼ U radar þ u0; ð5Þ

where u0 includes both the turbulent velocity and the
measurement error.
[19] Prediction of particle trajectories in a region of HF

radar coverage was achieved by integrating (2) using a
predictor-corrector scheme with the velocity given by (5).
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A time-step of 1 hour was used and radar velocities were
interpolated to the particle location using the weighted
nearest neighbor approach. The methodology for specify-
ing u0 is described in the following section.

3.2. Subgrid-Scale Velocity Model

[20] Although u0 is a combination of radar measurement
errors, unresolved motion, and true geophysical turbulent
fluctuations, we assume that its properties can be described
by models that have been used to describe turbulence alone.
We are somewhat compelled to combine the components of
u0 as there is no simple way to separate them. However,
since drifters are now routinely launched during U.S. Coast
Guard SAR operations and coastal current radar systems are
proliferating, there is potentially substantial value in a
methodology that allows the estimation of the statistics of

u0 from comparison of drifter and radar velocities. The
assumption that the properties of u0 can be described by
models of turbulence will be shown in the following to yield
predictions that are consistent with observations.
[21] Two models of turbulence (by which we mean u0)

were examined. Both are members of the hierarchy of
stochastic particle models reviewed by Griffa [1996] and
assume that the two horizontal components are independent.
The so-called random-walk and random-flight models both
assume that the particle position is Markovian. The latter
also assumes that the particle velocity is a Markovian
variable. Physically, the random-flight model recognizes
that the turbulent velocity fluctuations have a finite temporal
correlation scale whereas the random-walk model assumes
that the correlation scale is infinitesimal. When the same
turbulent velocity variance is used in the two models, one

Figure 3. Differences between drifter and CODAR velocity resolved into the downwind and crosswind
directions versus wind speed for drifters in (a, b) the NJ shelf region and (c, d) the BI region. Wind data
are from NDBC buoy 44025 for the NJ shelf comparisons and buoy 44017 for the BI comparisons. The
red circles are mean differences within 2 m/s wind speed bins. The error bars on the means are at the 95%
level, computed using a t-test with N/24 degrees of freedom, where N is the number of hourly values in
the bin and 24 hours is the approximate integral timescale of the wind speed. The green line in Figure 3a
is an estimate of the shear between the effective depths of the drifter (0.65 m) and the long-range CODAR
(2.4 m) due to the sum of the Ekman component and the Stokes drift.
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expects greater particle dispersion with the random-flight
version.
[22] The random-walk formulation for the components of

u0 (u0 and v0) can be expressed as:

u0 ¼ su

T
1=2
u

dt
� dw; ð6Þ

where su is the velocity standard deviation and dw is a
normally distributed random increment with zero mean and
second moment hdw � dwi = 2 � dt where dt the time step for
the integration of (2). Note that the turbulent timescale Tu in
the discrete problem is not actually infinitesimal but is
constrained to equal dt/2 to obtain consistency between (6)
and the definition of velocity variance [Griffa, 1996].
[23] The evolution of the turbulent velocity in the ran-

dom-flight turbulence model is described by:

du0 ¼ � u0

Tu
dt þ su

T
1=2
u

dw: ð7Þ

The first term on the right of (7) introduces ‘‘memory’’ with
a timescale Tu to the model of the turbulent fluctuations and
the second term is, as in the random-walk model, a random
impulse. As is easily demonstrated, the autocorrelation
function of the u0 in (7) decays exponentially with an e-
folding time, or integral timescale, equal to Tu [Griffa,
1996].
[24] It is important to note that the diffusion coefficient

for particles in homogeneous turbulence at times large
compared with Tu is defined as:

Kx ¼ s2
u � Tu ð8Þ

[Csanady, 1973]. Since for the random-walk case, Tu = dt/2,
the dispersion for a specified s2 is dependent on the time
step employed in the numerical implementation of this
model.

3.3. Estimating Turbulent Velocity Statistics

[25] Practical implementation of the aforementioned tur-
bulence models to determine the random velocity compo-
nents in (5) requires specification of the velocity variance
s2, and, for the random-flight case, the turbulent timescale T.
If the tracks of clusters of drifters, released simultaneously at a
variety of locations were available, one could estimate the
dispersion coefficient K and compute s2 and T if necessary.
However, few such deployments have been undertaken.
Much more frequently, a few drifters are deployed as part of
a SAR operation. We propose an approach to exploit the
drifter data obtained from this type of deployment, in con-
junction with HF radar derived surface currents to estimate
the fluctuating velocity statistics directly. From (5), the
fluctuating velocity is:

u0 ¼ u� U radar:

Although clearly, the true velocity u is not known, we argue
that the drifter velocity is our best estimate of it and is the
natural choice especially for SAR applications. Previous
work suggests that the leeway associated with CODE-type

drifters is small, and further support for this result is
provided by Figure 3c, which shows no discernable relation
between downwind drifter-CODAR velocity difference and
wind speed for the case where the effective depth of drifter
and CODAR are equal. The positive relationship found for
drifter-CODAR differences in the NJ shelf long-range
CODAR domain are associated with the difference in
effective depth of the two velocity measurements. Even in
this region, other sources of errors clearly dominate the
observed differences. Moreover, if the objective is to predict
the motion of a drifting object at the surface, it seems
eminently sensible to take the drifter velocity as the true
velocity.
[26] Time series of u0 for each drifter, the difference of the

drifter and the interpolated CODAR velocities, were used to
compute autocovariance functions for the u0 and v0 compo-
nents. These were subsequently averaged over all drifter
tracks to produce the curves shown in Figure 4. The
autocovariance functions for both the BI and NJ shelf
regions exhibit rapid decay at lags of several hours. Low
amplitude periodicities at the semi-diurnal period are evi-
dent in the BI region and in a broad band around the inertial
period in the NJ shelf region during 2004 (Figure 4). The
cross-covariances (not shown) are generally low, consistent
with the assumption that the horizontal velocity components
fluctuate independently. We estimate the turbulent variances
as the zero-lag values of the autocovariance functions for
each deployment. Turbulent integral timescales for the two
velocity components were estimated by fitting exponential
autocovariance functions to the observed autocovariances at
lags of 1 and 2 hours. Although computationally much
simpler than the method of moments technique used by
Griffa et al. [1995], this method is similar to theirs in that
only autocovariances at short lags, which are statistically
most reliable, are used to estimate the turbulent timescale.
The best fit exponential autocovariance functions are shown
as dashed curves in Figure 4 and the parameter estimates are
given in Table 2. Integral timescales are approximately
1.5 hours in the BI region and 3–5 hours in the NJ shelf
region, with higher values during the spring 2003 de-
ployment in the latter region.

3.4. Sensitivity to Number of Particles and Time Step

[27] It is well known that the results of stochastic particle
modeling can be sensitive to the particular details of the
methodology used [e.g., Brickman and Smith, 2002]. One of
the most important methodological parameters in the sim-
ulation of particle dispersion is the number of trials (par-
ticles) simulated. If too few particles are used, the estimate
of dispersion will have a large uncertainty, while a simula-
tion with too many particles can be computationally costly.
To investigate the sensitivity of dispersion estimates on the
number of simulated particles, we performed a 24-hour,
10,000-particle simulation using the random-flight model
with zero large-scale flow. From the 10,000 particle trajecto-
ries, we randomly subsampled 100 ensembles of N particles,
with N ranging from 100 to 5000 particles. The variance of
final particle position was computed for each ensemble and
was compared with the analytical solution given by Griffa
[1996]. Figure 5 shows that as the number of particles
increases, the potential error in the estimated dispersion
decreases. With 100 particles, the error in dispersion can be
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up to 5–6 km2, whereas the use of 5000 particles reduces the
expected error to less than �1 km2. In order to reduce the
computational load, we used 1000 particles for the results
presented in section 4, in which case the error in dispersion is
at most �2 km2.
[28] Although the CODAR currents are produced on an

hourly basis, we nonetheless investigated the sensitivity of
the dispersion estimates to the time step of the particle
advection scheme. The CODAR velocities within the BI
region were interpolated in time to 1=2 hour intervals and the
random-walk and random-flight simulations performed us-
ing a 1=2 hour time step in the integration. The turbulent
velocity statistics were as given in Table 2. Although not
shown here, we found that the dispersion, and thus the
search areas, for the random-flight case were essentially

unchanged from the results using a 1-hour time step. The
random-walk results, as noted above in section 3.2, are
expected to depend on the time step, and indeed we found
reduced dispersion occurring for the case of dt = 0.5 h.
However, the conclusions we reach, in section 4.2, regard-
ing the relative merits of the random-walk and random-
flight methods using a 1-hour time step would not have
changed had we performed the simulations using a reduced
time step.

4. Results

[29] To evaluate our approach to modeling dispersion and
to the estimation of parameters, we compared observed
drifter trajectories to those predicted retrospectively using

Figure 4. Lagged autocovariance functions of time series of differences between drifter velocity and
CODAR velocity averaged over all drifters within the BI region for (a) the eastward component and (b) the
northward component. The solid curves are the computed autocovariance functions, and the dashed lines are
the best fit exponential covariance functions. Covariance functions for the NJ shelf region (c, d) during 2003
and (e, f) for 2004.

C12005 ULLMAN ET AL.: TRAJECTORY PREDICTION USING HF RADAR

7 of 14

C12005



CODAR velocities. Each drifter trajectory was divided into
24-hour segments with each segment overlapping the pre-
vious one by 12 hours for drifters within the BI region.
Example simulations are shown in Figure 6 together with
the 95th percentile confidence regions for the final pseudo-
drifter location (the gray polygons). To define the confi-
dence interval, we first computed the two-dimensional
frequency histogram of the terminal pseudo-drifter locations
and then rank ordered the spatial bins by frequency.
Proceeding from the most to the least frequent, bins were
included in the confidence interval and shaded gray until
95% of the total number of simulations (1000) was
included.
[30] In the analysis that follows, we present the statistics

of the trajectory differences for all trajectories that begin
within the area of CODAR coverage as well as for a subset
with the end position also located within the coverage
region. The number of trajectory comparisons versus the
time since the start of the prediction is shown in Figure 7.
The decrease with time in the BI region results from the
retrieval and redeployment of drifters that left the CODAR
domain; thus a number of ‘‘short’’ trajectories (<24 hours) is
present in the trajectory ensemble.

4.1. Accuracy of Predictions

[31] The accuracy of a drifter trajectory prediction is
measured by the distance between the real drifter and the
pseudo-drifter. This was computed for each hour of each
24-hour trajectory segment. The ensemble mean separa-
tion and the 95th percentile separation are presented in
Figures 8–10 for the three deployments. Mean separation
generally increases with time in a linear fashion with
some indication that separations at short times increase at
a slightly faster rate. At 24 h, mean separation is
approximately 7 km (6 km) for the BI unscreened
(screened) ensembles (Figure 8). In the NJ shelf region,
using the screened (unscreened) ensembles, 24-hour sep-
arations are 11 km (9 km) during the spring 2003
deployment (Figure 9) and 8 km (7 km) during the
summer 2004 deployment (Figure 10). The 95th percen-
tile separation values are also somewhat higher in the NJ
shelf domain, especially during 2003, with 24-hour values for
the unscreened subset reaching 25 km during 2003 and 20 km
during 2004 compared to about 18 km for the BI drifters.
When drifters leaving the CODAR region are screened from
the analyses, the 95th percentile separations (24 hours) are
about 17 km and 15 km for the 2003 and 2004 deployments in
the NJ shelf region and 12 km in the BI region. The general
decrease in error with screening is not surprising, and is
consistent with the occurrence of relatively large trajectory
prediction errors along the outer boundary of the CODAR
domain where radar-derived velocity errors increase.
[32] To assess the value of the CODAR-based drifter

predictions, we compare the performance to the simplest

alternative prediction strategy, which is to assume that the
drifter stays where it was initially released. The error in the
so-called persistence, or last known position, forecast is
simply the distance traveled by the drifter, and the mean and
95th percentile values are also shown in Figures 8–10.
Drifters released in the BI region and during the 2003 shelf
deployment tend to travel farther than those released on the
shelf during summer 2004. Using the unscreened trajecto-
ries, the mean (95th percentile) distance traveled after
24 hours in the BI region is 15 km (38 km) compared with
about 20 km (44 km) during 2003 and 11 km (23 km)
during 2004 in the NJ shelf region. The net result is that
drifter locations predicted using CODAR currents in the BI

Table 2. Estimates of Random-Flight Turbulence Parameters From Least Squares Fits to the Autocovariance

Functions of Drifter-CODAR Velocity Differences for the Three Drifter Deployments

Region su, m/s Tu, h Kx, m
2/s sv, m/s Tv, h Ky, m

2/s

BI (2003) 0.14 1.5 106 0.12 1.4 73
NJ Shelf (2003) 0.11 4.1 179 0.13 3.7 225
NJ Shelf (2004) 0.11 3.3 144 0.12 3.1 161

Figure 5. Variance in particle position in the (a) x-direction
and (b) y-direction compared to the analytical solution for
variance, as a function of the number of particles sampled.
The simulation was performed using the random-flight
turbulence model with su = sv = 10 cm/s and Tu = Tv = 3 h.
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region are on average approximately 50% closer to the real
drifter position than are the last known positions. This is
also true for the NJ shelf deployment during 2003, but this
effect is less pronounced on the shelf where the mean
distance from the predicted position to the real drifter is
about 70% of the distance traveled. Similar conclusions are
reached using the screened drifter subsets, although the
screening can be seen to sharply reduce the 95th percentile
separation value in the BI region.
[33] The observed correlation between drifter-CODAR

velocity differences and wind speed for the NJ shelf long-
range CODAR (Figure 3a) suggests that the accuracy of
predicted drifter positions should also be correlated with
wind speed. For each trajectory, the mean eastward and
northward wind components were computed over the entire
24-hour prediction time. The separation vector between the
real and simulated positions at 24 hours was then rotated
into a coordinate system oriented in the mean downwind
and crosswind directions. For the NJ shelf drifters, Figure 11
shows that the downwind component is in fact correlated
(r = 0.49, significant at the 95% level) with the magni-
tude of the vector-averaged wind. No such correlation is
found for the drifters in the BI region (not shown), which
is consistent with the lack of a relationship between wind
and drifter-CODAR velocity differences in that region
(Figure 3c).

4.2. Uncertainty Bounds for Predictions

[34] The Monte Carlo simulation of trajectories provides
an ensemble of final drifter locations that are extremely
valuable in the important practical problem of defining a
search area. If we take the interval containing 95% of the
pseudo-drifter positions computed using the random-walk
and random-flight turbulence models as the search area,
then it is important to know whether the real drifters (search
targets) are found within this area at the expected frequency.
At each hour of each drifter trajectory, the search area was

computed as described at the beginning of this section and
the position of the real drifter checked to see whether it was
inside or outside the search area. The number of real drifters
within the search area was summed for each hour and this
quantity was then divided by the number of trajectories to
compute the fraction inside the predicted search area (the
percent success).
[35] Figures 12 and 13 compare the time evolution of the

percentage of real drifters found inside the simulated search
areas using the two turbulence models and shows clearly
that the random-flight method is superior for all three drifter
deployments whether the drifter tracks that exit the CODAR
coverage area are screened or not. Without screening 70–
90% of all random-flight derived search areas enclosed the
real drifter position and there was little variation with time.
Screening the drifter data increased the fraction by 5–10%
yielding percent success in the range 80–90% for the BI
and 2003 NJ shelf deployment, and 85–95% for the 2004
shelf deployment. In the BI region, there appears to be semi-
diurnal variability in the percent success (Figure 12) which
may be related to the presence of a significant semidiurnal
signal in the autocovariance functions in this area (Figures 4a
and 4b).
[36] In contrast, search areas estimated using the random-

walk model of turbulence appear to be too small, with
percent success, for the unscreened drifter subset, dropping
from about 70–85% at a prediction time of 1 hour to 20–
60% after 24 hours. As for the random-flight results, the
comparison using the screened subset improves by about 5%
at all prediction times. The discrepancy between the search
areas produced using the two turbulence models is most
apparent for the simulations on the NJ shelf (Figure 13).

5. Discussion

[37] Drifter positions predicted over 24 hours using
CODAR surface currents are clearly superior to the persis-

Figure 6. Example drifter trajectory within the BI CODAR region showing the real drifter path over
24 hours in red and the CODAR predicted position in green, with final positions denoted by the
circles. The ensemble of trajectory prediction endpoints using the random-flight (left) and random-
walk (right) models are shown as blue dots. The gray polygons denote the region within which 95%
of the drifter final positions lie.
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tence forecast in estimating the final drifter location. The
mean separation between predicted and observed drifter
location is 50–70% of the separation using the persistence
forecast. Using currents from a numerical circulation model,
Thompson et al. [2003] simulated the trajectories of a
number of surface drifters on the Scotian Shelf. They
estimated the 50th percentile separation value after 24 hours
to be 6 km, which is very similar to the mean separation of
6–7 km found in the present study. This suggests that
trajectory predictions using CODAR surface currents have
comparable skill in predicting target trajectories as predic-
tions using numerical model currents.
[38] Using long-range CODAR currents, trajectory pre-

dictions can be significantly in error under high-wind
conditions. This appears to arise because of velocity shear
between the effective measuring depths of the drifter
(�0.65 m) and the CODAR (�2.4 m at 5 MHz). In this
case, the real drifter experiences a greater wind-driven
current in the direction of the wind. Such inaccuracies in
trajectory predictions are not found when standard-range
(25 MHz) CODAR currents (effective depth of �0.65 m)

are used for predictions. This suggests that, for SAR oper-
ations, it is important to utilize near-surface current data
from a depth that is comparable to the effective depth of
the drifting object. The correspondence, seen in Figure 3a,

Figure 8. (a) Separation between actual and predicted
drifter position as a function of time since start of
prediction, averaged over all trajectory segments that start
within the nominal coverage zone for the BI region. The
curves with symbols show the mean separation (dashed line
and circles) and the 95th percentile separation (solid line
and circles) between the real drifter and the predicted
position. The dashed and solid lines show respectively the
mean distance and the 95th percentile distance that the real
drifter moved over the prediction time. (b) The same
statistical measures averaged over all segments that both
start and end within the 10% coverage zone.

Figure 7. The number of comparisons between predicted
and true drifter position versus time with no screening (solid
lines) and with screening using the 10% coverage zone
(dashed lines) for the (a) BI region, (b) NJ Shelf region
during 2003, and (c) NJ Shelf region during 2004.
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between the predicted difference in velocity from 0.65 to
2.4 m and the observed drifter-CODAR differences indi-
cates the possibility of correcting observed CODAR veloc-
ities to drifter depths if simultaneous wind data are
available.
[39] The search area evaluations can be used to assess the

consistency of the turbulence models and their associated
parameters. A consistent turbulence model would be
expected to provide, for instance, a 95% confidence region
that is successful (with the real drifter location within it) 95%
of the time. The random-flight method provides search areas
that enclose the real drifter approximately 90% of the time,
whereas the random-walk formulation does significantly
worse. This suggests that, with the parameter(s) estimated

from the drifters, the random-flight model is nearly self-
consistent while the random-walk model is definitely not.
The difference between the random-flight success rate
and the expected 95% suggests a slight underestimate of
either the turbulent variance or the timescale. The latter
seems the more likely candidate here, as we have estimated
the turbulent timescale from a least squares fit to the
observed autocovariance at short lags. Figure 4 shows that
the empirical exponential functions generally underestimate
the covariance at large time lags, suggesting an underesti-
mate of the timescale. Note that evaluation of the integral
timescale by integration of the autocovariance to infinite lags
is problematic in the presence of the quasi-periodic motions
evident in the covariance functions of Figure 4.

Figure 9. Same as Figure 8, but for the NJ shelf region
during 2003.

Figure 10. Same as Figure 8, but for the NJ shelf region
during 2004.
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[40] The wind speed bias observed in the NJ shelf region
using long-range CODAR currents has a noticeable effect
on search areas only near the end of the 24-hour prediction
interval. A velocity bias Dv in the presence of diffusion will
be negligible until such time, t, as the consequent error in
displacement, LE = tDv, becomes of the order of the size of
the diffusive particle cloud LD =

ffiffiffiffiffi

Kt
p

. For diffusivities of
�200 m2/s (Table 2) and velocity bias of �0.07 m/s
(predicted velocity bias for 10 m/s wind), t is of order
11 hours. Examination of Figure 13a shows a gradual
decrease in search area effectiveness at times greater than
15 hours for the 2003 NJ shelf drifters. Restricting the
evaluation of the predicted search areas to cases of weak
wind (<7m/s) showed that search area effectiveness remained
approximately uniform from 15 to 24 hours after the predic-
tion start (not shown). This suggests that the gradual decrease
in search area effectiveness observed in Figure 13a at large
times is likely due to the inclusion of high-wind cases where
the effect of the wind speed bias becomes noticeable.
[41] It is important to note that in the comparison of the

effectiveness of random-walk and random-flight derived
drifter dispersion the same turbulent velocity fluctuation
variance (s2) has been used. If a larger value were chosen
for the random-walk simulations then the search areas
would be larger and the percent success consequently
higher. If an estimate of the effective diffusivity (K) were

available and the fluctuation variances in both turbulence
models and turbulent timescale in the random-flight model
were chosen to be consistent with this value, the simulations
of Zambianchi and Griffa [1994] show that the random-
walk model overestimates the particle dispersion for t < Tu
At times large compared to the turbulent timescale, the two
models predict that the particle cloud size increases at the
same rate, though the offset introduced by the initial
overestimate persists. For turbulent timescales of 1–4 hours
as determined in the present study, the difference is 10–20%
at 12–24 hours after the start of the prediction.
[42] The result of increasing the random-walk diffusion

coefficient to the random-flight value (s2T) for the 2004 NJ
shelf deployment is demonstrated in Figure 14. In this case,
search areas using the random-walk model are more effec-
tive in enclosing the real drifter position than those from
random-flight simulations at prediction times less than
about 10 hours and essentially equivalent at longer times
consistent with theory [Zambianchi and Griffa, 1994].
However, it is important to note that the improved effec-
tiveness is simply due to a positive bias in the search area,
which, in the SAR problem, dilutes the search effort.
[43] Horizontal dispersion coefficients estimated from

fitting the random-flight turbulence model to autocovar-
iance functions of CODAR-drifter differences are in the
range of 70–225 m2/s (Table 2). Higher values are estimated
in the NJ shelf region (>140 m2/s) than in the BI region
(<110 m2/s). We note here that although horizontal
dispersion coefficients can be estimated directly using

Figure 11. Downwind component of the difference in
position between the real drifter position and the predicted
position at 24 hours after the start of the prediction as a
function of the vector mean wind speed over the 24-hour
period for all drifters within the NJ shelf region. The dots
denote individual trajectory segments, and the open circles
represent the mean difference within 2 m/s bins. The error
bars on the mean values are 95% confidence limits on the
mean values estimated using a t-test.

Figure 12. Comparison of the uncertainty bounds for
predicted drifter position using the random-flight (lines and
circles) and random-walk (lines) turbulence models for the
BI region. The solid curves are computed using only those
trajectories that both start and end within the 10% coverage
zone, while the dotted curves are computed based on all
trajectories that start within the nominal coverage zone. For
each prediction time we plot the percent of cases where the
actual drifter location at that time fell within the estimated
95% confidence region.
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drifter tracks from a cluster of drifters, this was not
possible here because we did not have enough simulta-
neous drifter releases to form statistically meaningful
clusters. Using Okubo’s [1971] empirical formula for
the apparent horizontal diffusion as a function of horizontal
length scale of diffusion, we compute a diffusion coefficient
of�25 m2/s using a length scale of 25 km (a typical value of
the 95th percentile separation in Figures 8–10). The signif-
icantly larger values obtained in this study may result from
the fact that the turbulent statistics in Table 2 were computed
from time series of velocity difference between drifters and
CODAR. The drifter-CODAR differences arise from turbu-
lent motions at scales unresolved by CODAR measurements
as well as from errors in the CODAR measurements them-
selves, including those that arise from differing effective
depths between the drifters and CODAR. Thus, the esti-

mated dispersion coefficients may have a large component
due to CODAR uncertainties that is unrelated to geophysical
turbulence. Consequently, if currents from a numerical
model of the circulation were employed instead of the
CODAR currents, then the statistics of the differences would
be different. However, the approach we have demonstrated
would still be applicable.
[44] The turbulent velocity statistics estimated in this

study were computed as averages over the region and time
period sampled by the drifter ensembles. Comparison of the
statistics from the two deployments in the NJ shelf region
(Table 2) indicate substantial differences in dispersion
between the spring and summer. It is likely that horizontal
dispersion is also spatially variable, although the available
drifter data are not sufficient to quantify this. Note that
comparison of the statistics from the BI region and the NJ
shelf region is complicated by the fact that the two regions
are observed with CODAR systems using different frequen-
cies with corresponding differences in effective depths.

6. Summary and Conclusions

[45] Comparison of real drifter trajectories and trajecto-
ries predicted using CODAR-derived surface currents illus-
trates the value of these data for search and rescue
operations. For prediction times of 1–24 h, the mean (and
95th percentile) distance between the CODAR-predicted
position and the real position is smaller than the distance
traveled by the drifter. This indicates that predictions using
CODAR velocities are more accurate than the so-called
‘‘persistence’’ forecast (zero drifter velocity). Although, not
shown here, CODAR trajectory predictions are also superior

Figure 13. Same as Figure 12 for the NJ shelf region
during (a) 2003 and (b) 2004.

Figure 14. Comparison of the uncertainty bounds for
predicted drifter position using the random-flight model
(solid) and random-walk model with increased diffusivity
(dashed) for the 2004 NJ shelf deployment. The random-
walk diffusivity in this case was increased to equal the
corresponding random-flight value.
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to those produced using present U.S. Coast Guard practice,
in which the advective velocity is obtained from NOAA
tidal current predictions in nearshore waters and a surface
current climatology offshore [O’Donnell et al., 2005].
[46] The statistics of the combination of subgrid-scale

velocity and CODAR velocity error that contribute to the
dispersion of a cloud of pseudo-drifters have been estimated
using the ensemble-averaged covariance functions of
CODAR-drifter velocity differences. Approximate consis-
tency of the estimates of turbulent velocity variance and
timescale was demonstrated for the random-flight turbu-
lence model by evaluation of the resulting search areas,
defined as the region in which 95% of the pseudo-drifters
are located. The random-flight search areas include the real
drifter location in 80–95% of cases. Using the turbulent
velocity variances estimated from the zero-lag autocovar-
iance function, as for the random-flight model, the random-
walk search areas were significantly less effective. This is a
consequence of the fact that the effective turbulent timescale
in the random-walk formulation is one half of the time step
used in the integration of the Eulerian velocity, 0.5 hours in
this study. One can achieve satisfactory search area predic-
tions using the random-walk model only by specifying a
diffusion coefficient that is estimated using a model of
turbulence that allows for finite turbulent integral time-
scales, such as the random-flight model, and inflating the
turbulent velocity variance to achieve more rapid dispersion
at short times.
[47] This study has demonstrated the value of surface

current data derived from HF radar in combination with
drifter observations for the practical prediction of particle
trajectories in the coastal ocean. The methodology used here
for estimating uncertainty regions for predictions does not
require the deployment of drifter clusters, from which
explicit horizontal diffusivity can be estimated. Instead,
velocity observations from an ensemble of drifters passing
through the radar domain are used to estimate effective
fluctuation statistics that are employed in a stochastic
particle model. The method is therefore well suited to the
use of ‘‘drifters of opportunity’’ that may be deployed for
other purposes but that eventually pass through an HF radar
coverage region. The question of how many such drifters
are needed to accurately characterize the velocity fluctua-
tion statistics is a question that will require further study.
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