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[1] The utility of high-frequency (HF) radar data for improving numerical
circulation model predictions is evaluated. Comparisons of the statistical properties of the
(CODAR-type) HF radar data and the observed wind indicate a strong correlation between
the dominant alongshore, upwelling-favoring wind-forcing and HF radar-derived
surface currents along the central California coastline. Because inadequate knowledge of
the wind stress is probably a significant source of error in the model solutions, the idea of
using HF radar data to provide corrections to the model wind-forcing is promising.
Different HF radar data assimilation schemes are compared and judged based on the
correlations observed between model currents and independent observations from two
mooring sites. Analysis of correlation maps between model-predicted and observed
currents indicates a spatial and temporal shift between modeled and observed features.
However, the impact of HF radar data assimilation reduces these spatial and temporal
shifts. A significant improvement in the correlation between the model and observed
subsurface currents is achieved when an Ekman-layer projection of the corrections is
included. In this approach, assimilation of HF radar data produces additional Ekman
pumping (vertical velocity) based on the horizontal pattern of model-observed velocity
mismatch at the surface. INDEX TERMS: 4594 Oceanography: Physical: Instruments and techniques;

4255 Oceanography: General: Numerical modeling; 4512 Oceanography: Physical: Currents; 4263
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1. Introduction

[2] The coastal ocean represents one of the most critical
marine provinces in terms of recreation, mineral exploita-
tion, short-term weather forecasting, and national security.
The coastal areas, including the continental shelves, are also
home to the majority of marine species considered impor-
tant economically or as indicators of anthropogenic impacts
on the marine ecosystem. Despite these varied interests,
observing and modeling the coastal ocean are still difficult
and poorly achieved tasks. Like in all ocean areas, main-
taining instruments in situ is difficult and expensive. From
the modeling perspective, the need for very high resolution
and the preponderance of open boundaries present extreme
challenges to realistic simulations.
[3] In recent years an evolving capability to use shore-

based, high-frequency (HF) radar systems to continuously
monitor vast stretches of coastal ocean surface currents has
presented one new possibility for improving our under-
standing and monitoring capabilities in these marine sys-
tems [Paduan and Graber, 1997]. HF radar networks
exploit radio wave backscatter in the frequency band from

3 to 30 MHz to map ocean surface currents. Most systems
operate in the range of 12–25 MHz and produce maps out
to ranges reaching 60 km from shore with horizontal
resolutions of 1–3 km [e.g., Paduan and Rosenfeld, 1996;
Graber et al., 1997]. At lower frequencies near 5 MHz,
ranges of 200 km are possible using shore-based systems
but with decreased horizontal resolution of 5–10 km
[Barrick, 2003].
[4] Monterey Bay has been the site of HF radar measure-

ments for a number of years, particularly measurements
made using CODAR/SeaSonde-type instruments. Surface
ocean velocity data from these systems have been described
in previous settings [e.g., Paduan and Rosenfeld, 1996;
Paduan and Cook, 1997; Lipphardt et al., 2000]. During the
period 1999–2000, particular effort was paid to collecting
continuous HF radar-derived current maps from three sites
surrounding Monterey Bay as part of the National Ocean
Partnership Program project entitled ‘‘an Innovative Coastal-
Ocean Observing Network (ICON).’’ The project also
involved the deployment and maintenance of four deep-
ocean mooring sites and the development of a nested, high-
resolution ocean circulation model, among other activities
[Paduan et al., 1999]. The locations of Monterey Bay, the
three SeaSonde sites surrounding it, and the two primary
mooring sites used in this study are shown in Figure 1.
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[5] In recent years, the utility of HF radar-derived surface
velocity fields as input to data-assimilating numerical cir-
culation models has been the focus of several studies. It is
also the primary focus of this study. The potential benefits
of HF radar data are large, particularly in light of the dearth
of real-time observations from the marine environment.
These data are also potentially important because they can
cover significant portions of coastal ocean model domains.
They make it possible, for the first time, to track the location
and movement of mesoscale ocean features in a fashion
analogous to the superior capabilities provided by data
inputs to numerical weather forecast models. In addition,
HF radar systems are all-weather. They are not affected by
clouds or changing ocean conditions.
[6] Many questions still exist, however, about the details

and effectiveness of HF radar-derived surface currents as
sources for data assimilation. On one level, data descriptors
needed to define the requisite error covariance functions are
not yet well known. Errors in HF radar-derived currents
arise from a variety of sources, including electromagnetic
interference, ships, and poorly constrained inversion algo-
rithms. Some insight into these errors can be obtained
comparing with data from in situ moored current meters
or drifting buoys, but the true nature of the errors and the
best models for describing them are likely to come from
algorithm simulations such as the work of Laws et al.
[2001]. An even bigger challenge is presented by the need
to relate surface-only data to the three-dimensional model
variables. Given perfect surface velocity data, this issue
still exists. Mechanisms for the surface-to-depth information

exchange are a focus of this study as well as earlier studies
described below [e.g., Oke et al., 2002].
[7] This paper has the following structure: Section 2

describes the ICON hydrodynamic model set up along with
previous work related to assimilation of HF radar-derived
surface velocities and the general hypothesis adopted here
that these data are best used as corrections to surface wind-
forcing. Section 3 presents empirical orthogonal function
(EOF) descriptions of the subtidal variability in the HF
radar-derived currents and in model-generated currents
using two different wind-forcing products. The particular
data assimilation approaches used here are described in
section 4, while results from the different assimilation
schemes are presented in section 5 based on comparisons
with independent, subsurface velocity observations from
two mooring sites. Finally, discussions and conclusions
are presented in section 6.

2. Modeling Background

2.1. ICON Hydrodynamic Model

[8] The numerical model used in this study was devel-
oped within the framework of the ICON project. It is a fine-
resolution ocean model covering Monterey Bay and the
adjacent coastal areas [Shulman et al., 2002, 2000]. The
model has an orthogonal, curvilinear grid, extending 110 km
offshore and 165 km in the alongshore direction (Figure 1).
The horizontal resolution is 1–4 km, with the maximum
resolution in the Monterey Bay vicinity. Vertically, the
model is characterized by a realistic bottom topography
with 30 vertical sigma levels. The ICON model code is a
three-dimensional, free surface implementation based on the
Princeton Ocean Model (POM) [Blumberg and Mellor,
1987]. On the open boundaries, it is coupled to a larger-
scale model of the Pacific West Coast (PWC) [Clancy et al.,
1996; Rochford and Shulman, 2000], which is also based on
POM.
[9] Atmospheric forcing of the ICON model, or any

high-resolution coastal model, is a critical component of
the simulations. The ICON model has been run using a
variety of forcing and boundary conditions [Shulman et
al., 2002]. In terms of the wind stress forcing, two
primary atmospheric products have been used: the opera-
tional Navy model called NOGAPS (Navy Operational
Global Atmospheric Prediction System), which has a
horizontal resolution of, approximately, 91 km, and a
nested, high-resolution, non-hydrostatic Navy model
known as COAMPS (Navy Coupled Ocean and Atmo-
spheric Mesoscale Prediction System) [Hodur, 1997],
which was run in a re-analysis mode with horizontal
resolution of 9 km in the region surrounding central
California, including the ICON model domain. In the next
section, we present evidence that the dominant sources of
variability (synoptic storm systems) manifest similarly in
the two atmospheric models. However, detailed analyses
reveal that the improved resolution and dynamics of the
COAMPS model lead to more structure in the wind field
near shore, particularly near headlands and in locations,
such as Monterey Bay, with strong sea breeze signals
[Kindle et al., 2002]. The higher-resolution wind-forcing
also leads to increased variability in the modeled ocean
temperatures and currents, particularly in the vicinity of the

Figure 1. Model grid and bathymetry (m) with the
locations of moorings M1 and M2 (circles) and the coastal
HF radar sites (triangles).
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major upwelling centers that exist north and south of
Monterey Bay [Blencoe, 2001].

2.2. Data Assimilation Approaches

[10] There are many choices and degrees of freedom
involved with the adjustment of model-predicted variables
based on observations. As was mentioned above, the
choices related to assimilation of HF radar-derived currents
fall into two categories, although they need not be mutually
exclusive. First, one must choose a particular minimization
scheme, including specification of error covariance func-
tions. This step is often influenced by the limits of available
computing resources and, as in the case of HF radar-derived
currents, by minimal or non-existent error models. The
second step involves the projection of the surface-only
observations onto the three-dimensional model variables.
If three-dimensional covariance functions are available,
these two steps become one.
[11] A recent study by Oke et al. [2002] combined the

two steps described above into one procedure. They used a
well-known data assimilation scheme called Physical-space
Statistical Analysis System (PSAS) [Cohn et al., 1998]. For
their error model, they developed statistical correlations
between surface velocity and subsurface velocity, tempera-
ture, and salinity in order to derive three-dimensional model
corrections based on the surface-only HF radar data. In
that case, three-dimensional, non-homogeneous and non-
isotropic estimates of forecast error covariances among
prognostic model variables were used in the PSAS-based
data assimilation scheme. The three-dimensional, non-
homogeneous, and non-isotropic forecast error covariances
were derived from an ensemble of 18 typical summer model
simulations.
[12] The successful data assimilation experiments con-

ducted by Oke et al. [2002] modeled the coastal ocean over
the Oregon Continental Shelf with maximum depths around
300 m. With the narrow shelf along central California, our
similarly sized Monterey Bay area domain includes full-
ocean depths exceeding 3000 m. It is not expected that
variability below the surface layer in the Monterey Bay
model necessarily correlates with surface velocities. In
addition, for operationally configured coastal models, which
are forced with atmospheric products that are variable in
time and space and coupled on open boundaries to larger-
scale models, the estimation of three-dimensional, forecast
error covariances using an ensemble of typical simulations
represents a very challenging problem. For these reasons,
we did not attempt to reproduce the results obtained by Oke
et al. [2002] using the ICON model.
[13] Alternative methods exist to project surface informa-

tion into the subsurface model domain using physical
principles rather than statistical covariances [see, e.g.,
Haines, 1991; Shulman and Smedstad, 1998]. With this in
mind, the general approach that we followed in this study,
and the precursors to it, was to relate HF radar-derived
surface velocities to corrections in the model wind-forcing.
Given the depths measured by HF radar (0.5–1.5 m), this
conceptual link to the interfacial momentum transfer
appears even more reasonable.
[14] Lewis et al. [1998] attempted the first HF radar-based

wind corrections in a model of Monterey Bay. In that study,
a pseudo-shearing wind stress was added to the stress due to

wind-forcing. This pseudo-shearing stress depended on the
differences between model-predicted velocities and HF
radar-derived velocities and had the form

tpw ¼ rCd uo � umð Þ uo � umð Þj j; ð1Þ

where tpw is pseudo-wind stress, r is the water density, Cd is
an unknown drag coefficient, uo are HF radar-derived
surface currents, and um are model-predicted surface
currents. In the work of Lewis et al. [1998], tpw was added
to the wind stress; the resulting net surface stress was then
used to force the ocean model. The unknown drag
coefficient, Cd, was determined from a special optimization
problem that minimized the norm of the stress tpw. The
application of equation (1) should improve the agreement
between model and HF radar currents, as was demonstrated
by Lewis et al. [1998]. However, the specification of Cd

represents a significant challenge to this approach. The
method chosen makes no use of (or provision for) a priori
knowledge of error covariances that could better define the
optimal blending of model-predicted and observed surface
currents. Furthermore, wind-forcing was corrected only at
model locations that were within the HF radar footprint,
which can introduce unrealistic irregularities at the edges of
that footprint.
[15] With the development of the nested ICON model,

Shulman et al. [2000] implemented the PSAS scheme and
began initial assimilation experiments using the data-based
velocity covariance functions described below. In that study,
corrections were made only to the model’s surface currents.
In the present study we followed a two-step approach:
(1) Corrections to model-predicted surface currents were
computed from the HF radar-derived surface currents using
the PSAS scheme and the monthly varying error covariance
functions described below, and (2) those corrections were
projected below the first model bin using two different
methods based on physical arguments related to energy
conservation or Ekman-type momentum transfer. Results
from the different projection schemes were compared
against the no-assimilation baseline as well as the no-
projection case of Shulman et al. [2000] using independent
velocity profiles measured at two mooring sites.

3. Statistical Descriptions

[16] Before any data assimilation experiments were run
with the ICON model, we investigated the dominant modes
of variability in the wind-forced model currents alongside
similar calculations performed with the HF radar-derived
currents. The intention here was not to produce an exhaus-
tive investigation of the processes contained in the model
output or in the data, but rather to verify that the dominant
processes were similar in each representation of the coastal
velocity field. (Data assimilation should not be expected to
adjust the output of a model that does not intrinsically
simulate the features of interest.)
[17] Below we present an EOF analysis of HF radar-

derived surface currents as well as ICON model surface
currents. Spatial EOF modes for HF radar surface currents
in 1999 were computed using a scalar technique. That is,
north-south velocity component grids were added to the
array containing east-west velocity component grids, and a
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single variance decomposition was performed. Following
that, the two halves of the given spatial modes were
combined to represent the vector flow at each grid point.
Parallel EOF computations were made for surface velocity
fields from the subset of ICON model grid locations that
most closely matched the HF radar data grid. In the case of

the model output, results from two separate runs were used:
one forced by the NOGAPS wind product, which has a
spatial resolution of 91 km, and another forced with output
from the high-resolution (9 km), non-hydrostatic COAMPS
atmospheric model. The ICON model does not have tides,
so HF radar data were 33-hour low-pass-filtered before the
EOF decomposition was made.
[18] Results from the EOF analyses are shown in Figure 2

in terms of the percentage of variance explained by the first
10 spatial velocity modes. Remarkably, the variance parti-
tioning is nearly identical for the observed velocity fields
and the two different model runs. The first modes account
for about 50% of the variance, and the second modes
account for about 15% of the variance. In all cases, at least
80% of the subtidal velocity variance is accounted for by the
first five modes. The spatial patterns for modes 1 and 2 are
shown in Figure 3. They too are quite similar between the
observations and model runs, particularly for the dominant
mode. The conclusion here is that the dominant variability
in Monterey Bay is related to the alongshore flow across the
mouth of the bay, which is slightly more jet-like in the
observations. In this case, there is very little difference
between the two model runs, indicating that spatial wind
resolution is not a primary factor in the alongshore flow
pattern, although it is still possible that wind structures that
are not resolved by the 9-km COAMPS fields account for
the relatively narrow jet in the observations.
[19] The amplitude time series for the mode 1 patterns

exhibit reversals that correlate with reversals (or relaxations)
in the dominant alongshore, upwelling-favoring wind-
forcing. The mode 1 amplitude time series for the observa-
tion grid is shown in Figure 4, together with the amplitude
of the alongshore wind component at the M1 mooring near

Figure 2. Percentage of variance explained in the spatial
velocity modes for 1999 over the domain of the Monterey
Bay HF radar coverage (symbols) together with the
cumulative variance explained (lines). Results are shown
for the radar-based observations (CODAR) and for
numerical model runs using low-resolution NOGAPS and
high-resolution COAMPS wind products.

Figure 3. First and second spatial velocity modes for 1999 over the domain of the Monterey Bay HF
radar coverage for the radar-based observations (CODAR) and for numerical model runs using low-
resolution NOGAPS and high-resolution COAMPS wind products.
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the center of Monterey Bay. The event-to-event correspon-
dence is clear, particularly during the spring and summer
upwelling seasons. The scatter illustrates the significant
regression. Similar results were found for the model-based
mode 1 amplitudes compared with the alongshore wind
component. No significant correlation was found between
mode 1 amplitudes and cross-shore wind, or between either
wind component and any of the mode 2 amplitudes. The
mode 2 amplitudes do indicate, however, a predominance of
negative events or counterclockwise flow around Monterey
Bay, which is consistent with the direct observations.
[20] The patterns exhibited in mode 2 differ more notice-

ably between the observations and the model results. In all
cases, the flow is related to a single circulation cell. The
model patterns exhibit more closed circulation within Mon-
terey Bay, particularly in the case of the high-resolution
wind-forcing. It is important to remember, however, that
these modes are empirical and that modes 2 through 4
contain similar amounts of variance. The true closed circu-
lation pattern often observed in Monterey Bay [e.g., Paduan
and Rosenfeld, 1996] is likely represented by a combination
of these modes.
[21] The statistical results here show that at the surface,

the dominant modes of variability are captured by the
model fields. Closer comparisons with moored and ship-
board observations and satellite imagery [Shulman et al.,
2000, 2002; Blencoe, 2001] suggest that the model also
produces realistic features, including (1) mesoscale fila-
ments and eddies associated with upwelling-favoring
wind events, (2) a meandering, alongshore ocean front
between the upwelled water and the warmer water of the
California Current, and (3) two narrow poleward-flowing
boundary currents associated with the California Under-
current and the shallow Inshore Countercurrent. Also, the
model does well in reproducing the mean water temper-
atures and salinities at a given depth, and shows a high
correlation between observed and model temperatures for
different levels [Shulman et al., 2002]. The model dem-
onstrates a good agreement between observed and model-
predicted mixed layer depths at moorings M1 and M2
(see Table 1).
[22] However, the comparisons between observations

and model results show that even with high-resolution
atmospheric forcing, the model captures the ‘‘essence’’
but not the ‘‘details’’ of the observed variability. For

example, in many instances, there is lag (in space and
time) between observed and model-predicted features. In
section 5, we present two-dimensional maps of complex
correlation (according to Kundu [1976]) between model-
predicted and observed ADCP currents. These correla-
tions show that the moorings were positioned close to the
boundary between high and low correlation between
model and observations. This suggests a shift in space
and time between model and observed features. We can
speculate many reasons for this: inaccuracies in bathym-
etry, atmospheric forcing, etc. However, the assimilation
of observations usually helped to minimize the lag
between model predictions and observations.

4. Data Assimilation Approach

[23] As we stated in section 1, the following two-step data
assimilation scheme is considered in this study:
[24] 1. Corrections to the model-predicted surface veloc-

ity were estimated using the PSAS scheme from the differ-
ences between the model forecast and HF radar-derived
surface currents.
[25] 2. Corrections to surface velocities derived in step 1

were related to corrections in model wind-forcing based on
physical principles, such as conservation of energy or
Ekman theory. This introduces an instantaneous subsurface
projection of the surface velocity corrections derived in
step 1. In the following subsection, the first step of the
approach is described.

4.1. Estimation of Analysis (Updated) Field of Surface
Currents

[26] Here we briefly describe the approach used for
estimation of the analysis field of the model surface cur-
rents. The analysis (updated) field of the model surface
currents is derived from

Figure 4. Alongshore component of wind at the M1 mooring and the mode 1 amplitude for the radar-
derived (CODAR) surface velocity fields (left) as a scatterplot and (right) versus time.

Table 1. Observed and Model-Predicted Mixed Layer Depths

(MLD) for August–September 2000

DT Threshold

M1 M2

0.1�C 0.2�C 0.1�C 0.2�C

Observed MLD, m 11.0 11.7 14.8 16.6
ICON model MLD, m 11.6 12.3 14.2 16.5
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Ua
s ¼ Uf

s þ K Uo
s � HUf

s

� �
; ð2Þ

where Us
a are the analyzed surface currents, Us

f are model
forecast surface currents, and Us

o are HF radar-derived
surface currents. H is the interpolation operator, and the
matrix K is the Kalman gain, which depends on the forecast
error covariance matrix, Pf, and the observation error
covariance matrix, R,

K ¼ Pf HT HPf HT þ R
� ��1

: ð3Þ

The PSAS algorithm first solves a linear system with
unknown quantity q such that

HPf HT þ R
� �

q ¼ Uo
s � HUf

s ; ð4Þ

and then the analyzed state Us
a is obtained from the equation

Ua
s ¼ Uf

s þ Pf HTq: ð5Þ

In the numerical experiments described in this study,
covariance matrices Pf and R were derived from the
estimates of horizontal covariances of the observed HF
surface current data.
[27] Estimates of the horizontal covariance for HF radar

surface velocities were done month-by-month for each
month in the record containing at least 2 weeks of reason-
ably full velocity maps. The long-term results were fairly
consistent with velocity decorrelation scales on the order of
5–10 km. The east-west velocity component, U, tended to
have slightly longer cross-shore scales, while the north-
south component, V, had slightly longer scales in the
alongshore direction. It was found that the derived cova-
riances for surface currents could be fit and explained
assuming the stream function Cjj depends only on the
distances between points in x and y directions. This leads to
a covariance matrix that is a rotated Gaussian function with
scales of different length in the x and y directions. To
illustrate, let us consider the Gaussian function,

covi;j ¼ a exp � xi � xj
� �

=R1

� �2 þ zi � zj
� �

=R2

� �2h in o
; ð6Þ

where (i, j) are two locations with coordinates (xi, zi) and
(xj, zj) and x, z is an orthogonal coordinate system; the
amplitude, a, and length scales, R1 and R2, are unknown
parameters. Suppose that Cjj can be represented by
equation (6) when axis x is the physical axis x rotated
counterclockwise with the angle q. Using Helmholtz’s
theorem and assuming that the flow is completely
nondivergent (geostrophic), the covariance functions for
velocity components (Cuu and Cvv) can be easily derived
[see Daley, 1991]. These covariance functions depend on
four unknown parameters (a, R1, R2, and q), which can be
determined from the best fit to the observed covariances.
The results of the best fit show that the surface velocity
covariances have a weak seasonal cycle, with the orientation
of the major axis changing slightly throughout the year.
Sample spatial covariance functions are shown in Figure 5
for April 1999 together with the best-fit parameters for the
entire year. In the preliminary data assimilation experiments

described below, these modeled covariance functions are
used for the forecast error covariance matrix, Pf. The
observation error covariance matrix, R, is given by a
diagonal matrix with normalized values.

4.2. Subsurface Projection of the Corrections to the
Model Surface Velocity

[28] According to equation (2), the corrections for the
model surface velocities are dUs = Us

a � Us
f = (dus, dvs). In

the work of Shulman et al. [2000], these corrections were
applied to the surface layer of the model; as a result, the
ICON model predictions were improved in comparison to
the model predictions without HF radar data assimilation. In
this case, corrections to surface velocities were projected
into the ICON model subsurface fields based only on the
model’s governing dynamics.
[29] Below, we propose alternate schemes for instanta-

neous projection of velocity corrections into the subsur-
face. It is supposed that dUs are due to errors in the
wind-forcing of the model and that related physical prin-
ciples can be used to accomplish the projection. Below, we
employ principles based on (1) conservation of energy and
(2) Ekman theory.
4.2.1. Energy Conservation
[30] Corrections dUs to the surface model velocities will

change the model energy balance. This change of energy
due to the work performed by wind stress relative to surface
velocity corrections will have the form

Z
S

dT �U sds ¼ �dE: ð7Þ

[31] In order to make HF radar data assimilation balanced
in the sense of conservation of the model energy, we
introduce the correction to the model wind-forcing dt.
According to equation (7), and dropping the second-order
terms, we have the following energy conserving equation
for determining dt:

Z
S

dT �U sds ¼ �dE; ð8Þ

where Us is the surface model velocity without corrections.
[32] It is clear that there are many distributions of dt that

satisfy equation (8). We choose one that has a minimal
norm but satisfies the energy balance (8). Considering
equation (8) as a weak constraint, dt can be derived from
the following minimization problem:

min
dt

J ¼

Z
S

dT � dTdsZ
S

T �Tds
þ

Z
S

dT �U sdsþ dE
� 	2

Z
S

T �U sds

� 	2
: ð9Þ

The solution to the minimization problem (9) has the
following form:

dT ¼ lU s; ð10Þ
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where the Lagrange multiplier l is given by

l ¼ � dEZ
S

U s �U sds

1

1þ cor2ð Þ

cor2 ¼

Z
S

T �U sds

� 	2

Z
S

U s �U sds

Z
S

T �Tds
:

ð11Þ

[33] By providing the minimum of equation (9), the cor-
rections to wind stress dt derived from equations (10)–(11)
will conserve the model energy and have the minimal norm
among all possible corrections to wind stress, conserving the
model energy. In section 5, the results of assimilation of HF

radar surface currents with the conservation of the model
energy will be presented.
4.2.2. Projection Based on Application of Ekman
Theory
[34] If the PSAS-based correction, dUs, to the surface

model velocity is interpreted as a requirement to adjust the
surface wind stress, then Ekman theory [Ekman, 1905] can
be applied to estimate this additional wind stress, dt, which
has the following form:

dtx ¼ r

ffiffiffiffiffiffiffi
Avf

2

r
dus � dvsð Þ ð12Þ

dty ¼ r

ffiffiffiffiffiffiffi
Avf

2

r
dus þ dvsð Þ; ð13Þ

Figure 5. (top) Normalized spatial separation covariances in April 1999 for east-west (U) and north-
south (V) velocity components as observed (colors) and modeled using a two-dimensional Gaussian
function (contour lines). (bottom) Modeled covariance function parameters (equation (6)) computed
monthly from the HF radar-derived surface velocities.
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where Av is the eddy viscosity, and f is twice the vertical
component of the Earth’s rotation vector. According to
equations (12)–(13), the additional wind stress will produce
Ekman transport, M = (Mx, My),

Mx ¼ r

ffiffiffiffiffi
Av

2f

s
dus þ dvsð Þ ð14Þ

My ¼ r

ffiffiffiffiffi
Av

2f

s
dvs � dusð Þ: ð15Þ

[35] Note that the Ekman transport (equations (14)–(15))
from additional wind stress (equations (12)–(13)) depends
on the value of eddy viscosity (in contrast to the general
Ekman theory). This is due to the fact that additional wind
stress is actually estimated from knowing corrections to the
surface velocity, dUs. In the classical application, the inte-
grated velocity field is specified by the surface wind stress.
[36] Using equations (12) and (13) and Ekman theory, we

can estimate corrections to subsurface velocity driven by the
additional wind stress (equations (12)–(13)). The subsur-
face corrections, dU(z) = (du(z), dv(z)), have the following
form:

du zð Þ ¼ exp �z=Deð Þ dus cos �z=Deð Þ½ � dvs sin �z=Deð Þ	 ð16Þ

dv zð Þ ¼ exp �z=Deð Þ dus sin �z=Deð Þ½ þ dvs cos �z=Deð Þ	; ð17Þ

where

De ¼

ffiffiffiffiffiffiffiffi
2Av

f

s
ð18Þ

is Ekman depth.
[37] The ICON model has 30 sigma levels sk, k = 1, 30 in

the vertical, and subsurface velocities are defined in the
middle of each sigma layer. This gives 29 vertical sigma
locations for velocities. Subsurface velocity corrections are
derived according to equations (16)–(17) by transforming z
into the sigma coordinate system. In this case, the transport
(estimated by numerical integration of these corrections
over the water column) will be different from the Ekman
transport M estimated according to equations (14)–(15).
Moreover, the estimated transport from the subsurface
corrections (16)–(17) will depend on the total depth of
water column since the thickness of a sigma layer depends
on depth at particular location.
[38] In order to conserve the Ekman transport, the fol-

lowing scheme of subsurface projection is proposed. Let
Mxk and Myk be transports in the x and y directions,
respectively, determined analytically by integration of equa-
tions (16)–(17) between sk and sk+1 levels. The corrections
to subsurface velocity are determined at the middle of kth
layer (at s = (sk + sk+1)/2) from the following relations:

duk ¼
Mxk

sk � skþ1ð ÞH ð19Þ

dvk ¼
Myk

sk � skþ1ð ÞH : ð20Þ

In this case, the transport estimated by integration of
corrections (19)–(20) over the water column will be equal
to the corresponding Ekman transport (equations (14)–
(15)). Details of the Ekman spiral, such as the location of
the turning point, decay scale, and shape, are not conserved
by equations (19)–(20).
[39] To estimate errors introduced by the projections,

we compared Ekman transports and Ekman spirals
corresponding to equations (16)– (17) and (19)–(20).
We varied the total depth H, values of dUs, and Ekman
depth De while keeping the ICON vertical distribution of
sigma levels. The results of these experiments show that
projection (16)– (17) produces a maximum error in
Ekman transport around 5% in the deeper areas (500–
1000 m). Significantly less error (down to 0.05%) is
produced in shallow water because sigma coordinates of
the model have a high vertical resolution near the surface
in those regions. At the same time, the projection (19)–
(20) gives errors of up to 50% in the depth of the Ekman
spiral turning point, especially in deeper water (>500 m).
Because of the topography within the ICON model
domain, the absolute values of surface velocity correc-
tions dUs, derived from PSAS, decrease significantly
away from the HF radar footprint. Therefore the errors
associated with equations (16)–(17) to conserve Ekman
transport, or equations (19)–(20) to conserve the shape of
the Ekman spiral, will diminish away from the HF radar
footprint.
[40] Estimates of Ekman transport in the California

Current system were reported by Chereskin [1995]. Esti-
mates of De and Av were made in a number of different
locations and conditions and yielded values ranging from
25 m to 48 m for Ekman depths and 0.0274 to 0.1011 m2/s
for corresponding viscosities. In this study, a constant
(throughout the model domain) value of eddy viscosity Av
was used. In section 5, the choice of this value and the
corresponding value of De are discussed.

5. Data Assimilation Experiments

[41] Table 2 introduces short notations for the data
assimilation schemes proposed by Lewis et al. [1998],
Shulman et al. [2000], and schemes described in the
previous section. Below, a comparison of these schemes’
performance is presented using data from the summer
period of 1999 (from June 1 to August 29) and August–
September of 2000. In 1999, two ICON model control
runs were used. The first was a model run forced with a
12-hourly NOGAPS wind (91-km resolution); the second
was a model run forced with a 12-hourly COAMPS wind
(9 km resolution). This enables us to evaluate the impact
of the data assimilation on the ICON model predictions
forced with different resolution wind products. In 2000, only
one control model run was considered: The ICON model
was forced with 12-hourly, 9-km resolution COAMPS wind
and heat fluxes.
[42] The ICON model does not have tides; for this reason,

the HF radar data were 33-hour low-pass filtered, and
spatial and temporal data gaps were filled, in accordance
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with the automated procedure for filling and filtering the
data described by Paduan et al. [2003]. Hourly HF radar-
derived surface current maps were used; therefore, the
analysis (updated) field of the model surface currents (see
section 4.1) was estimated each hour.
[43] For the 1999 study period, the ICON model current

predictions with and without assimilation of HF radar data
were compared to currents measured by a 300-kHz RD
Instruments acoustic Doppler current profiler (ADCP)
mounted in a downward-looking configuration on the
Monterey Bay Aquarium Research Institute’s (MBARI)
surface mooring at 122.40�W, 36.67�N, designated M2.
For the 3 months of data used here (June 1 to August 29,
1999), the ADCP was set up to measure in 4-m depth bins
and generally returned good data in the depth range from 6
to 120 m. For the 2000 study period, the ICON model
current predictions with and without assimilation of HF
radar data were compared to currents measured at M2 and at
another surface mooring at 122.02�W, 36.74�N, designated
M1. (For summer of 1999, ADCP data at M1 were

unavailable.) In 2000, the M1 and M2 ADCPs were set
up to measure in 8-m depth bins, with the first bin at 15.58 m
for M1 and 12.5 m at M2.
[44] The HF radar footprints and location of the M1 and

M2 stations are shown in Figure 6. The comparisons at M1
illustrate the impact of HF radar data assimilation on the
ICON model predictions inside the HF radar footprint;
however, comparisons at M2 illustrate the influence of HF
radar assimilation on the model predictions in an area
outside, but within a decorrelation length from, available
observations.
[45] The magnitudes of complex correlation coefficients

and angular displacements between the ADCP and ICON
model currents were used for evaluating the various data
assimilation schemes. The magnitude r of the complex
correlation coefficient between the ADCP and ICON model
currents for a particular depth was estimated by using the
following formula [Kundu, 1976]:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re2 þ Im2

p
; ð21Þ

Table 2. Descriptions of and Designations for Assimilation Schemes

Scheme Designation

Assimilation of CODAR data according to the additional wind stress,
equation (1) (the scheme outlined by Lewis et al. [1998])

Lew98

Assimilation of CODAR data only into the surface layer of the ICON
model [Shulman et al., 2000]

DA00

Assimilation of CODAR data into the surface layer of the ICON model
and with subsurface projection based on the energy conservation
principle (section 5)

DA00ENG

Assimilation of CODAR data into the surface layer and vertical
projection based on Ekman theory, equations (16)– (17)

DA00Ek1

Assimilation of CODAR data into the surface layer and vertical
projection based on Ekman theory, equations (19)– (20)

DA00Ek2

Figure 6. CODAR data footprint (dots) and locations of M1 and M2 moorings.
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where

Re ¼

X
t

uot u
m
t þ vot v

m
t

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t
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� �2þ vot

� �2� �X
t
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� �2þ vmt

� �2� �r

Im ¼

X
t
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m
t � vot v

m
t

� �
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� �2� �r ;

and ut
m, vt

m and ut
o, vt

o are de-meaned model and observed
east-west and north-south components of velocity. The
angular displacement q (phase angle, average veering)
between the ADCP and ICON model currents for a
particular depth was estimated as

q ¼ tan�1

X
t

uot v
m
t � vot u

m
t

� �
X
t

uot u
m
t þ vot v

m
t

� � : ð22Þ

[46] The value of q is only meaningful if r is significant.
Standard statistical techniques [see, e.g., Emery and
Thomson, 1998] were used for estimating 95% signifi-
cance levels of the correlation. For the summer of 1999
experiments, the significant level was 0.207; for August–
September of 2000, it was 0.261.
[47] The magnitudes of complex correlation coefficients

(equation (21)) were examined using a range of assimi-
lation schemes and parameter values (see notations in
Table 2). In all cases, the correlations were computed as a
function of depth starting at the topmost ADCP bin. That
shallowest observation depth was 5.8 m at M2 during the
1999 study period. During the 2000 study period, it was
12.5 m at M2 and 15.6 m at M1. By comparison, the
shallowest model bin was everywhere less than 6 m. (In
the deepest regions where the water depth is 3500 m, the
thickness of the ICON model surface layer was only
3.5 m.) Therefore all of the results depicted here represent
depth bins below the actual surface layer where model-
data comparisons were utilized by the various assimilation
schemes.

Figure 7. Magnitudes of the complex correlation between model-predicted currents and those observed
at M2 in summer 1999 using various Ekman depths and NOGAPS forcing with schemes (a) DA00Ek1
and (b) DA00Ek2 or COAMPS forcing with schemes (c) DA00Ek1 and (d) DA00Ek2.
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[48] Results using different values of Ekman depth in the
projection schemes DA00Ek1 and DA00EK2 are shown in
Figures 7 and 8 for cases from 1999 and 2000, respectively.
Overall, both schemes exhibited similar correlations, and
the results were similar using different values of De,
with slightly better results obtained for De = 46 m (Av =
0.1 m2/s). (The exception is the case with scheme DA00Ek2
in 1999 and NOGAPS wind-forcing, which exhibited the
greatest sensitivity to choice of De.) Note that the value of
De = 46 m is in agreement with the estimate reported by
Chereskin [1995] based on long-term current meter obser-
vations in the California Current system. Most important,
all of the combinations of Ekman depth, projection scheme,
and wind-forcing show clear evidence of improvement
compared with the no-assimilation cases. For the conditions
in 1999, the improvement extended down to the 120 m
depth limit of the ADCP observations. For the conditions in
2000, however, the improvement was limited to the upper
70 m.
[49] A further examination of the data assimilation sen-

sitivities is presented in Figure 9, which shows the magni-

tudes of the complex correlation for different assimilation
schemes as outlined in Table 2. The results indicate that
assimilation of HF radar data according to the scheme
Lew98 does not improve the model correlation with sub-
surface ADCP currents (Figure 9a). As was mentioned
above, this may be explained by the fact that there is no
instantaneous projection of surface information into the
subsurface using this scheme. In addition, the corrections
are based only on differences between model-predicted and
HF radar-derived currents at individual observation loca-
tions and the wind stress corrections are applied only within
the HF radar footprint. (The M2 location was just outside
the HF radar footprint in the 1999 study period.)
[50] In contrast to the Lew98 scheme, both the DA00 and

DA00ENG schemes apply surface corrections throughout
the model domain based PSAS. In this case, corrections at a
particular location depend not only on velocity differences
observed at that location, but also at all other locations as a
function of the spatial error covariance model. The results in
Figure 9 indicate that these PSAS-based schemes performed
better than the Lew98 scheme. The results also show that

Figure 8. Magnitudes of the complex correlation between model-predicted currents and those observed
in summer 2000 using various Ekman depths and COAMPS forcing with scheme (a) DA00EK1 or
(b) DA00Ek2 at location M1 and (c) DA00Ek1 or (d) DA00Ek2 at location M2.
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there was almost no difference between the standard PSAS
scheme (DA00) and the augmented scheme that preserved
ICON model energy (DA00ENG).
[51] In most cases, the greatest model improvement, as

determined by the correlations with subsurface ADCP data,
was achieved using the schemes that employed velocity
projection based on Ekman theory (i.e., DA00Ek1 and
DA00Ek2). In those schemes, PSAS-derived surface cor-
rections instantaneously affect surface layer velocities down

to depths that depend on the selected Ekman depth. Results
shown earlier for this study, based on correlations with the
independent ADCP data, indicate that there is only a modest
sensitivity to the choice of Ekman depth for these schemes.
[52] In addition to producing larger magnitudes of the

complex correlation between model-predicted and observed
currents, a successful assimilation scheme must also pre-
serve, on average, directions of the observed currents as is
indicated by low phase angles in the complex correlation
results [Kundu, 1976]. For the cases studied here, angular
displacements between ICON model-predicted and ob-
served currents were generally in the range of �30� to
+30� with and without assimilation. One exception was the
resulting phases for scheme DA00Ek2 below 80 m at M1 in
2000. At these depths, however, all model runs showed a
low correlation magnitude with M1 ADCP observations in
2000, which makes conclusions about angular displace-
ments impossible.
[53] Angular displacements (phases) of the complex

correlation results for the better-performing schemes
(DA00Ek1 and DA00Ek2) are shown together with the
magnitudes in Figure 10 for the 1999 study period. In this
case, only results for De = 46 m are shown in order to

Figure 9. Magnitudes of the complex correlation between
model-predicted currents and those observed for various
assimilation schemes using COAMPS forcing and observa-
tions at M2 in (a) 1999 or (b) 2000 and (c) at M1 in 2000.

Figure 10. Magnitudes of the (a) complex correlation and
(b) phase between model-predicted currents and those
observed at M2 in 1999 for various assimilation schemes
and wind-forcing.
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highlight the impact of the assimilation schemes and wind-
forcing. Runs without assimilation exhibited different cor-
relation magnitudes in the different wind-forcing cases,
while the corresponding runs with HF radar data assimila-
tion had very similar correlation magnitudes. In all cases,
the average angular displacements at all depths were very
close to zero. This supports the idea that HF radar data
assimilation acts as an effective correction to the model’s
wind-forcing.
[54] Finally, it is important to investigate the sensitivity of

the correlation results based on single-point mooring obser-
vations to horizontal location, particularly in light of the
strong horizontal heterogeneity that is known to exist within
the ICON domain. Except for the HF radar-derived surface
currents, the available observations do not span horizontal
space. This limitation is not true for the model output, of
course. Hence an indication of the horizontal velocity
structure can be seen by mapping correlation magnitudes
between the currents observed at the mooring location and
the modeled currents throughout the domain.
[55] The spatial variations of correlation magnitudes are

shown in Figure 11 for various model runs compared with
observations at the M1 or M2 mooring locations. In each
case, the complex correlation magnitudes between HF
radar-derived surface currents and currents in the topmost
ADCP bin are also shown. From these results, it is evident
that M2 in particular was located at a boundary between
high and low correlation. Correlation magnitudes actually
increase and peak northwest (offshore) of the mooring
location for the no-assimilation model runs. Correlation
magnitudes for the M2 versus HF radar-derived currents,
by contrast, are maximum at and slightly east (inshore) of
the mooring location. Maps of correlations for the model
runs using the DA00Ek1 assimilation scheme show altered
patterns with the maximum correlation region immediately
east (inshore) of the mooring location in closer agreement
with the HF radar-derived patterns. This altered and, pre-
sumably, improved pattern is present at all depths and in
both the NOGAPS and COAMPS wind-forcing cases.
Because the M2 mooring was outside the HF radar foot-
print, the results presented illustrate the influence of HF
radar data on model predictions outside the locations of the
actual data.
[56] The influence of HF radar data assimilation on the

model predictions inside of the HF radar data footprint is
illustrated in the lower panel in Figure 11, which shows the
correlation magnitudes based on observations at the M1
mooring location. Again, the data assimilation acts to alter
the correlation patterns to be more in keeping with those
derived from the HF radar data, although the positive effects
in this case are limited to the upper 60 m or so as was seen
earlier in the correlation profiles.

6. Discussion and Conclusions

[57] Comparisons of the statistical properties of the HF
radar data and the observed wind indicate a strong correla-
tion between the dominant alongshore, upwelling-favorable
wind-forcing and HF radar-derived surface currents. Be-
cause inadequate wind stress forcing fields are probably a
significant source of error in ocean circulation model
solutions, the idea of using HF radar data to help correct

surface wind-forcing looks promising. In this paper, we
evaluated the utility of HF radar data used in this fashion
based on results from the ICON program around Monterey
Bay.
[58] Comparisons of the magnitudes of complex correla-

tion between model and observed currents, down to 120 m,
indicated that assimilation of HF radar data according to the
pseudo-shearing wind stress scheme of Lewis et al. [1998]
has very limited effect, particularly outside the immediate
HF radar data footprint. Improvement is seen, however,
using schemes that employ a statistically based assimilation
scheme to correct all model surface currents based on the
field of HF radar-derived currents. In these applications,
surface velocity corrections were developed based on the
PSAS data assimilation scheme using error covariance
functions modeled on monthly varying, observed velocity
covariance functions. Two schemes were tested using
PSAS-based assimilation acting only within the first model
depth bin. The second one included the additional constraint
of model energy conservation, although little difference was
seen between these two schemes.
[59] A greater impact of the data assimilation was seen

when subsurface projection schemes were used. In this
study, those schemes were based on a constant eddy
viscosity, frictional boundary layer assumption (i.e., the
classic Ekman theory). Although still ad hoc, particularly
with regard to intrinsic assimilation timescales, it is argued
that these schemes are consistent with the concept of
improving or ‘‘nudging’’ the wind-driven momentum trans-
fer based on the mismatch between model-predicted and HF
radar-derived surface currents. Unlike alternative schemes
that employ fully three-dimensional error covariance func-
tions within the assimilation step, these schemes directly
alter model velocities only within the near-surface layer,
which was within the upper 40 m for most of the cases
examined in this study. The Ekman-based projection meth-
ods were seen to be robust in that they improved model
performance in all cases, and to depths that extended below
the depths at which velocity corrections were applied.
[60] The Ekman-based schemes proposed and tested here

do include the need to choose the precise shape of the
velocity correction profile through the choice of Ekman
depth (i.e., eddy viscosity) and the numerical projection
algorithm applied in the presence of a model grid whose
vertical resolution varies horizontally (e.g., a sigma-coordi-
nate grid). The results presented here showed the Ekman-
based projection schemes to be relatively insensitive to the
various choices of Ekman depth and vertical integration
algorithm. Furthermore, the Ekman depth that exhibited the
best results (De = 46 m) was consistent with estimates by
Chereskin [1995] from the same region based on long-term
current meter observations.
[61] As an additional check, complex correlation phases

were investigated to be sure that data assimilation resulted
in currents that were in the same direction, on average, as
the observed currents, which was the case (Figure 10). The
notion of phasing was further explored by investigating
the horizontal variation of velocity correlation within the
HF radar field and the model results as compared to the
fixed mooring locations. Maps of correlation between
model-predicted and ADCP currents showed that the M2
mooring was located in an area of intermediate correlation

C07S09 PADUAN AND SHULMAN: HF RADAR DATA ASSIMILATION

13 of 17

C07S09



for model runs without assimilation (Figure 11). The
highest correlated model currents were located northwest
of the mooring in those runs, while the correlations
between HF radar-derived currents and the near-surface
ADCP bin at M2 were higher east of the mooring site.
This indicates the presence of a spatial shift between
modeled and observed features. It also points out potential
problems involved with using single-point mooring obser-
vations to validate a three-dimensional circulation model.
That is, relatively small spatial offsets in the modeled
features can lead to an unrealistically poor assessment of

model performance when data are compared only with
model output from the mooring location.
[62] In this study, data assimilation using HF radar-

derived surface currents projected into the near-surface
Ekman layer improved the correlations between modeled
and observed currents down to depths of 70 m to 120 m at
the mooring sites (Figures 7–10). The data assimilation also
altered the spatial correlation patterns bringing them more in
line with those based on the HF radar-derived currents
(Figure 11). These results are encouraging, but they will
only become more widely applicable and accepted given a

Figure 11. Maps of complex-correlation magnitudes between observed currents at the M1 or M2
mooring site (crosses) and HF radar-derived surface currents (top level in each panel) or model-predicted
currents at various depths for 1999 using (top) NOGAPS forcing or (middle) COAMPS forcing and
(bottom) for 2000 using COAMPS forcing. In each case, results (left) without data assimilation and
(right) with data assimilation using the DA00Ek1 scheme are shown.

C07S09 PADUAN AND SHULMAN: HF RADAR DATA ASSIMILATION

14 of 17

C07S09



dynamical mechanism for the improved model perfor-
mance. Such an explanation is essential if it is to be argued
that the methods used here should be exported to locations
beyond Monterey Bay.
[63] What are the possible explanations for altered model

currents below the depths subjected to explicit corrections
as part of the data assimilation scheme? It seems clear that
one of two physical mechanisms is responsible for the fluid
accelerations at depth: (1) friction driven by changed
vertical shear conditions or (2) pressure gradients related
to changed horizontal density gradients. In the first case,
only the model’s turbulence closure algorithm is available to
mix momentum downward, which is an unlikely explana-
tion for accelerations observed well below the mixed layer.
The second mechanism is more likely to be responsible for
the results seen in this study. Horizontally variable correc-
tions produce horizontally variable density anomalies.
These, in turn, require geostrophic velocity adjustments
over a finite depth range that is thicker or thinner depending
on the background stratification. A very important aspect of
this argument is the need for horizontally distributed veloc-
ity observations, such as those obtained from a network of
HF radar sites. If the ground-truth data were obtained at
only one location, or if the model-data mismatch was
uniform at all locations, then the data assimilation approach
taken here would be completely ineffective below the
explicit correction layer (approximately one Ekman depth).
An exception to this argument may be found at the model’s
coastal boundary. At those locations, any applied correc-
tions may have a disproportionate effect on velocities at
depth due to the rigid boundary conditions. (This is a
potential problem that should be studied in more detail in
future studies using this methodology.)

[64] The deeper model velocities likely respond to the
data assimilation technique used here through a type of
Ekman pumping analogous to the forcing exerted by wind
stress curl. According to equations (14)–(15), the assim-
ilation technique produces a vertical velocity anomaly
equal to

W ¼ r�M ¼

ffiffiffiffiffi
Av

2f

s
r� dUs þ curlzdU sð Þ: ð23Þ

This vertical velocity must be absorbed in the underlying
fluid (i.e., below the Ekman layer), which can be
presumed to have been in geostrophic balance. Therefore,
horizontal current anomalies will be produced as the fluid
adjusts to the new density field. An indication of this
behavior using the results of this study is given in
Figure 12, which shows a map of vertical velocity
anomaly integrated over the entire 1999 study period
(
R
Wdt =

R
r�Mdt) for data assimilation scheme

DA00Ek1 and the NOGAPS wind-forcing. The coarse-
resolution NOGAPS wind stress fields provided nearly
zero wind stress curl forcing over the ICON model
domain, while Ekman pumping due to the data assimila-
tion (Figure 12) provided a forcing field with small scales
comparable to Monterey Bay. Enhanced model upwelling
was forced in areas to the north and south of Monterey
Bay, which are known upwelling sites [Rosenfeld et al.,
1994]. Within the Bay, another region of enhanced model
upwelling was driven by the data assimilation scheme,
which would have acted to strengthen cyclonic circulation
in that area. Such a strengthening is consistent with the
observation that more persistent cyclonic circulation was
seen in the Monterey Bay HF radar-derived currents than
in the model currents without assimilation. We conclude
from this that Ekman-based HF radar data assimilation
can correct model currents in the mixed layer and
seasonal thermocline by altering the pattern of upwelling.
[65] As further evidence that we have identified the

correct mechanism involved with accelerations at depth,
we produced a proxy for the presumed horizontal changes
in the model’s density field. This was done by creating
maps of the temperature anomaly at various depths between
model runs with and without assimilation. Examples of
the model temperature anomalies at 60 m are shown in
Figure 13 for the initial phase of the 1999 study period. The
data assimilation scheme produced clear anomaly patterns
with cooler temperatures inside Monterey Bay and warmer
temperatures outside at the 60 m. Initially, the anomalies
were confined to the region of the HF radar data footprint,
but the anomalies strengthened and expanded over the
course of several days. A distinct, mesoscale warm anomaly
developed early on just outside Monterey Bay at the edge
of the HF radar footprint. That anomaly clearly propagated
through the model domain toward the northwest over the
course of about 3 weeks. Later in the study period, similarly
sized temperature anomalies developed and propagated
through the model domain. Hence it is clear that the effects
of assimilation of HF radar-derived currents, which took
place only within the near-surface layer and in a geograph-
ically limited region, were felt at thermocline depths and at
all locations in model. The results of this study showed that
these effects improved model performance within and near

Figure 12. Map of the time-integrated Ekman pumping
due to data assimilation for the period ending 31 August
1999 for the ICON model run forced with NOGAPS winds
and CODAR data assimilation according to scheme
DA00Ek1.
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to the region of HF radar data. However, more work must
be done to understand the implications of this approach on
model performance far from the data footprint, particularly
in light of the way ‘‘disturbances’’ radiate away from the
data region.
[66] The relatively rapid timescale on which anomalies

propagated through the model domain (days to weeks) may
provide an explanation for the differences we observed
between the 1999 and 2000 study periods. In the latter
period, the data assimilation approach was less successful in
terms of its depth of influence (model performance was
improved only down to about 70 m as compared with 120 m
during the 1999 period). Given the mechanism for vertical
(and horizontal) propagation of information, the method

used here can be expected to be sensitive to both the
stratification and the initial mesoscale density structure.
Although we did not impose an assimilation timescale
beyond our initial subtidal filtering of the HF radar data,
the model’s response must include an intrinsic timescale
related to the geostrophic adjustment. For this reason, the
method is likely to be more successful when the model-data
mismatch fields contain patterns that persist for periods that
are long compared with the adjustment timescale. In our
example, this requires patterns to persist for periods of
weeks rather than days. This is consistent with the situation
in 1999 in which the model without assimilation failed to
produce observed cyclonic circulation within Monterey Bay
for a period of several weeks. By contrast, the model-data

Figure 13. Temperature differences (�C) at 60 m depth between ICON model runs with and without
assimilation of HF radar-derived surface currents during the 1999 study period using NOGAPS wind-
forcing and the DA00Ek1 assimilation scheme with De = 46 m.
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mismatch fields in 2000 exhibited much less consistent
structures.
[67] In the future, we will continue to focus on under-

standing the dynamic mechanisms by which surface veloc-
ity information impacts subsurface model currents. In
parallel, we will continue to explore the sources of error
in the HF radar data itself in order to improve error
covariance models used in the first, PSAS phase of the data
assimilation. Future model improvements should include
tidal forcing and special handling of velocity assimilation
near the coastal boundary. Despite this list of tasks remain-
ing, it is clear that two-dimensional maps of surface currents
from HF radar networks represent a useful and unique
resource for the improvement of coastal ocean circulation
models, particularly in the critical depth range encompass-
ing the euphotic zone.
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