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Abstract— A dominant part of the circulation in nearly
enclosed bays, estuaries, or sounds is dictated by tidal inflow at
its mouth, called co-oscillatory forcing.  The remaining flow
component is usually due to winds.  HF radar measurements
over an area at the entrance can be used to determine the
sinusoidal tidal velocity constituents along a line across the
mouth.  We use this complex spatial profile at different phases
of the tidal cycle as the boundary excitation condition to solve a
scalar second-order partial differential equation (PDE) for tide
height.  For the remaining boundary condition, the flow normal
to the shore is taken to be zero.  The bathymetry of the bay is
included in the PDE.  This is then solved by a powerful finite-
element code, PDE2D.  From the tide height distribution, the
velocity circulation is simply calculated as its gradient.

We present results applying this method to simple,
canonical bay shapes and bathymetries.  The effect of the
bottom shape is studied, as well as the different excitation
profiles at the mouth.  Both tide height and vector current field
are calculated and compared for the different geometries and
excitations. Our future studies are applying this to Long Island
Sound, for example,  where three SeaSondes straddle the mouth
at the Eastern end, owned and operated by University of Rhode
Island and University of Connecticut.  Our studies reported here
of canonical bay and bottom shapes serves as a guide and check
in applications to these real-world situations.

To our present lowest order of approximation, friction
and dissipative effects that cause tidal-phase time lags at
different points are neglected. Higher-order nonlinearities are
also neglected.  Both of these effects are being included in
subsequent studies.  The main advantage of our method for co-
oscillatory tidal analysis is simplicity: it avoids the complexities
and computational requirements of full-up numerical primitive
equation methods.  The goal is to provide this as an algorithmic
tool to run on the standard PCs that control and process data
for the many HF radars being operated in bays.  From a radar-
measured profile of the tidal constituents across the mouth. we
hope to estimate tidal circulation and tide heights throughout

the bay, in areas well away from the entrance where HF radars
make their measurements.

I.  METHODOLOGY

   In recent years there has been a dramatic increase in the
capability of observations of estuarine and coastal regions.
This is due largely to the proliferation of HF radars [1], [2].
Furthermore, with the advent of fast computers,
oceanographers have both the observational and
computational capabilities unimagined years ago to perform
tidal studies.  It is known that tidal currents in nearly enclosed
bays are dominated by the tidal inflow at their mouth.
Therefore, in our work we use HF radar measurements over
an area at the entrance to determine the sinusoidal tidal
velocity constituents along a line across the mouth.  This
complex spatial profile at different phases of the tidal cycle is
used as the boundary excitation condition to solve a scalar
second-order partial differential equation for tide height, and
from this, the tidal currents everywhere.

   In this research work  we analyze in particular, the effect of
depth on tides in bays.  Currently, there are full primitive
equation models that produce tide heights in a comprehensive
way.  However, these models are computationally very time
intensive and somewhat cumbersome.  We present a model
that is simple, yet very efficient to study the dependence on
depth of tide heights in bays.  This method, when used in
conjunction with HF radar data, can provide accurate results
for the velocity profiles in bays.

   In our methodology, we use the equation of motion (to
lowest order):



where η(x,t) is the surface height above a mean level  as a
function of horizontal position, x and time t , and V is the
velocity.  Bold face letters denote 2-D vectors.  The jω
replaces differentiation with respect to time when variation is
sinusoidal, as it is for tidal constituents, and removes explicit
time dependence from height and velocity.

   The equation for conservation of fluid to lowest order is:
where h(x) is the water depth below the mean height level.
Combining these two equations, one obtains the following
PDEs (partial differential equations):

   Using the boundary conditions, e.g., that the normal flow
into the coastline is zero and that the normal flow across the
mouth comes from SeaSonde profile tidal analysis, the scalar
Helmholtz equation for tide height, η(x), is solved using the
PDE2D finite-element software [3].

II.  RESULTS

   We present here results for two canonical bay shapes: semi-
elliptical and rectangular.  Each is x = 100 km long and y =
40 km at its widest in the elliptical case.  These allow us to
verify the correctness of our results against analytical
solutions. Furthermore, studying canonical shapes has
provided us with greater insight into the physics of the
phenomena, since many bays resemble roughly these shapes.
Subsequent work will apply this validated methodology to
bays across the United States.

   In Figs. 1 and 2 we present tide height,  η(x), for rectangular
and elliptical bays with a constant depth of 100 m.  The
remaining figures show velocity flows.  Figs. 3 and 4 refer to
a constant depth case and Figs. 5 and 6 refer to a variable
depth case. Finally, Fig. 7 shows a comparison between a
constant and a variable case for a maximum center depth of
25 m.   All of the results presented here had a sinusoidal
inflow profile at the inlet, being zero at the mouth center.

Figs. 4 and 6  show a negligible difference when changing the
maximum depth of  h(x) between 25 and 100 m.
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Figure  1.   η(x) for a rectangular shape with constant depth h = 100 m
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Figure  2.   η(x) for an elliptical shape with constant depth h = 100 m
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Figure  3.   Velocity profile for constant depth h= 25 m
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Figure  4 Difference between velocity profiles for constant depth values of h
for 25 and 100 m.
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Figure  5.   Velocity profiles for variable h , maximum depth at center being
25 m.

-0.1250  0.1250  0.3750  0.6250  0.8750  1.1250

X (*10**  5) 

-3.2500

-0.7500

 1.7500

 4.2500

 6.7500

 9.2500

Y (*10**  4) 

Change in Velocity field                

T =  1.000000E+00

3.32E-03

SCALE

Figure  6  Difference between velocity profiles for variable h, being 25 and
100 m maximum depths at the center
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Figure 7  Difference between velocity profiles for  variable and constant
h(x), with the maximum depth at the centers being 25 m.

III.  CONCLUSIONS

   After analysis of numerous computer runs, we conclude
that whether h(x) is constant or a variable, increasing Hmax

beyond a certain limit has little effect on tide height η(x) and
velocity V(x).  This is because the second Helmholtz term in
our PDEs becomes negligible as the first term increases with
h(x).  In addition, it is found  that the velocity profiles depend
on whether a constant or a variable bay bottom depth is used.
Qualitatively these results are in accordance with
observations of actual bays.

  Future work will use this methodology on selected bays
around the U.S., making use of data acquired with HF radars.
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