
1452 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 48, NO. 9, SEPTEMBER 2000

The Failure of “Classic” Perturbation Theory at a
Rough Neumann Boundary Near Grazing

Donald E. Barrick and Rosa Fitzgerald

Abstract—Rice’s “classic” perturbation theory predicts an er-
roneous limit at grazing for vertically polarized plane wave scatter
from an infinite perfectly conducting rough surface; likewise, the
attendant result for the specularly reflected mode also fails at
grazing. We show where and why in the system of perturbational
equations this difficulty occurs. We then reformulate the pertur-
bational approach to handle the low-incidence angle region for
a one-dimensionally (1-D) rough Neumann boundary (vertical
polarization from a perfectly conducting surface). The result for
scattered fields vanishes in direct proportion to incidence angle
above grazing and the result for the normalized roughness-modi-
fied surface impedance becomes constant with angle near grazing.
For completeness and comparison, we give results for the hori-
zontal polarization at a Dirichlet boundary, where perturbation
results encounter no difficulties. Scatter dependence on grazing
angle is explained in terms of the “classic” perturbation result
multiplied by a propagation factor to the cell. The latter includes
the sum of the direct and specularly reflected waves at the surface.
This quantity can be replaced by the appropriate surface-wave
propagation factor for radiation from dipole antennas, thereby
explaining the strong observed vertically polarized sea scatter at
high frequency (HF) on and below the horizon.

Index Terms—Electromagnetic (EM) scattering from rough sur-
faces, perturbation methods.

I. INTRODUCTION

DR. James R. Wait led the way in the west in applying sur-
face impedance concepts to both propagation and scatter

of vertically polarized waves at planar and spherical boundaries.
His classic text Electromagnetic Waves in Stratified Media [1]
is based entirely on this description of earth and sea interfaces.
Wait also showed [2] how roughness on a curved conducting
boundary modifies its near-grazing impedance, which prior to
that had been derived by Barrick [3] and Feynberg [4] only for
planar boundaries. Unravelling the perturbation theory failure
conundrum—the purpose of thismanuscript—is all based on the
connections between roughness, the surface impedance/admit-
tance, and scatter on which Dr. Wait has shed pioneering light.
Propagation and scatter of vertically polarized electromag-

netic (EM) waves near grazing above a slightly rough perfectly
conducting surface is fraught with a number of inconsistencies.
For two-dimensional (2-D) fields above a one-dimensional
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(1-D) profile for this polarization, the conducting surface
becomes the Neumann or “hard” boundary condition; for easier
understanding, we restrict study to the 1-D geometry. Lord
Rayleigh [5] used perturbation theory to derive scattered fields
from a sinusoidal Neumann boundary more than a century ago;
Rice [6] was the first to apply the same technique to arbitrary
periodic and randomly rough surfaces.

A. Scatter Theory
Rice’s perturbation theory [6] leads to the following result for

the normalized in-plane bistatic scatter cross section from a sta-
tistically rough 1-D Neumann boundary with roughness height
spectrum at the surface wavenumber that satisfies the
Bragg condition

where
radio wavenumber;
incidence angle above grazing;
scatter angle above grazing with respect to the forward
direction.

Thus, for backscatter, and . We
refer to this equation and its three-dimensional (3-D) counter-
parts (e.g., Tatarskii and Charnotskii [7], [8]) “as “classic” per-
turbation results in our subsequent discussions. Power does not
vanish as it should above any dissipative surface when grazing
is approached.

B. Propagation and Energy Conservation
The above inconsistency of the “classic” perturbation solu-

tion for scatter is attended by contradictions in the fields prop-
agating across the surface as grazing is approached. For inci-
dent plane wave excitation, we define the propagating field as
the “space wave,” which includes the incident and the specu-
larly reflected plane waves. The latter is often referred to as the
“coherent” component of scatter from statistically rough sur-
faces. In the grazing limit, the two components of the space
wave merge into a single forward propagating field.
Rice [6] gives expressions from perturbation theory through

second order for the first two terms of the specularly reflected
plane wave from a perfectly conducting slightly rough surface.
This is expressed as as a Fresnel-like coherent reflection coeffi-
cient. We repeat [6, eq. (5.5)] based on [6, eqs. (4.3) and (3.25)]
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where the first equation applies to vertical polarization (the
Neumann 1-D boundary) and the second to horizontal (the
Dirichlet 1-D boundary). In Rice’s words, “ is the cosine
of the angle between the vertical and the reflected ray,” and
“ stand for small quantities.” Thus, using
our definition.
For horizontal polarization (Dirichlet boundary), the second

equation behaves like a plane wave Fresnel reflection at any
planar interface between free-space and a lower, denser, and ho-
mogeneous medium; it approaches 1 in the grazing limit. The
above equation for vertical polarization (Neumann boundary)
has a big problem at grazing: the second term dominates and
the reflected field goes to infinity. Hence, energy conservation
is grossly violated, as the power in the incident (causative) plane
wave was taken to be constant. This breakdown for reflection
should sound an alarm that the preceding scatter results near
grazing must be suspect also, both having been derived from
the same system of equations.
In the next section, we revisit “classic” perturbation theory

for a Neumann boundary, using our more exact modal formula-
tion [9], [10], which avoids the Rayleigh hypothesis. We show
exactly how and where the perturbational system of equations
fail at grazing. In Section III, we derive perturbation solutions
for scatter and propagation that are valid and exact in the
grazing limit. In Section IV, we reconcile the two seemingly
different perturbational approaches, examining the transition
zone between the two; we also clarify the inextricable inter-
connection between scatter and propagation in this important
limit and resolve the quandary of why high-frequency (HF)
radars at grazing see such a strong sea scatter echo. Section V
considers horizontal polarization for a Dirichlet boundary,
deriving an admittance counterpart to the Neumann impedance
and examining propagation and scatter behavior near grazing.

II. WHY “CLASSIC” PERTURBATION FAILS AT GRAZING

A. Review of Modal Formulation

Barrick [9], [10] presents an exact formulation for 2-D prop-
agation and scatter above any arbitrary 1-D rough periodic Neu-
mann boundary with height and fundamental period .
Unlike earlier approaches of Rice [6], Wait [2], and Barrick
[3], [11] that invoke the Rayleigh hypothesis, [10] avoids this
assumption that the fields are approximated by only upgoing
modes in the region between crests and troughs. Rather, solu-
tion follows a two-step process where unknown surface-current
Fourier coefficients are first determined from a simple system
of equations with only one nonzero element on the right; these
coefficients are then multiplied by a known matrix to find the
reflected and scattered field modal amplitudes. Thus, we have
[9], [10]

and
(1)

Here, and are the unknown surface-current Fourier coef-
ficients and the scattered-field modal amplitudes, respectively,

defined with respect to the -directed magnetic field
by

(on the surface) (2a)

for

(2b)

where

and
(3)

where
radio wavenumber;
fundamental wavenumber for the periodic sur-
face;
angle from grazing of the incident plane wave

(4)

and, henceforth, the time-dependent exponential factor is
omitted but implied.
Thematrices and are defined fromGreen’s inte-

gral equations [10, eqs. (4), (5)], e.g., for the Neumann boundary
the relevant equation giving becomes

(5)

where in (1) and (5) is the Kronecker delta, implying that
only one term on the right side of (1a) involving is nonzero.
For the Neumann boundary the matrix coefficients required on
the left sides of (1) become

and

(6)

B. Applying Perturbation
The surface profile height enters through the coefficients

and . These are defined [9], [10] as the Fourier coefficients of
the height characteristic functions . In the per-
turbation limit of small heights, the exponential is expanded
in its first terms resulting in the following reductions for these
quantities:

(7a)
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with the coefficients of the surface height and its square defined
from

and

(7b)

With the above equations defining the scatter process in the
small surface-height limit, one employs the methodology in [9,
appendix] to set up the “classic” perturbation equations [9, eq.
(A1), (A2)]. For clarity we show the process applied to a si-
nusoidal profile at grazing in which only two surface coeffi-
cients and are nonzero. This is extended by inspection
to the general case of more complex surfaces involving up
through . Hence, we need show only three equations
of the set represented by (1) above since only these three have
terms larger than “order three” (denoted ) in the perturba-
tion parameter . The upper/lower line and signs represent
the first and second of (1), respectively,

(8a)

(8b)

(8c)

C. Scatter Solutions
In the “classic” perturbation approach, it is assumed that the

grazing angle and, thus , in the above equations is an
independent variable and, hence, not necessarily small. In this
case, the first and third terms on the left of (8b) are at least
first order (we shall see these are actually second order in )
and only the middle term involving remains to lowest order.
Hence, solving the upper set of (8b), this zero-order term is
equated to the right side (with the common factor can-
celing) to give , where superscript denotes the small-
ness order in the perturbation parameter. When this is substi-
tuted into (8a), the rightmost term with is first order; the
middle term in must, hence, be at least first order and, thus,
in general for must be at least first order. This leads to

solutions to first order in for the surface-current coefficients

(9a)

These are now substituted into the second matrix equation
(1) to get the scattered mode amplitudes , represented as
the lower line and signs of (8) leading to a zero-order solution

. To the first order in we obtain

(9b)

This is the “classic” perturbation result for the scattering am-
plitudes dating to Rice [6]: nonspecular scatter is directly pro-
portional to the surface height to first order. This “classic” Rice
result also clearly demonstrates our point of contention: for ver-
tical polarization at a perfectly conducting surface (Neumann
boundary), the scattering amplitudes of (9b) remain constant as
incidence angle approaches grazing . This is at odds
with the more general result proven by Barrick [9], showing that
the scattering amplitudes should decrease in direct proportion to
at grazing.

D. Propagation
When a plane wave is incident, the “propagated field” (or

space wave) is normally taken to be the sum of the direct wave
(incident field) and reflected wave, the latter for a planar in-
terface being proportional to its Fresnel reflection coefficient.
When the surface is rough, the specularly reflected field (often
referred to as the “coherent” component of scatter for statisti-
cally rough surfaces) is defined as . “Classic” perturbation
theory above has found this to be 1 to lowest order, a result
initially derived by Rice and discussed in the Introduction. For
a flat Neumann boundary, the reflection coefficient is indeed 1
for all angles of incidence. For a rough boundary, however, this
result implies failure of energy conservation at grazing, as dis-
cussed in the Introduction. The effective surface impedance is
defined from the expression for the specular reflection coeffi-
cient as follows:

leading to

(10)

To the lowest (zero) order where , the impedance of
this rough Neumann boundary is zero; let us, therefore, extend

to the next nonzero order, which turns out to be second.
Retain terms in (8b) through second order (with terms to zero
order already removed) to obtain

(11a)

For small , we can ignore the third term involving . Then,
using (9a) in (11a) and solving for , we get

(11b)

where we have used the fact that
for real. Write the counterpart for using the

lower signs

(11c)
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Solving this for by employing (11c) and (9a) we obtain
our result

(11d)

We can now substitute into the second of (10) to
obtain the surface impedance of the rough Neumann boundary

(12)

This is the 1-D version of the result obtained byWait [2], Barrick
[3], and Feynberg [4].

E. Why These “Classic” Results Fail at Grazing
Both of the above “classic” perturbation results are clearly at

odds with the general findings of [9]: 1) nonspecular scattered
energy does not vanish as the angle of the incident plane wave
approaches grazing as it should and 2) the energy in the specu-
larly reflected ray (zero-mode, ) increases without
limit, catastrophically failing energy conservation. The latter is
evident by examination of this quantity

as (13)

This depiction of the interaction at grazing has the total en-
ergy in the “propagated” field (sum of incident and reflected
plane waves) approaching infinity, even though the energy in the
causative incident field is finite. In addition, the total energy in
the “diffuse” (nonspecular) scattered modes remains con-
stant in this limit. What went wrong with the above perturba-
tional derivation (as well as that of Rice [6]) in the grazing limit?
This becomes clear by examining (8) above. The right-side

vector, i.e., the “excitation” that drives the equation system rep-
resented by the upper sign/lines, contains only one element:

in (8b). This vanishes in the grazing limit. Except for
the middle term in , however, the left side of (8b) clearly re-
mains finite. Thus, the entire system of equations for the surface
currents defined by has become indeterminate in the grazing
limit. If one ignores this fact but later decides to set in the
“classic” results for reflection and scatter, one cannot expect the
results to remain valid when the system of equations that pro-
duced them had already broken down.

III. VALID PERTURBATION EXPRESSIONS BELOW THE
BREWSTER ANGLE

A. Scatter
We overcome the failure of the “classic” perturbation (8) at

grazing in the following way. Barrick [9] has proven that the
surface currents/fields decrease in direct proportion to , the in-
cidence angle above grazing, for all rough surfaces. In addition,
all of the scattering amplitudes except also decrease with

near grazing. Hence, let us, therefore, expand these quantities in
powers of

for
(14)

Substitute these into (8) and group terms in like powers of .
Also, recognize as a perturbational ordering parameter in
the sizes of the terms of the equations. Doing so, one obtains
the following equation sets:

for (15a)

for (15b)

In the same way, one obtains the following equations for terms
multiplied by

for (16a)

for (16b)

Each of the upper sets of equations is solved to obtain the
unknown surface current coefficients and . First, solve
(15a) and (16a) for and in terms of and and substi-
tute these into (15b) and (16b), respectively, to obtain

(17a)

(17b)

Thus, we end up with the following solutions for and ,
which we substitute into (16a) and (16b) to get subsequent so-
lutions for and

(18a)

(18b)

(18c)

(18d)
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When (17) and (18) are substituted back into the lower sets of
(15) and (16) to solve for the scattered mode coefficients, we
obtain the same identities between the first-order and as
in the “classic” case treated earlier, i.e.,

but in this case, (19)
Observe that the quantities and for are smaller

than and by one perturbation order in , as assumed
earlier. However, we note what at first seems puzzling: (18) go
to infinity as our “perturbation parameter” becomes suf-
ficiently small. This seems unacceptable in a perturbation ap-
proach since we expect a stable result as the perturbation param-
eter vanishes. However, we have argued that these hold only in
the limit of very small incidence angle . Hence, this imposes a
restriction on under which the results of this section are valid;
when exceeds this limit, one must revert to the “classic” per-
turbation solutions of Section II. This “transition” region and
the criterion for finding that it imposes is found by setting

from this section (18a) equal to from the
preceding “classic” perturbation solution to obtain

giving

(20)

As we shall see in the next section, the expression on the right
turns out to be the effective impedance of this rough Neumann
boundary, which is coincidentally identical to that found earlier
in (12) using the “classic” perturbation approach.

B. Propagation
If we were to use the “classic” perturbation results of Section

II (or those of Rice [6]) for the reflected field mode expanded
for small , we would obtain

(21a)
Using themore exact, small- results of this section for the same
reflected field mode, we obtain

(21b)
When both of these are substituted into the defining equation
for the surface impedance (10) near grazing, i.e.,

, it is quite surprising that both give identically
the same result, i.e., [4, eq. (12)] derived more than 50 years ago
by Feynberg . At grazing , this is

(22)

where the integral form converts the discrete Fourier coefficients
into a continuous 1-D average roughness height spectrum
at surface wavenumber ; the normalized wavenumber is

defined as . Thus, the general effective impedance (12),
which includes incidence angle, is valid over a wide span all
the way to grazing. As we shall see, this expression is slowly
varying as grazing is approached, becoming constant in this
limit.
Yet,ofthetwoexpressionsforthereflectedfield(21a)and(21b),

it is clear that the first, obtained by “classic” perturbation, goes to
infinityas incidenceangleapproachesgrazingand,hence, cannot
correctly represent the interaction at shallow angles. Equation
(21b) approaches , which cancels the incident plane
wave field so that the sum of the two then varies as ; in addition,
all of the scattered field modes derived in this section given by
(14)and(18)alsovanish indirectproportion to so thatanenergy
balance between the propagating and scattered fields is obtained.
Note that the reflected field at any flat but homogeneous interface
betweenairandalowermediumalsovariesas ,asseen
from (10), with the singular exception of the pure flat Neumann
boundary,where it isalways 1.

C. Example—Cosine Profile

The issues and interactions at play for the Neumann boundary
near grazing can be further elucidated by studying a simple ex-
ample: a cosine height profile that satis-
fies the perturbation requirements. Take the radio wavelength
to be unity so . Select k so the surface spa-
tial period is 1.25, resulting in only two propagating modes for
a near-grazing incidence regime. In particular, we study the re-
gion where . Hence, the scatter angles of the two
propagating modes remain sufficiently high over this region that
Wood’s anomalies are avoided for the incidence angle region
between , i.e., none of the propagating modes
passes below the horizon, which would produce a discontinuity
in energy apportionment at that angle.
To satisfy perturbation theory, let so that

and the maximum surface slope (the arctangent of )
is 7.16 . To verify the perturbation approximations being dis-
cussed in this paper, we employ the full modal approach of Bar-
rick [9]. It turns out that truncating this system to only three
equations is adequate to obtain good accuracy for this simple
example, which we verified by using a 7 7 system.
Both the exact modal result and the perturbation so-

lution (12) above predict an effective surface impedance
for . Above 5 , they change

only in the second decimal, so that at 10 , they both become
. This demonstrates our claim that the

effective impedance due to roughness approaches a constant at
grazing like that for most flat interfaces over dense media.
Figs. 1 and 2 show how perturbation theory results exhibit

the behavior claimed by Barrick [9], focusing here on the case
where the incidence angle approaches grazing. In Fig. 1, we
show the lowest two propagating modes and as well
as the lowest evanescent mode . (Evanescent means the
-directed wavenumber, defined as , becomes pure imag-
inary rather than pure real, so that the field produced by this
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Fig. 1. Lowest order scattering amplitudes or modes. Curves are obtained from exact solutions for sinusoidal Neumann profile [9]. Points are first-order
perturbation theory results; x, are “classsic” perturbation theory predicting no grazing angle dependence, and are grazing-limit perturbation theory derived
herein.

mode attenuates exponentially with height above the surface.)
The solid and dashed curves are obtained from inversion of the
7 7 exact modal matrix solution for the Neumann sinusoid
[9]. One observes two distinct regions, with a transition near
0.3 . Below this value, all of the scattered field mode ampli-
tudes have a linear dependence on incidence angle . Above this
value, the scatter amplitudes tend to a constant. The overlying
points are the results of perturbation theory: 1) the “x” and “ ”
come from the “classic” perturbation theory reviewed in Section
2 and 2) the “ ” and “ ” come from the grazing-limit perturba-
tion treatment derived in this section given in (18) and (19). On
the log–log plot these points follow the predicted linear- and
constant dependences of the two different perturbational solu-
tions we examined in Sections II and III, respectively. Since we
derived explicit perturbational results here only to first order,
no points accompany the dashed amplitude mode , which is
second order. The general linear- behavior of these modes was
established in [9]. Equation (14) here is our newly derived per-
turbation-limit expression that supports that general behavior.
Fig. 2 shows the specularly reflected plane wave mode .

Again, the solid and dashed curves come from the exact solu-
tion [10] applied to our Neumann sinusoid. The points result
from the use of the perturbation-theory roughness-modified sur-
face impedance of (12), which was shown to be valid above,
through, and below the transition region in . The points are
not distinguishably different from the exact results. The inter-
pretation of the transition region is clear from this plot: the “dip”
in the amplitude is a Brewster-angle phenomenon exhibited by
the Fresnel specular reflection coefficient at any planar inter-
face above a more dense homogeneous lower medium for TM
(vertical) polarization. The phase is changing from 0 above

this Brewster angle (about 0.3 for this profile) to 180 below
it. This example demonstrates the claim in [9] that rough pure
Neumann boundaries exhibit a Brewster-angle phenomenon at
some angle. Also supported is the more general claim that the
specularly reflected plane-wave mode at any rough boundary
(Dirichlet, Neumann, or general impedance) must approach 1
at grazing, thereby canceling the incident plane wave.

IV. CONNECTION BETWEEN PROPAGATION AND SCATTER AT
GRAZING INCIDENCE

The perturbation results below and above the Brewster-angle
transition are explained by considering both propagation and
scatter. Recall that we are dealing with a rough surface of in-
finite extent (rather than a patch or cell of roughness) and we
are allowing only the incidence angle to vary near grazing.

A. Propagation Factor for Incidence Very Near Grazing

Equation (19) can be expressed in an interesting form that
reveals the meaning of the interaction near grazing. Note that
(19) for the low-angle scattered modes is merely (9b) for the
high-angle modes divided by the effective surface impedance,
i.e.,

(23a)

as in this small grazing-angle region. The “classic”
first-order perturbation scatter result expressed as in (9b)
is independent of in the low-grazing limit, i.e., it becomes
constant; this was its failing near grazing.
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Fig. 2. Zero-order or specularly reflecting mode. Curves are obtained from exact solutions for sinusoidal Neumann profile [9]. Points are based on the
roughness-modified surface impedance obtained from perturbation theory.

If one were to postulate a plane-wave illuminating a point
at or near the surface, the total field would be the sum of the
direct and reflected rays, tending to zero phase-path difference
between rays exactly on the surface at grazing. Thus, one can
write a “propagation factor” to describe the sum of these two
rays (assuming unity incident field strength) as

as (23b)

Hence, (23a) takes on the following interpretation. The
“classic” perturbation scatter result with constant- behavior
near grazing (when multiplied by the “propagation factor”
that includes the effect of the field reflected from the rough sur-
face with effective impedance ) is identically the solution for
scatter below the Brewster angle. This means one can interpret
the direct dependence of the scattered field on near grazing
from an infinite rough surface as due to propagation, i.e., the
sum of the direct and specularly reflected fields producing the
scatter must cancel in direct proportion to near grazing for
any imperfect planar boundary.

B. Plane-Wave Perturbation Scatter Theory Near Grazing
Including Finite Surface Impedance/Admittance
Barrick derived expressions [9, appendix; eq. (24)] for

bistatic scatter cross sections when a plane wave is incident
on a slightly rough impedance/admittance boundary. Given in
terms of the intrinsic surface material impedance or admit-
tance for vertical or horizontal polarization, respectively, it
has a form similar to the first equation of our Introduction—but
modified by “propagation factors” that account for how the

energy gets to and from the scattering surface as discussed in
the preceding section

(24)

Fuks et al. [15] derive this result rigorously for a slightly
rough Neumann boundary, but where now includes the effects
of roughness, as in [15, eq. (53)].
Now, going to the limit of grazing incidence at backscatter for

vertical polarization, one simplifies the bracketing “propagation
factor” expressions (as done in the preceding section) to find

(25)

where it is assumed that is small compared to unity. The ef-
fective impedance of course, includes the effects of roughness
calculated in (22) for the Neumann boundary.

C. Why Finite Sea Scatter Is Seen by HF/VHF Radars at
Grazing
The results of the previous section thus lead to a resolution of

the following quandary, “Why does one see a large, nonzero HF
return from the sea with vertical polarization at grazing although
exact theories predict zero backscatter?” A pulse-limited radar
cell is not of infinite extent. One can analyze the return as seen
above in terms of the interplay between propagation and scatter.
First, propagate the energy from the radar to the cell being ob-
served, defined by the effective pulse width and the azimuthal
beamwidth. The energy at the cell depends on the “propaga-
tion factor” over the medium between the radar and the cell. If
plane waves adequately describe the propagation, then the sum
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of the direct and reflected rays is the propagation factor and
this will cancel, exhibiting the behavior discussed in the pre-
vious section. Radiation from a dipole source (i.e., a simple an-
tenna) near grazing, however, as originally derived by Sommer-
feld [12] can be expressed in terms of a “Norton surface wave”
[13]. At grazing, its unique propagation factor must replace the
free-space factor derived above. This heuristic suggestion is dis-
cussed by Barrick in greater detail [9], [11] and was rigorously
justified by the compensation theorem of Monteath [14] in [11].
Our purpose here is to elucidate the rationale rather than review
the more rigorous justification.
At grazing above any mean planar interface, the Norton prop-

agation factor for radiation from an antenna, replacing the plane
wave propagation factor we called in Section III, is unity from
the near-field zone, out to a point called the “numerical dis-
tance,” e.g., Wait [1]. The near-field distance, , for a dipole is
defined from , while the numerical distance is defined
from , where is the radio wavenumber and is
the effective normalized impedance of our surface. Hence, for
sea-type surfaces where is small, the numerical distance can
extend out tens of kilometers at low HF. Within this distance
from the radar antenna, therefore, the total field reaching the
radar cell is not zero as predicted by plane wave analysis, even
though the incidence angle may be exactly grazing; the verti-
cally polarized sea echo return is, therefore, finite and, in fact,
generally strong. Beyond the numerical distance, the Norton at-
tenuation factor asymptotically approaches , which
means one-way field strength decreases with distance from the
source as .
In reality, for the sea at HF, earth curvature and diffraction be-

yond the horizon are more relevant than the flat-plane formulas
above; see Wait [1] or Barrick [3]. The close-in behavior is sim-
ilar, however, with out to 20–30 km at 10MHz over the
sea. Beyond this point, the propagation factor is given in terms
of a residue series obtained from an asymptotic evaluation of the
Watson transform result for dipole radiation above a sphere [1].
Although we have focused on propagation from the radar to

the cell, there is an analogous factor involved in scatter from
the cell back to the receiver. If transmitter and receiver are colo-
cated (a backscatter geometry), the two factors are identical and
the radar equation for power contains the factor ; see [9] for
further discussion.

V. GRAZING REGION AT A ROUGH DIRICHLET BOUNDARY

For comparison and completeness, we include analogous re-
sults for horizontal polarization at a slightly rough perfectly con-
ducting 1-D surface: the Dirichlet boundary. The classic Rice
results discussed in the Introduction do not have difficulties for
this case since the reflection coefficient is well behaved near
grazing, tending to 1. Just as with our definition of surface
impedance from the vertical reflection coefficient (10), we de-
fine an effective normalized surface admittance in terms of
the horizontal reflection coefficient

which leads to

(26)

Fitzgerald [16] invoked results of phase perturbation theory
developed by Maradudin [17], [18] to work with the reflectivity
for horizontal polarization forom a 1-D Dirichlet boundary as
modified by slight roughness. We generalize Fitzgerald’s [16,
eq. (3)] for the reflectivity, which is the absolute square of our
complex reflection coefficient (26), i.e., her is our

(27)

where is the radio wavenumber defined in terms of
the radian frequency and the speed of light . Her integral,
therefore, was the second term above, but multiplied by four
instead of two and integrated over its real region, i.e.,

.
Substituting (25) above into (24), one simplifies by noting

that for any perfectly conducting Dirichlet surface
in the limit of vanishing roughness. This implies that is very
large. Because for small , one therefore obtains

(28)

where the right side (taken in the grazing limit ) should
be compared to the right side of (22) for surface impedance of a
rough Neumann boundary. The counterpart here to the discrete
Fourier series on the left of (22) is

(29)

Note that in the absence of roughness, the above equations
give , or , which is the correct admittance for a
flat Dirichlet (perfectly conducting) plane. We use the previous
sinusoidal profile of Section III as an example and calculate the
grazing-angle dependence of the roughness-caused admittance,
obtaining at grazing and

at . Thus, like the impedance,
the admittance is nearly constant in the region near grazing, ex-
hibiting very little dependence on due to roughness. Because
is large in terms of unity, however, the corresponding reflec-

tion coefficient from (24) changes very little from in this
region, and exhibits none of the “Brewster-angle” type behavior
seen with the other polarization (Fig. 1). The latter, nonmono-
tonic behavior of the reflection coefficient is a consequency of
an impedance—or admittance—being less than unity.
One can now contrast the behavior of backscatter vs. po-

larization at a highly conducting surface for plane wave inci-
dence by examining (24). For slightly rough Dirichlet bound-
aries, is sufficiently large so the center factor is replaced by
, cancelling the dominance in the denominators of the

surrounding factors. Thus the limiting dependence near grazing
for horizontal polarization becomes

(30)
and the scatter polarization ratio is . This
is valid only for plane wave incidence, i.e., where propagation
to and from the scatter region does not follow surface-wave ra-
diation laws from dipole sources, as discussed earlier.
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VI. CONCLUSION

When a plane wave is incident on a rough Neumann
boundary of infinite extent, the general treatment of Barrick
[9] shows that the scattered power decreases as the square of
both the scatter and incidence angles, as either of these angles
approaches grazing. “Classic” perturbation theory does not
predict this behavior. In this paper, we have reformulated a
perturbation approach that obtains closed-form solutions for
scatter exhibiting the proper grazing angle behavior. Closer
inspection reveals that these solutions (to first order) are identi-
cally the “classic” solutions divided by the effective normalized
impedance of the roughened boundary (12) or (22).
The physical interpretation of this inverse dependence on

impedance is illuminating. The sum of the incident and the
specularly reflected plane waves—the reflection coefficient
for the latter being defined in terms of the effective surface
impedance—reduces to in the grazing limit for points
on the surface. Hence, the appearance of (referred
to as the propagation factor with respect to free-space) in our
grazing perturbation result for scatter means that both the sum
of the incident and reflected plane waves (the “space wave”
component), as well as the scattered fields, must vanish as
incidence angle . This also supports the explanation for
why vertically polarized sea echo from a finite-sized radar cell
approaches a nonzero constant when we deal with radiation
and reception from antennas (e.g., vertical dipoles) near the
surface. One must interpret propagation to and from the surface
scattering cell separately from scatter, and employ a factor F
appropriate to dipole radiation, rather than assuming plane
waves incident from infinity.
The transition between the two perturbation regions occurs at

the pseudo Brewster angle for the rough Neumann boundary,
i.e., the angle where the specular reflection has a minimum.
This angle is equal to the arcsine of the real part of . Well
above this angle, the “classic” perturbation results are valid, pre-
dicting nearly constant behavior with incidence angle. Below
this angle, all scattered field amplitudes vanish in direct propor-
tion to incidence angle . It is noteworthy that both “classic”
perturbation and our new grazing-limit perturbation solutions
both give exactly the same result for the effective normalized
surface impedance , as expressed in (12) and (22), which is also
identical to that of Feynberg [4]. Hence, this perturbation result
can be used everywhere: above, within, and below the transition
zone. This effective impedance, due solely to the roughness, is
well behaved, approaching a constant in the grazing limit. It ex-
hibits none of the rapid Brewster-angle type variation in this
region, as seen from our general equations and specific surface
example. Hence, it is the natural link between scatter and prop-
agation near grazing.
Horizontal polarization at a Dirichlet boundary introduces an

admittance that is the counterpart of the impedance, decreasing
from infinity at a smooth interface to a finite but large value
when slight roughness is present. Both it and the specular re-
flection coefficient are nearly constant with angle near grazing.
Classic perturbation methods and results for propagation and
scatter, therefore, experience no difficulties in this case.
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