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Abstract—Extraction of wave-height directional spectral information
from high-frequency (HF) radar sea echo requires the use of hydrody-
namic and electromagnetic second-order coupling coefficients obtained
from a perturbational expansion of the nonlinear boundary conditions at
the ocean surface. To present, the hydrodynamic coupling coefficient
derived for deep water has been given. Since most coastal HF radar
observations are made in water shallow compared with the dominant
ocean wavelength, that solution has proven inadequate for those
applications. This paper derives the more general expression for water of
arbitrary depth, and demonstrates its validity against measured data. The
hydrodynamic contribution increases in importance as waves of constant
energy move into shallow water. The use of these results for interpreta-
tion of both narrow-beam and CODAR data is discussed.

1. INTRODUCTION

HE potential of high-frequency (HF) radars for the

measurement of sea state has been recognized since
Crombie [1] experimentally observed the unique Doppler
spectral signature of the sea echo. Barrick [2]-[4] derived
theoretical expressions that explained these observed features
quantitatively in terms of the ocean wave-height directional
spectrum. To first order, the two dominant peaks in the
spectrum are produced by Bragg scatter from the wave
spectral components half the radar wavelength, traveling
toward and away from the radar. At upper HF, these first-
order peaks originate from short surface gravity waves (5-
15 m long, with periods between 1.8 and 3.0 s); such waves
are not the essence of ‘‘sea state,”’ where observers (for
design, safety, and operational purposes) are generally con-
cerned with waves having periods greater than 5 s. While it is
conceptually possible to lower frequency in order to observe
the wave-height directional spectrum in its significant region,
this is quite impractical due to heavy radio spectral usage and
severe hardware constraints (e.g., huge antenna sizes, the
requirement of sweeping frequency over decades of band-
width, absolute system gain and path loss knowledge at each
frequency, etc.). Consequently, this dominant first-order echo
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has not proven useful for practical sea-state monitoring,
although it is used successfully for mapping of surface currents
with such radars [5]-[9].

Surrounding the first-order peaks in the echo spectrum are
higher order peaks that are well above the noise; theoretical
expressions for the nonlinear electromagnetic and hydrody-
namic boundary conditions at the ocean surface [3], [4] based
on their second-order perturbational solutions explain this
echo structure. These integral solutions for the echo spectrum
contain the wave-height directional spectrum. The kernel of
the integrand is the “‘coupling coefficient,”’ which is the sum
of the electromagnetic and hydrodynamic perturbational solu-
tions to the surface boundary conditions. Both terms are
presented by Barrick [3], [4]. The hydrodynamic coefficient
for deep water gravity waves with wave vectors k, k' is
derived in Weber and Barrick [10], [11]. The method used is
identical to that pioneered by Hasselmann [12] and others for
study of energy transfer due to nonlinear wave-wave interac-
tions. These expressions for second-order sea scatter have
been used successfully by Lipa to invert the HF radar return to
obtain the ocean wave-height directional spectrum for both
narrow-beamed antenna configurations [13]-[16], as well as
echo from the more compact broad-beamed systems known as
CODAR’s [17]-[20]. Because the echo spectral resolution
must be high in order to extract detailed wave spectral
information, success can be consistently assured only for
radars operating in a ‘‘ground-wave’’ mode (i.e., propagation
near the surface in contrast to ‘‘skywave,”’ or reflection from
the ionosphere), where propagation path temporal variations
do not distort the signal.

Most coastal ground-wave radar systems observe wave
scatter in shallow water over the continental shelf, i.e., water
whose depth is less than the dominant ocean wavelength to be
extracted. Consequently, the methods discussed above will not
work for this typical coastal situation. Although the electro-
magnetic coupling coefficient remains the same, the hydrody-
namic does not, because the bottom boundary now becomes
important in the perturbational solutions. The above analyses
of second-order HF Doppler spectra show that the hydrody-
namic contribution dominates for deep water (the electromag-
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netic term cannot be neglected, however, because it yields
directional information); energy-transfer studies [21] further
indicate that nonlinear wave-wave contributions increase in
shallow water. Consequently, having the correct hydrody-
namic coupling coefficient is critical for extracting sea state
from shallow-water measurements. We derive this coefficient
in the next section. In Section III we show HF radar
measurements in shaliow water that confirm the validity of the
expression. The last section then discusses the general
problem of inverting the HF echo spectrum observed over a
varying depth ocean, as is the case for broad-bcam CODAR’s.

II. DERIVATION

The expression for the averaged normalized HF radar
backscatter spectrum for vertically polarized second-order sea
echo as a function of radian Doppler shift w” from the carrier
frequency (radar cross section per unit mean surface arca per
radians per second) is [3]

o =2ko, w")=2%7k5

mm° e x|

: H [T 2S(mk)S(m k" )o(w” —mw—m'w') dp dg (1)

where the integration variables p and ¢ are spatial wavenum-
bers with p aligned with the direction of the radar wave vector
ko, defined by the sccond-order Bragg constraint — 2k, = k
+k"ask = —(ko —p, —q)and k’ = —(ky + p, g). The
“factor 6(x) is the Dirac-delta function of argument x. The total
coupling coefficient I'y = T'y + I'gy includes hydrodynamic
(H) and electromagnetic (EM) contributions obtained from
perturbation theory to second order. The wave vectors k and
k' are understood to represent the two sets of waves
interacting at second order in the radar scattering cell, i.c., at
whatever that water depth ¢ might be. The electromagnetic
coupling coefficient, in terms of k, k’, given in [3] and [4].
remains the same versus water depth; the hydrodynamic does
not, and will be derived here for arbitrary depth d. The first-
order radian temporal frequencies w and w’ will also be related
to wave vectors k, k' for water depth subsequently.

In a manner similar to [10], we express the rough water
surface height at horizontal position r = (x, y) and time ¢ as a
spatial-temporal Fourier series, where height coefficients
H(k, w) are indexed over integer multiples of arbitrary
fundamental spatial and temporal frequencies K, K,, W as k
= (mK,, nK,) and w = ¢W:

n(r, )= H(k, w) exp [i(k * r—wt)] (2)

Ko

where the Fourier coefficient for the surface height can be
expressed in terms of its first- and second-order contributions
as H(k, w) = HO(k, w) + H®(k, w) + ---. The second-
order coefficient will be shown to have the form

H(il(k") w"): E E FH(k. w, kf; w’)H“}(k’ w)
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where the coupling coefficient I'y is the same as that required
in (1). The factors & are Kronecker deltas, being unity when
subscripts equal superscripts and zero otherwise. In addition,

_we usc the fact that water velocities v in the ocean can be

expressed in terms of a velocity potential ¢ that satisfies
Laplace’s equation because on wave scales the water is
incompressible and irrotational, i.e.,

Voulr g, ) = Vi(r, z, 1)=0 (4)

having a general solution expressible in a form similar to (2) as

elr, z, )=, [®,(k, w)e*+D_(k, w)e *)

ko

sexp [itk + r—wi) (5)
where z is vertical distance (measured upward). For infinitely
deep water (z — —o0), the constraint of a finite solution
demands that the second term be zero: for finite depth. both
¢ . and ¢ _ arc unknown coefficients to be determined to both
first and second order (i.e., ., = @ + &P + ---) as well
as H®, in terms of the first-order wave-height coefficient
H,

The boundary conditions include first the requirement that
velocity normal to the bottom be zero, i.e.,

Velew ~a=089/32], -4=0. 6)

This allows us immediately to express ¢ . and ® _ interms of a
single ¢ (to 2ll orders) so that (5) becomes

o(r, 2, 1)=Y, ¥k, w)fek(z+d _g-kiz+d)

ko

sexp [i(k - r=wit)]. (D
The Navier-Stokes equation (coming from conservation of
momentum) at the surface is

[0p/81+(1/2)Vp - Vol..,= —gn (8)

where g is the acceleration of gravity, and the pressure above
the free surface is zero. The second boundary condition is the
kinematic constraint that a fluid particle at the surface remain
on the surface, i.c.,

[09/02];.,=00/81+Vy - [Vel..,. 9)

At this point we substitute (2) and (7) into the boundary
conditions (8) and (9). We employ the perturbational ordering
of Has HV + H®, and ® as @V + ¢, In addition to this
ordering, we take the quantities k% and &'y to be ordering
parameters, i.e., small compared to unity; for a single periodic
wave train, they are waveslopes that have been used in classic
Stokes analyses of higher order wawve profiles. Finally, we
expand all exponentials involving the above parameters into
their series form, and retain terms through second order to



312

obtain

Y, = 2ie[@W(k, w)+2D(k, w)] [cosh (kd)

ko

+sinh (kd)k Z HO(E', w') « exp [ilk’ - r—w’t)]]
- exp [i(k - .:-—m)]+% S S [4kk” sinh (kd)

bt
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(1)

Since these are Fourier series in space and time (r, £}, we
climinate these variables to obtain equations in the Fourier
coefficients. This is done by multiplying by exp [i(k” r —
w”f)] and integrating over the fundamental spatial and
temporal periods of the series. When we separate out and
equate the first-order terms, we arrive at the following
equations

—2iw"®D(k"”, w") cosh (k"d)= —gHO(k", o"
2k"®0(k”, w”) sinh (k”d)= —iw HO(k", o"). (12)

Dividing the second by the first gives the shallow-water
dispersion relation

w”*=gk” tanh (k”d). (13)

We now follow the same procedure for the second-order
terms; rather than eliminating one of the sets of spatial-
temporal wavenumbers, we carry both (k, w, k', »’) along,
expressing their relationship with k”, w” through Kronecker
deltas. Also, we use (12) and (13) to eliminate the first-order
velocity potential coefficient, to obtain the following two
equations involving the second-order wave height and velocity
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potential coefficients:

~2i0"®@(k”, ") cosh (k"d)+gHO(k", )+ T

ko k'w'
1 =
; [_wZHE we'(1—k - k' coth (kd) coth (k'd)}]

2 H(l)(k, w}H(I}(kr" w,)ﬁi;k 6:1’& =0

(14)
and
2k7®O(k”, w") sinh (kK"d)—iw” HO(k", w”)
. gh* gk - k’]
+ -
TP
. 5 k+k! L|J+UJ’
- HOYE, o) HYE', w YW, & » =0. (15)

Second-order velocity potential ®®(k”, w”) is now elimi-
nated from these equations to obtain a single equation for the
second-order wave-height coefficient H® (k" , w”). Next, we
perform mathematical manipulations to make the summations
symmetric in k, w, and k', w’. This is done by redefining
summation indices; e.g., if f(k, &’) is a term in the double
series that is no# symmetric in k, k’, we can make the series
symmetric by using the fact that

> S Sk, k8
k&

=3 3 AL G, k)R, 12855

k

Finally, we add and subtract the same terms in order to cast the
result for H® in the form of (3), where the coupling
coefficient resembles that derived in [10] for deep water,
obtaining

PH{ks w, k’s w’)
1
=3 {k tanh (kd)+ k' tanh (k'd)

kk' tanh (kd) tarh (k'd)—k - k'
+&

ww’

[jk” tanh (k”d}-i—w"z]
k” tanh (k"d)—w""
w”[w? csch (kd)+w’’ csch (k’d)}/g} (16)
gk” tanh (k'd)—w"’

where we understand the first-order dispersion relations
between w, k and w’, k', i.e.,

w? =gk tanh (kd)
and
w' =gk’ tanh (k’d)

but no such relationship exists between second-order
wavenumbers k”, w” . The latter obey the constraints given by
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the Kronecker deltas in (3), i.e.,
k" =k+k’
and
w' =wto’.
It is obvious that this coupling coefficient reduces to that for

deep water given in [3], and [10]:

Tiilks o, k% 6?) =
d

kk' =k - k' (gk” +w"’
[k+k'+g : (j £ 2)] a7
i) k’n‘_wﬂ

[II. EXPERIMENTAL VALIDATION

b | -

To test the formula for the shallow-water coupling coeffi-
cient (16) we use measurements made by a CODAR system at
Pescadero in 1978. The experimental situation is illustrated in
Fig. 1. The CODAR receiving antenna consists of two crossed
loops and a monopole, signals from which are combined to
extract directional information. Radar measurements were
obtained in 1.2-km range cells to distances of 20 km. On
January 19, the dominant ocean waves consisted of 16-s swell
from the west, which was observed both by radar and a
Scripps pitch-and-roll buoy [18]. Such long ocean waves are
effectively in shallow water as they move through the CODAR
coverage area. Fig. 2 shows the narrow-beam coupling
coefficient (16) plotted as a function of water depth for 16-s
waves moving directly along the radar beam for a frequency of
25.4 MHz, normalized to that for deep water (17).

We now describe an experimental verification of the
shallow-water results for the broad-beamed CODAR measure-
ments, based on data from the omnidirectional monopole
antenna. Equation (1) shows that the narrow-beam second-
order radar cross section in shallow water is expressed as a
two-dimensional integral, whose integrand contains the coup-
ling coefficient as a multiplicative factor. Due to the growing
value of the coupling coefficient with decreasing water depth,
illustrated theoretically in Fig. 2, the second-order portion of
the radar Doppler spectrum will increase in magnitude as the
waves move into shallower water, i.e., as radar range
decreases. In contrast, the first-order spectral magnitude,
which is due to scatter from short ocean waves (i.e., 2-s period
for 25.4-MHz radar frequency), remains unchanged for water
depth greater than 2 m. The total sea-echo spectrum measured
by the monopole is the integral over azimuth angle of the
narrow-beam radar cross section, and as the depth decreases
over the close-in range cells (Fig. 1), the second-order echo
spectrum increases relative to the first. This was observed at
Pescadero and is shown in Fig. 3 for the monopole signals. To
perform a quantitative test, we form two estimates—experimen-
tal and theoretical—of the ratio of the energy in the
dominant second-order peak to that in the neighboring first-
order peak at each range. The first is obtained directly from
the measured radar spectrum; the normalization removes
unknown path losses and system effects. The second is
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Fig. 1. The experimental configuration during the Pescadero experiment,
showing the CODAR position, the 1.2-km range cells, the depth contours,
and the position of the Scripps pitch-and-roll buoy.
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Fig. 2. The ratio of the hydrodynamic coupling coefficient in shallow water
(16) to that ir deep water (17) for a 16-s occan wave along the radar beam
for a radar frequency of 25.4 MHz.

obtained from the theoretical formulation, substituting the
wave-height directional spectrum measured by the buoy, and
integrating over azimuth angle. Hence, the coupling coefficient
and wave-directional spectrum are both evaluated in the
angular integration as a function of the actual depth within
each range cell. (More detail of this process is given in the
next section.) Results are shown in Fig. 4. The agrecement
between theory and experiment over a fairly large magnitude
span therefore demonstrates the validity of the shallow-water
coupling coefficient (16) derived here, as well as the methods
used to calculate the shallow-water wave spectrum based on its
deep-water value.
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Fig. 3. The Doppler spectrum for the CODAR monopole from different
range cells on January 19, 1978, at 14:38 Pacific standard time, showing
the increasing magnitude of the second-order energy with respect to the
first, for different range cells;  is the water depth maximum in the given
range cell.

Second-Order/First-Order Energy in Peak
~
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Fig. 4.  An experimental test of the shallow-water formulation: the ratio of
the second-order energy to the first. 0—CODAR monopole spectrum at
14:38 PST; x—CODAR monopole spectrum at 15:08 PST. Solid line is the
model based on exact water depth and the following buoy-measured wave-
height spectral model: swell of 115-cm rms height; period 16 s; direction
270°T.

IV. APPLICATION AND DISCUSSION

The coupling coefficient required for interpretation and
inversion of second-order HF Doppler radar spectra of sea
echo is obtained from the nonlinear boundary conditions at the
ocean surface and bottom. The hydrodynamic contribution is
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sensitive to depth, being significant in deep water, but
increasing further in its importance for the same wave
spectrum as it moves into shallow water. This was derived
theoretically here and confirmed by measurements; it is also
consistent with the increase of energy transfer for shallow
water theoretically suggested in the work by Herterich and
Hasselmann [21] due to nonlinear wave-wave interactions.
Improper use of the deep-water coefficient in the inversion of
HF radar echo in shallow water will result in underprediction
of wave energy. One cannot employ this or eny known
coefficient in extremely shallow water, where other physical
processes ignored here become dominant; e.g., shoaling in the
surf zone, bottom percolation, etc. A good rule of thumb that
has been followed [22] is that these methods and the shallow-
water dispersion relation can be used in water whose depth
exceeds 1/20 the dominant wavelength on deep water.

The interpretation of narrow-beam radar results [20] as-
sumes a radar cell whose angular width is small (e.g., < 10°).
It also assumes that the cell spatial dimensions are sufficiently
small in terms of horizontal depth variations that the wavefield
within the cell does not change statistically from point to point.
In this event, one can use the deep-water methods for
inversion of second-order Doppler spectra with confidence in
shallow water by a) substituting the shallow-water hydrody-
namic coupling coefficient derived here for the deep-water
value; and b) employing the shallow-water dispersion relation
(13) everywhere it occurs, e.g., in the electromagnetic
coupling coefficient, in the Dirac-delta function constraint,
etc.

Interpretation of CODAR data in coastal situations for wave
extraction is generally more complex [20]. A radar cell for a
given antenna clement has an angular span that can be as great
as 180°, i.e., a semicircle bounded by the coastline. The water
depth in such a cell will typically range from very shallow at
its edges, to deep straight out from shore. Hence, the radar
measurements are made over varying depth; the formulation
for the second-order echo must contain depth, i.e., be a
function of position. With the assumption of onshore wave
fields that would have been homogeneous in the CODAR
coverage area (e.g., < 20-km radius) had the water been
everywhere deep, the general software approach we have used
successfully a) stores the depth in the coverage area versus
position; b) allows the coupling coefficient to change with
position according to water depth; ¢) allows the dispersion
relation to vary in this manner also; and d) uses Snell’s law for
wave refraction to relate angular changes in wave energy to
depth (i.e., ray tracing), which is valid for the situations to
which the methods employed in this paper apply. Hence, we
express the shallow-water spectrum in the integrand of (1) at
each point within the measurement area in terms of the deep-
water spectrum,; the latter is then determined through inversion
of the integral equation. The wave-height directional spectrum
at any desired point in shallow water can be determined by
Snell’s law, and the dispersion relation from the deep-water
spectrum. The software inversion for each shallow-water
coastal CODAR location is therefore site specific, in the sense
that the required depth-contour arrays pertain to that site.
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