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Summary. Motivated by segmentation issues in studies of sea current circulation, we describe
a hidden Markov random field for the analysis of spatial cylindrical data, i.e. bivariate spatial
series of angles and intensities.The model is based on a mixture of cylindrical densities, whose
parameters vary across space according to a latent Markov field. It enables segmentation of
the data within a finite number of latent classes that represent the conditional distributions of
the data under specific environmental conditions, simultaneously accounting for unobserved
heterogeneity and spatial auto-correlation. Further, it parsimoniously accommodates specific
features of environmental cylindrical data, such as circular–linear correlation, multimodality and
skewness. Because of the numerical intractability of the likelihood function, estimation of the
parameters is based on composite likelihood methods and essentially reduces to a computa-
tionally efficient expectation–maximization algorithm that iteratively alternates the maximization
of a weighted composite likelihood function with weights updating. These methods are tested
on simulations and exploited to segment the sea surface of the Gulf of Naples by means of
meaningful circulation regimes.

Keywords: Abe–Ley density; Composite likelihood; EM algorithm; Gulf of Naples; Hidden
Markov random field; Marine currents

1. Introduction

Detailed knowledge of coastal currents is crucial for valid integrated coastal zone manage-
ment, as well as for applications in case of pollution events and in search-and-rescue op-
erations at sea. Among the various available ocean observing technologies, high frequency
radars (HFRs) have unique characteristics that make them play a key role in coastal ob-
servatories (Bellomo et al., 2015; Falco et al., 2016). As land-based remote sensing instru-
ments, these state of the art devices provide synoptic maps of surface current fields at high
spatial resolution. For this reason, following the example of the US ocean observing system
(https://ioos.noaa.gov/project/hf-radar/), HFR networks are becoming an en-
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vironmental priority everywhere and their number is quickly increasing (Rubio et al. (2017),
and references therein).

HFR data can be conveniently described as bivariate spatial series of angles and intensities
that respectively indicate the direction and the speed of the current at every point of a spatial
lattice, which partitions the area of interest according to a specific resolution. Spatial series with
a mixed circular–linear support are often referred to as cylindrical spatial series (Abe and Ley,
2016), because the pair of an angle and an intensity can be represented as a point on a cylinder.
The statistical analysis of cylindrical spatial series is complicated by the unconventional topol-
ogy of the cylinder and by the difficulties in modelling the cross-correlations between angular
and linear measurements across space. Additional complications arise from the skewness and
the multimodality of the marginal distributions of the data. Indeed, intensities are typically
negatively skewed and directional data are rarely symmetric; multimodality may arise as well as
the data often being observed under heterogeneous, space varying conditions.

HFR data are not the only example of cylindrical spatial series. In environmental studies,
additional examples include spatial series of either wind speed and direction (Modlin et al.,
2012) or height and direction of ocean waves (Wang and Gelfand, 2014; Wang et al., 2015).
Spatial cylindrical data arise also in medical imaging (Abraham et al., 2013; Klauenberg and
Lagona, 2007) and in ecological studies of telemetry data of animal movement (Hanks et al.,
2015). Despite their popularity, though, specific methods for the analysis of spatial cylindrical
data have been relatively unexplored. Proposals in this context are limited to Bayesian hierar-
chical models, which require specific assumptions on the prior distribution of the parameters of
interest and ad hoc Markov chain Monte Carlo algorithms to compute the posterior distribution
of the parameters. For example, in a study of hurricane winds, Modlin et al. (2012) proposed
a Bayesian hierarchical model, specified by combining a circular conditional auto-regressive
model for hurricane wind direction, based on the wrapped circular distribution, and a spatial
Gaussian auto-regressive model for the logarithm of hurricane wind speed. In a study of the
output of a deterministic model of sea motion, Wang et al. (2015) integrated a Gaussian con-
ditional distribution of wave height given wave direction and a Bayesian geostatistical model
for wave direction, by exploiting a projected normal spatial process. These approaches were
motivated by specific issues that respectively arise in the analysis of hurricane winds, character-
ized by inward spiralling winds that rotate about a zone of low pressure, and in the analysis of
smooth deterministic circulation outputs of numerical models, computed across a broad area
of interest.

Sea motion in coastal areas provides, however, a different setting. Coastal currents are shaped
and constrained by the orography of the site. As a result, coastal circulation is much more ir-
regular than hurricane-type patterns and it is inaccurately represented by traditional numerical
models, which do not incorporate orographic information and work well in the open sea. The
development of a physical model that well represents sea motion in coastal areas can be a
formidable task if the orography of the site is irregular. A more practical approach relies on
decomposing an observed circulation pattern into a small number of local regimes whose in-
terpretation is easier than the global pattern. Previous work in this direction has been done by
exploiting methods that are based on empirical orthogonal function analysis (Buffoni et al.,
1997; Lillibridge and Mariano, 2013), which extracts the principal components of the circula-
tion data. This approach does not account for the cylindrical nature of the data and provides
principal components that are often difficult to interpret.

In this paper we propose an alternative approach that accounts for the cylindrical nature of the
data and enables interpretable segmentation. Specifically, we assume that the joint distribution of
the data is well approximated by a mixture of a small number of cylindrical densities, with space
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varying parameters that are driven by a latent spatial process. In particular, we approximate
the data distribution with a mixture of Abe–Ley cylindrical densities, whose parameters vary
across space according to a Potts model. In its simplest version, the Potts model is a one-
parameter Markov random field (MRF), i.e. a multinomial process in discrete space which
fulfils a spatial Markovian property (Guyon, 1995). It segments an area of interest according
to an interaction parameter that captures the correlation between adjacent observations and
controls the smoothness of the segmentation. The Abe–Ley density (Abe and Ley, 2016) is a five-
parameter bivariate density on the cylinder. It parsimoniously accommodates correlated and
skew cylindrical data by means of parameters that can be easily interpreted in terms of traditional
concepts such as location, shape, scale, skewness and concentration. A mixture of Abe–Ley
densities therefore provides a flexible distributional extension to allow for multimodal cylindrical
data. By assuming that the mixture parameters vary according to the segmentation provided by
a Potts MRF, we obtain a cylindrical hidden MRF (HMRF) that provides a further extension to
capture unobserved spatial heterogeneity and, simultaneously, to allow for spatial correlation.

HMRFs are popular models in spatial statistics, since the seminal papers by Besag (Besag,
1975, 1977). They can be seen as a spatial extension of the hidden Markov models that are
exploited in time series analysis. Hidden Markov models have recently been proposed for the
analysis of cylindrical time series (Lagona et al., 2015). Furthermore, a cylindrical HMRF has
been exploited in a study of HFR data in the northern Adriatic sea (Lagona and Picone, 2016).
However, the use of cylindrical HMRFs is limited by the intractability of the likelihood function.
Lagona and Picone (2016) adapted a mean field approximation for Gaussian HMRFs (Celeux
et al., 2003) to the cylindrical setting and developed a computationally intensive expectation–
maximization (EM) algorithm. Unfortunately, however, the method is numerically unstable and
little is known about the distributional properties of the estimators.

In this paper, we take a composite likelihood (CL) approach to estimate a cylindrical HMRF.
CL methods have been proved to be a good solution to balance statistical and computational
efficiency in many fields (Varin et al., 2011; Lindsay, 1988). The underlying naive idea dates back
to the pseudolikelihoods of Besag (1974) and the partial likelihood of Cox (1975). The CLs are
typically constructed by adding individual component likelihoods, each of which corresponds
to a marginal or conditional event (Lindsay, 1988; Varin et al., 2011). This strategy, on one
hand, provides feasible and fast estimation methods. On the other hand, some dependence
between observations is lost, resulting in a loss of statistical efficiency, but consistency of the
CL estimators still holds under regularity conditions (Molenberghs and Verbeke, 2005). Under
these conditions, furthermore, CL estimators are asymptotically normal with covariance matrix
given by the inverse of a sandwich matrix, known as Godambe information (Godambe, 1960)
rather than the usual Fisher information matrix for maximum likelihood estimators. In addition,
CL-based methods have some further desirable properties: they are robust estimation methods
(Xu and Reid, 2011) and their estimators are fully efficient and identical to the maximum
likelihood estimators in exponential families under a certain closure property (Mardia et al.,
2009). Recent applications of CL methods to spatial and space–time data include the work by
Okabayashi et al. (2011) and Eidsvik et al. (2014) respectively.

The rest of the paper is organized as follows. Section 2 briefly describes the two spatial
series that we use for illustrating the methods proposed. Section 3 summarizes the structure of
the proposed cylindrical HMRF and Section 4 illustrates the CL methods that we suggest for
estimation. In Section 5 we discuss the main output of the simulations that have been carried out
to examine the distributional properties of the estimation method; further results are included in
the on-line appendix. Section 6 is devoted to the results that have been obtained by the proposed
methods on real data. Section 7 finally summarizes relevant points of discussion.
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2. Marine currents in the Gulf of Naples

The Gulf of Naples is a semienclosed marginal basin of the central Tyrrhenian Sea (Mediter-
ranean Sea; see Cianelli et al. (2012) for an overview). It is a coastal area characterized by
striking environmental contrasts: one of the most intensely urbanized coastlines in the whole
Mediterranean, with massive industrial settlements, the very polluted Sarno river mouth, a
number of distributed sewage outlets, coexisting with the extremely scenic coastal landscapes of
the Sorrento Peninsula, of the Islands of Capri, Procida and Ischia and with unique underwater
archaeological treasures (e.g. Baiae and Gaiola). For this reason, the Gulf of Naples has been
subject to intense monitoring of its meteorological and oceanographic conditions and, more
generally, of the status of its marine ecosystem. In particular, starting in 2004 an HFR system
has been installed along its coastline, consisting first of two, and from 2008 of three, transceiving
antennas operating at 25 MHz, providing hourly data of the surface current field at 1-km2 hor-
izontal resolution. Such a system has shed light on very rich, multiple-scale surface dynamics
and on the mechanisms driving water renewal of individual subbasins of the gulf (Menna et al.,
2007; Uttieri et al., 2011; Cianelli et al., 2015). Moreover, these data have been exploited in
numerical models to enhance their predictive skills through state of the art assimilation schemes
(Iermano et al., 2016).

The functioning principle of HFRs is based on resonant backscatter, resulting from coherent
reflection of a transmitted electromagnetic wave by ocean surface waves whose wavelength is
half of the transmitted electromagnetic wavelength. This effect, modulated by the dual Doppler
shift that is associated with the wave motion and with the presence of an underlying velocity
field, enables measurement of the latter. As a result, every station can provide only the radial
component of the surface currents with respect to the antenna location. Two, at least, or even
better more stations (to ensure better statistics, to minimize gaps due to physical obstacles or to
electromagnetic disturbances, to lower geometric dilution of precision) are needed to combine
the radial information to obtain a current vector field.

A vector map (or field) decomposes the current’s field into the u- and v-components (Carte-
sian representation) of the sea surface at each observation point of a spatial lattice, where u

corresponds to the west–east and v to the south–north current component. Joint modelling of u

and v is, however, typically complicated by cross-correlations that vary dramatically in different
parts of the spatial domain (Reich and Fuentes, 2007). We therefore model sea current fields by
using polar co-ordinates. Specifically, the observed current field is represented as a cylindrical
spatial series, obtained by computing for each observation site the speed y=√

.u2 +v2/∈ .0, ∞/

of the current (metres per second) and the direction x= tan 2−1{.u, v/}∈ .0, 2π] of the current
(radians), where tan 2−1 is the inverse tangent function with two arguments and x follows the
geographical convention, clockwise from north (0) to east (π=2).

The analysis that is presented in this paper is based on two cylindrical spatial series, which
include current speed and direction across a grid of 300 points, relating to two vector maps
recorded on March 6th at 5 p.m. (field A) and on March 8th at midnight (field B).

These data are shown in Fig. 1 and represent two typical scenarios of current circulation
in the gulf. Field A represents a south-eastward current induced by a large-scale northerly
wind blowing over the central Tyrrhenian Sea. Such a pattern segregates surface waters in the
south-easterly sector of the gulf, preventing exchanges with the Tyrrhenian interior. Field B, in
contrast, represents a more spatially variable current field, associated with easterly winds and
favouring water renewal in the whole southern portion of the gulf.

Fig. 1 displays both the joint distribution of speeds and directions (Figs 1(a) and 1(b)) and
the resulting spatial patterns (Figs 1(c) and 1(d)) for both scenarios. The top scatter plots should
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be interpreted with care by recalling that, for simplicity, the data are plotted on the plane, by
unwrapping their cylindrical domain. Scatter plot interpretation is additionally complicated by
the weak correlation between directions and speeds, the skewness and the multimodality of the
data. Multimodality, weak correlation and skewness are often held responsible for the inaccu-
racy of numerical models in coastal areas such as the Gulf of Naples and they are traditionally
explained as the result of the complex orography of the area. The gulf orography shapes and
constrains the circulation of water, yielding the spatial discontinuities that are clearly shown by
the pictures at the bottom of Fig. 1. This motivates the development of special segmentation
methods, such as the method that we propose, that can detect spatial discontinuities by means
of latent classes, conditionally on which the distribution of the data takes a shape that is easier
to interpret than the shape that is taken by the marginal distribution.

3. A cylindrical hidden Markov random field

The proposed cylindrical HMRF is obtained by hierarchically integrating a parametric MRF
(the Potts model) and a cylindrical density (the Abe–Ley density). We therefore first introduce
the Potts and the Abe–Ley model separately. Then, we describe our proposal as a hierarchical
combination of these two models.

3.1. The Potts model
The Potts model is a multinomial process in discrete space (lattice) with K classes. Given a lattice
that partitions an area of interest according to n observation sites i=1, : : : , n, a sample that is
drawn from a spatial multinomial process is a segmentation of this area, obtained by associating
each site with a segmentation label k =1, : : : , K. Formally, each observation site i is associated
with a multinomial random variable ξi = .ξi1: : : ξik: : : ξiK/ with one trial and K classes, where
ξik is a Bernoulli random variable that is equal to 1 if i is labelled by k and 0 otherwise. A
specific segmentation of the area can be accordingly represented as a sample drawn from the
multinomial process ξ= .ξi, i=1, : : : , n/.

In its simplest form, the Potts model is a special multinomial process which depends on
a single interaction parameter ρ and on a neighbourhood structure among the observation
sites. A neighbourhood structure on S ={1, : : : , i, : : : , n}, say E ⊂S2, is a symmetric and non-
reflexive binary relationship, such that .i, j/ ∈ E ⇒ .j, i/ ∈ E (symmetry) and .i, i/ �∈ E (non-
reflexivity). According to the structure E, each spatial index i is associated with a neighbourhood
N.i/ = {j ∈ S : .i, j/ ∈ E} of adjacent observation points. There are different ways to specify a
spatial neighbourhood structure (Bivand et al. (2008), chapter 9). A viable strategy relies on
defining the neighbours of each site i as the nearest neighbours, according to the Euclidean
distance. Formally, we define N.i/={j ∈S :d.i, j/=dÅ

i }, where dÅ
i =minj �=i d.i, j/, and d.i, j/ is

the Euclidean distance between sites i and j. The structure E can be interpreted as the set of the
edges of an undirected graph with vertices in S. Fig. 2 displays the graphs that are obtained by
the above definition of neighbourhoods in the case of a 10×10 regular grid and in the case-study
that is considered in this paper. A neighbourhood structure is often conveniently specified by
means of an n×n symmetric adjacency matrix C, whose generic entry cij is equal to 1 if .i, j/∈E

and 0 otherwise (diagonal entries cii are all equal to 0, because of the non-reflexivity of E). Under
the Potts model considered, the joint distribution of the segmentation ξ= .ξ1: : :ξn/ is given by

p.ξ/=
exp

{
.ρ=2/

n∑
i=1

∑
j:cij=1

ξT
i ξj

}

W.ρ/
, .1/
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(a)

(b)

Fig. 2. Nearest neighbours adjacency structure for (a) a 10 � 10 regular lattice and for (b) the irregular
lattice of 300 sites that covers the study area of the Gulf of Naples
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where W.ρ/ is the normalizing constant. This model could be extended by introducing an exter-
nal field and assuming that this external component depends on some covariates. Unfortunately,
reliable covariates are not available in our application, and we cannot introduce any kind of prior
information about classes that might be expected.

Computation of W.ρ/ requires special algorithms that are feasible only for small spatial
lattices and whose complexity increases with the number K of latent classes (Bartolucci and
Besag, 2002; Reeves and Pettitt, 2004; Friel and Rue, 2007). This complicates inference under
the Potts model, even in the simple one-parameter form that we consider for segmenting coastal
circulation.

When ρ=0, the Potts model reduces to a sequence of independent multinomial distributions.
Otherwise, the multinomial components of the process are spatially dependent. In particular,
under distribution (1), the univariate conditional distributions

p.ξik =1 |ξ1: : :ξi−1, ξi+1, : : :ξn/=
exp

(
ρξik

∑
j:cij=1

ξjk

)

K∑
k=1

exp
(

ρξik

∑
j:cij=1

ξjk

) .2/

depend only on the observations in the neighbourhood (the spatial Markov property). As a
result, this model is a special one-parameter MRF. When ρ exceeds the critical value ρcrit =
log.1 + √

K/, a phase transition occurs and the realizations of the Potts model tend towards
states in which nearly all the values ξi are the same (Guyon, 1995).

3.2. The Abe–Ley cylindrical density
A cylindrical sample is a pair z= .x, y/, where x∈ [0, 2π/ is a point in the circle and y is a point
on the positive semiline [0, ∞/. Recently, a new density called an Abe–Ley density, has been
proposed by Abe and Ley (2016). It is defined on the cylinder [0, 2π/× [0, ∞/ and it takes the
form

f.x, y/= αβα

2π cosh.κ/
{1+λ sin.x−μ/}yα−1 exp[−.βy/α{1− tanh.κ/ cos.x−μ/}]: .3/

This density has some interesting features. First, the parameters can be easily interpreted: α>0 is
a shape parameter, β >0 is a scale parameter, μ∈ [0, 2π/ is a circular location parameter, κ>0 is a
circular concentration parameter and λ∈ [−1, 1] is a circular skewness parameter. Fig. 3 displays
the shape of the Abe–Ley density considering various values of κ and λ. The parameter κ plays
the role of circular concentration and a circular–linear dependence parameter. Independence
is attained when κ = 0, in which case density (3) becomes the product of the linear Weibull
and the circular cardioid distribution with location μ+π=2 and concentration λ, as depicted in
Figs 3(a)–3(c). Second, the normalizing constant is numerically tractable. Third, the univariate
marginal and conditional distributions exist in closed form. The conditional distribution of the
intensity y given the angular direction x is Weibull with shape α and direction-dependent scale
βx, where βx = β{1 − tanh.κ/ cos.x − μ/}1=α. In contrast, the conditional distribution of the
direction x given the intensity y is a skew von Mises distribution with location parameter μ and
concentration parameter κy, where κy = .βy/α tanh.κ/.

3.3. A hidden Markov random field for cylindrical data
A cylindrical spatial series can be represented as a bivariate series of angles xi and intensities



Segmentation of Sea Current Fields 9

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Contour plots of Abe–Ley cylindrical density over [0, 5/[π=2, 3=2π/ for .α,β,μ/ D .2, 1, 0/ with (a)
.κ,λ/ D .0, 0/ (Weibull and uniform), (b) .κ,λ/ D .0, 0.5/ (Weibull and cardioid), (c) .κ,λ/ D .0, 1/ (Weibull and
cardioid), (d) .κ,λ/D .1, 0/, (e) .κ,λ/D .1, 0.5/, (f) .κ,λ/D .1, 1/, (g) .κ,λ/D .1.5, 0/, (h) .κ,λ/D .1.5, 0.5/ and (i)
.κ,λ/D .1.5, 1/
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yi, observed at n observation points, say z = .zi, i = 1, : : : , n/, zi = .xi, yi/, xi ∈ [0, 2π/ and yi ∈
[0, ∞/. The proposed HMRF is specified by assuming that these cylindrical observations are
conditionally independent, given a segmentation generated by a latent Potts model. Precisely, we
assume that the conditional distribution of the observed process, given the latent segmentation
ξ, takes the form of a product density, say

f.z |ξ;θ/=
n∏

i=1

K∏
k=1

f.zi;θk/ξik , .4/

where the vector θ= .θ1, : : : , θK/ includes K label-specific parameters and f.z;θk/, k=1, : : : , K,
are K Abe–Ley bivariate densities (3). The joint density of the observed data and the unobserved
class memberships is therefore given by

f.z, ξ;θ, ρ/=f.z |ξ;θ/p.ξ;ρ/: .5/

By integrating this distribution with respect to the segmentation ξ, we obtain the likelihood
function of the unknown parameters

L.θ, ρ/=∑
ξ

f.z, ξ;θ, ρ/: .6/

4. Composite-likelihood-based inference

4.1. Expectation–maximization algorithm
Direct maximization of the likelihood function (6) in unfeasible. As a result, we propose to
estimate the parameters by maximizing a surrogate function, namely a composite log-likelihood
function. Our proposal is based on the specification of a cover A of the set S ={1: : : n} of the
observation sites, i.e. a family of (not necessarily disjoint) subsets A ⊆ S such that ∪A∈A = S.
For each subset A, we define

LA.θ, ρ/=∑
ξA

f.zA, ξA;θ, ρ/

as the contribution of the data in A to the CL function, where

f.zA, ξA;θ, ρ/=p.ξA;ρ/
∏
i∈A

K∏
k=1

f.zi;θk/ξik

whereas

p.ξA, ρ/=
exp

{
.ρ=2/

∑
i∈A

∑
j∈A

cijξ
T
i ξj

}

W.ρ/

and, finally,

W.ρ/=∑
ξA

p.ξA;ρ/:

Given a choice of the cover A, we propose to estimate the parameters by maximizing the
composite log-likelihood function

cl.θ, ρ; A/= ∑
A∈A

log{LA.θ, ρ/}: .7/

In particular, we suggest an EM algorithm for maximization, based on the complete-data com-
posite log-likelihood function
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clc.θ, ρ; A/= ∑
A∈A

{clAc .θ/+ clAc .ρ/},

where

clAc .θ/= ∑
i∈A

K∑
k=1

ξik log{f.zi;θk/}

and

clAc .ρ/=∑
ξA

ξA log{p.ξA;ρ/}:

At the .q+1/th iteration of the algorithm, we compute the expected value of the complete-data
composite log-likelihood with respect to the predictive distribution of the segmentation. This
E-step reduces to the computation of the predictive probabilities

ξ̂A =p.ξA | zA, ρ̂q, θ̂q/= p.ξA; ρ̂q/f.zA; θ̂qk/∑
ξA

p.ξA; ρ̂q/f.zA; θ̂qk/
.8/

for each A∈A. Suitable marginalization of expression (8) provides the univariate probabilities
ξ̂i =p.ξi | zA, ρ̂q, θ̂q/, for each i∈A. We then maximize the expected complete-data composite
log-likelihood (M-step). Because this function is the sum of two components that depend on dif-
ferent sets of parameters, the M-step reduces to the separate maximization of the two functions,
namely

Q.θ; A/= ∑
A∈A

∑
i∈A

K∑
k=1

ξ̂ik log{f.zi;θk/}, .9/

Q.ρ; A/= ∑
A∈A

∑
ξA

ξ̂A log{p.ξA;ρ/}: .10/

Maximization of equation (9) can be undertaken by an unconstrained maximization al-
gorithm, after a suitable reparameterization of the parameters involved. Precisely, we max-
imize equation (9) over the parameter vector θk = .θ1k, θ2k, θ3k, θ4k, θ5k/, where θ1k = log.αk/,
θ2k = log.βk/, θ3k = log.κk/, θ4k = tan.μk=2/ and, finally, θ5k = tanh−1.λk/, by exploiting a quasi-
Newton procedure like that provided, for example, by the function optim in R. Maximization
of equation (10) over the domain .0, ρcrit/ can be carried out by a constraint optimization algo-
rithm like that provided by the option L-BFGS-B method of optim.

Both the E- and the M-step of the algorithm proposed involve summations over all the K|A|
possible values that ξA can take. As a result, the numerical tractability of these steps dramatically
decreases with the cardinality of the largest subset of the cover A. On the one side, this would
suggest choosing a cover with many small subsets. On the other side, a cover that includes a
few large subsets is expected to provide a CL function that is a better approximation of the
likelihood function. Because summations over ξA become cumbersome for | A |� 3, a natural
strategy is a cover that includes subsets with two elements. When A includes all the subsets of
two elements, then equation (7) reduces to the pairwise likelihood function (Varin et al., 2011).
In a spatial setting, a pairwise likelihood can be further simplified by discarding all the pairs
.i, j/ that are not in the neighbourhood structure E. This choice provides a computationally
efficient EM algorithm, without sacrificing the good distributional properties that are expected
from a CL estimator.



12 M. Ranalli, F. Lagona, M. Picone and E. Zambianchi

4.2. Further computational details
It is well known that the EM algorithm suffers from two drawbacks: it is sensitive to the choice
of starting points and it could converge to local maxima. These two aspects are strictly linked
to each other. To avoid local maxima we follow a short-runs strategy, by running the EM
algorithm from 50 random initializations, and stopping the algorithm without waiting for full
convergence, i.e. when the relative increase in two consecutive composite log-likelihoods is less
than 10−2. The best solution is taken as the starting point to run the EM algorithm until full
convergence, i.e. when the difference in two consecutive composite log-likelihoods is less than
10−5.

Using an i7 processor (2.50 GHz), and depending on the scenarios, the computational time
of a single short run was rarely greater than 20 s, whereas a single long run could take up
to 121 s. Therefore the computational cost of the estimation strategy proposed essentially de-
pends on the number of short runs. Computational speed can be improved by choosing a
small number of short runs, at the price of a high risk of convergence to a local maximum.
More efficiently, computational speed can be improved by accelerating the last steps of each
EM run by direct CL maximization. In principle, equation (7) could be directly maximized
by using a suitable optimization algorithm, chosen for example from among the optimiza-
tion methods that are available with the R optimization routine optim. We, however, found
that, if the initial conditions are sufficiently close to the maximum CL estimate, then direct
maximization works and is generally very fast. Otherwise, if initialized outside a neighbour-
hood of the maximum CL estimate, direct optimization often crashes. It is possible that the
methods of optim are not suitable for the quite unconventional case of a mixture of cylin-
drical distributions. Nevertheless, our finding supports a hybrid strategy that starts with EM
iterations and then replaces the last iterations of the EM algorithm by direct maximization.
In this way, we obtain a hybrid algorithm that essentially compensates the large circle of
convergence provided by the EM algorithm with the high speed of direct numerical maxi-
mization. Our experiments indicate that this idea can save up to 30% of the computational
time.

Standard errors could in principle be obtained by numerically approximating the observed
Godambe matrix (Godambe, 1960), which is, however, known to suffer from numerical instabil-
ity. It requires both the numerical approximation of variability and sensitivity matrices, and the
inversion of the variability matrix (i.e. the covariance of the CL score), which is usually a large
size matrix. A viable alternative relies on parametric bootstrap methods, to obtain quantiles
of the distribution of the estimates. In this paper, we refitted the model to R = 200 bootstrap
samples, which were simulated from the estimated model parameters. We then computed the
2.5% and the 97.5% quantiles of the empirical distribution of each bootstrap estimate. Simula-
tion of the cylindrical HMRF is straightforward, by taking advantage of standard simulation
routines that are available for the Potts model and the Abe–Ley distribution. Specifically, we
exploit the Swendsen–Wang algorithm (Swendsen and Wang, 1987) (which is available in the R
package potts) to simulate a configuration of segmentation labels. Given a configuration of
segmentation labels, a cylindrical observation zi = .xi, yi/ is drawn at each lattice site i, accord-
ing to the appropriate Abe–Ley distribution, evaluated at θ=θki , where ki is the segmentation
label that has been generated by the Potts model at location i. Under equation (3), the marginal
distribution of the angular variable x is a sine-skewed wrapped Cauchy distribution, whereas
the conditional distribution of y given x is Weibull. We therefore draw a cylindrical sample by
first drawing from a sine-skewed wrapped Cauchy distribution and then drawing a sample from
the Weibull distribution. Abe and Ley (2016) suggested a simple routine to simulate from a
sine-skewed wrapped Cauchy distribution and we follow their proposal.
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4.3. Model selection
The number K of latent classes is chosen by selecting the model minimizing the CL Bayes
information criterion C-BIC (Gao and Song, 2010). It combines the goodness of fit for a given
model (minus twice the composite log-likelihood) and the penalty term of model complexity,
namely

C-BIC=−2 cl.θ̂, ρ̂; x/+ tr{s.θ̂, ρ̂/s.θ̂, ρ̂/′I.θ̂, ρ̂/−1} log.n/, .11/

where s.·/ is the observed score, and I.·/ is the observed information matrix. It extends the
traditional Bayes information criterion to the CL framework, where the identity s.θ̂, ρ̂/s.θ̂, ρ̂/′ =
I.θ̂, ρ̂/ does not hold. In this paper, the empirical estimates of s.θ̂, ρ̂/s.θ̂, ρ̂/′ and I.θ̂, ρ̂/−1 were
computed by exploiting the R package numDeriv to estimate both the score and the Hessian of
the observed CL. Although this method seems viable for small values of K, it tends to become
numerically unstable as K increases.

5. Simulation study

A simulation study was carried out to explore the distributional properties of the proposed
estimation method across a battery of 12 = 2 × 2 × 3 contrived but realistic parameter groups.
Table 1 displays the parameter values of each scenario. We considered HMRFs with K =2 and
K = 3 latent classes which are associated with either strongly separated or weakly separated
cylindrical densities and affected by three levels of spatial dependence: no spatial dependence,
weak spatial dependence and strong spatial dependence. These eight studies were respectively
repeated on two square lattices with 10 × 10 and 30 × 30 sites. Each study was carried out by
drawing 500 samples from the appropriate cylindrical hidden Markov model.

Figs 4 and 5 show the distributions of the parameter estimates, respectively obtained with
K =2 and K =3 classes, using a 30×30 regular grid. The results that were obtained in the case
of a 10 × 10 regular grid are in the on-line ‘supporting information’ file (Figs 1 and 2), which
further includes the bias, the standard deviation, the mean, the median and the root-mean-
squared error that have been obtained in the simulation study (Tables A1–A4 and Tables 1–4 in
the on-line supporting information file).

Overall, all the distributions look quite symmetric and show little bias. Exceptions are the

Table 1. True values of model parameters over various scenarios

K = 2; strongly separated cylindrical classes
α1 =0:5 β1 =0:1 λ1 =0:5 κ1 =0:9 μ1 =0 ρ=0, 0:29, 0:44
α2 =0:8 β2 =0:9 λ2 =0:5 κ2 =0:9 μ2 =1:5

K = 2; weakly separated cylindrical classes
α1 =0:5 β1 =0:3 λ1 =0:5 κ1 =0:75 μ1 =0 ρ=0, 0:29, 0:44
α2 =0:75 β2 =0:6 λ2 =0:5 κ2 =0:75 μ2 =1:0

K = 3; strongly separated cylindrical classes
α1 =0:5 β1 =0:1 λ1 =0:5 κ1 =0:9 μ1 =0 ρ=0, 0:34, 0:50
α2 =0:8 β2 =0:9 λ2 =0:5 κ2 =0:9 μ2 =1:5
α3 =1:3 β3 =1:7 λ3 =0:5 κ3 =0:9 μ3 =3

K = 3; weakly separated cylindrical classes
α1 =0:5 β1 =0:3 λ1 =0:5 κ1 =0:75 μ1 =0 ρ=0, 0:34, 0:50
α2 =0:75 β2 =0:6 λ2 =0:5 κ2 =0:75 μ2 =1:0
α3 =1:0 β3 =0:9 λ3 =0:5 κ3 =0:75 μ3 =2
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estimate of the asymmetry parameter λ and the concentration parameter κ. Furthermore, in
the case of a 30 × 30 lattice, the bias and the variance of all parameter estimates are smaller
under all three dependence structures (both when K=2 and when K=3) than their counterparts
obtained for a 10 × 10 lattice. When the latent classes are weakly separated, the estimates are
affected by a larger variability than in the case of strongly separated classes. In keeping with
known results about the efficiency of the CL versus the efficiency of the full likelihood (Xu and
Reid, 2011; Cox and Reid, 2004), the quality of the CL estimates decreases when the spatial
dependence parameter takes moderate values and then improves again as spatial dependence
increases, reflecting a smaller discrepancy between the CL and the full likelihood. However, the
bias of the dependence parameter κ and the skewness parameter λ is typically larger than the
bias of the other estimates.

6. Application

We have estimated a number of cylindrical HMRFs from the two circulation fields that are
displayed in Fig. 1, by varying the number K of components from 2 to 5. Table 2 shows the
log-likelihood values and the C-BIC-statistics that were obtained for each model and each
circulation field.

Table 2 suggests a model with K =2 components for circulation field A, correctly reflecting a
scenario where strong remote forcing is associated with south-eastward currents. A model with
K =3 components is instead selected for field B, where eastern and southern currents of similar
speed are associated with low intensity flows whose direction is scattered across the gulf.

For each model, Table 3 displays the maximum CL estimates and the 2.5% and 97.5% boot-
strap quantiles of the parameters of the conditional cylindrical distributions within each state.
It further includes the maximum CL estimate and the bootstrap quantiles of the spatial depen-
dence parameter of the Potts model.

Table 3 provides two general pieces of evidences that support the distributional choices of this
paper. First, for each model, and within each state, the circular–linear dependence parameter
κ is significant. This supports the choice of a cylindrical density and indicates that, at least in
these cases, a conditional independence assumption between univariate distributions of circular
and linear variables is unrealistic. Second, for each model, the spatial dependence parameter
ρ is significant. This supports the inclusion of a spatial process to account for spatial auto-
correlation and indicates that the assumption of spatial independence is unrealistic.

The rest of Table 3 should be interpreted with the help of Figs 6 and 7, which overlap the state-
specific densities on the data points, filled with grey levels according to the posterior membership
probabilities under each state.

Table 2. Log-likelihoods and C-BIC statistics†

Number of Results for field A Results for field B
components

Composite C-BIC Composite C-BIC
log-likelihood log-likelihood

2 −1131:358 3114.588 −1219:373 3294.301
3 −1111:528 3438.180 −1207:382 3270.332
4 −1105:844 5536.709 −1199:468 3524.616
5 −1098:162 3305.920 −1183:930 3505.404

†The best models are indicated by italics.
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Table 3. Estimates and 2.5% and 97.5% quantiles of two cylindrical HMRFs with two
and three states

State Parameter Results for field A Results for field B

Estimate 2.5% 97.5% Estimate 2.5% 97.5%
quantile quantile quantile quantile

1 α 3.76 2.49 3.82 3.26 3.06 4.55
β 0.20 0.18 0.25 0.19 0.15 0.21
λ −1:00 −1:00 1.00 0.50 0.40 1.00
κ 2.58 2.01 2.98 1.83 1.01 2.53
μ 2.72 0.10 2.74 4.52 4.16 5.20

2 α 1.68 1.58 2.29 6.56 3.57 6.98
β 0.20 0.16 0.23 0.11 0.10 0.15
λ −0:27 −0:56 0.24 −1:00 −1:00 −0:55
κ 0.70 0.60 1.34 1.96 1.54 2.13
μ 3.14 2.78 3.16 0.42 −0:51 1.02

3 α 2.80 2.30 3.60
β 0.24 0.21 0.27
λ −1:00 −1:00 −0:95
κ 1.30 0.85 1.99
μ 0.69 0.56 1.18

ρ 0.72 0.56 0.83 0.25 0.17 0.29

Field A is described in terms of two conditional distributions that represent well-defined
circulation patterns. The first distribution (state 1) is associated with spatially coherent, high
speed water flows (α = 3:76 and β = 0:20), partly driven by northern winds that blow across
the Tyrrhenian Sea. As a result, most of the data with the highest speed in the sample are
clustered within this regime (Figs 6(a) and 6(b)). These currents are highly concentrated (κ=
2:58) around one modal direction (μ = 2:72). Under this state, the distribution of direction
is, however, negatively skewed (λ = −1), because part of this flow slows down as it easterly
approaches the gulf coastline. The second distribution (state 2) is instead associated with currents
that are of lower intensity (α= 1:68 and β = 0:20) than those captured by the first component
of the model. The small value that is reached by κ (0.70) indicates that these flows spread across
the gulf without a privileged direction and that the dependence between speeds and directions is
weak. In addition, the asymmetry parameter is not significant, indicating that the distribution
of the directions is, under this state, essentially symmetric. The moderate skewness of the speeds
under this regime is probably due to a few outliers. The contour plot of this density (Fig. 6(c))
suggests that this state clusters noisy currents that move around the main northern water flow.

In contrast, field B is described in terms of three conditional distributions (Fig. 7). The
intensity of the currents that are generated by the first distribution (state 1; α=3:26 and β =0:19)
is similar to that generated under state 1 in field A. However, there are two important differences.
First, the modal direction is toward west (μ= 4:52). Second, the distribution of the directions
is not remarkably skew (λ = 0:50), as this current does not encounter main obstacles when
it travels towards the open sea. State 2 is instead associated with high speed currents that
travel towards north-east. As expected, the distribution of the directions is significantly skew,
as this current approaches the gulf coastline and the current speed at each direction depends
on the orography of the coastline. The third distribution (state 3) is finally associated with a
transition state between state 1 and state 2 and clusters north-eastern (μ = 0:69) currents of



Segmentation of Sea Current Fields 17

(a
)

(c
)

(b
)

(d
)

F
ig

.6
.

F
ie

ld
A

—
(a

),
(b

)
st

at
e-

sp
ec

ifi
c

cy
lin

dr
ic

al
di

st
rib

ut
io

ns
an

d
(c

),
(d

)
sp

at
ia

ld
is

tr
ib

ut
io

ns
of

th
e

da
ta

,a
cc

or
di

ng
to

a
cy

lin
dr

ic
al

H
M

R
F

w
ith

tw
o

st
at

es
(p

oi
nt

s
an

d
ar

ro
w

s
ar

e
co

lo
ur

ed
w

ith
gr

ey
le

ve
ls

ac
co

rd
in

g
to

th
e

es
tim

at
ed

m
em

be
rs

hi
p

pr
ob

ab
ili

tie
s

(b
la

ck
in

di
ca

te
s

a
pr

ob
ab

ili
ty

eq
ua

lt
o

1)
):

(a
),

(c
)

st
at

e
1;

(b
),

(d
)

st
at

e
2



18 M. Ranalli, F. Lagona, M. Picone and E. Zambianchi

(a
)

(d
)

(b
)

(e
)

(c
)

(f
)

F
ig

.
7.

F
ie

ld
B

—
(a

),
(b

),
(c

)
st

at
e-

sp
ec

ifi
c

cy
lin

dr
ic

al
di

st
rib

ut
io

ns
an

d
(d

),
(e

),
(f

)
sp

at
ia

ld
is

tr
ib

ut
io

ns
of

th
e

da
ta

,
ac

co
rd

in
g

to
a

cy
lin

dr
ic

al
H

M
R

F
w

ith
th

re
e

st
at

es
(p

oi
nt

s
an

d
ar

ro
w

s
ar

e
co

lo
ur

ed
w

ith
gr

ey
le

ve
ls

ac
co

rd
in

g
to

th
e

es
tim

at
ed

m
em

be
rs

hi
p

pr
ob

ab
ili

tie
s

(b
la

ck
in

di
ca

te
s

a
pr

ob
ab

ili
ty

eq
ua

lt
o

1)
):

(a
),

(d
)

st
at

e
1;

(b
),

(e
)

st
at

e
2;

(c
),

(f
)

st
at

e
3



Segmentation of Sea Current Fields 19

(a
)

(c
)

(b
)

(d
)

F
ig

.8
.

F
ie

ld
A

—
(a

)s
ta

te
-s

pe
ci

fic
lin

ea
r–

ci
rc

ul
ar

(c
on

di
tio

na
lm

ea
n

of
cu

rr
en

ts
pe

ed
)a

nd
(b

)c
irc

ul
ar

–l
in

ea
r(

co
nd

iti
on

al
m

ea
n

of
cu

rr
en

td
ire

ct
io

n)
re

gr
es

si
on

fu
nc

tio
ns

,a
nd

(c
)

st
at

e-
sp

ec
ifi

c
lin

ea
r

(c
on

di
tio

na
lv

ar
ia

nc
e

of
cu

rr
en

ts
pe

ed
)

an
d

(d
)

ci
rc

ul
ar

(c
on

di
tio

na
lv

ar
ia

nc
e

of
cu

rr
en

td
ire

ct
io

n)
va

ria
nc

e
fu

nc
tio

ns
:

,s
ta

te
1;

,s
ta

te
2



20 M. Ranalli, F. Lagona, M. Picone and E. Zambianchi

(a
)

(c
)

(b
)

(d
)

F
ig

.9
.

F
ie

ld
B

—
(a

)s
ta

te
-s

pe
ci

fic
lin

ea
r–

ci
rc

ul
ar

(c
on

di
tio

na
lm

ea
n

of
cu

rr
en

ts
pe

ed
)a

nd
(b

)c
irc

ul
ar

–l
in

ea
r(

co
nd

iti
on

al
m

ea
n

of
cu

rr
en

td
ire

ct
io

n)
re

gr
es

si
on

fu
nc

tio
ns

,a
nd

(c
)

st
at

e-
sp

ec
ifi

c
lin

ea
r

(c
on

di
tio

na
lv

ar
ia

nc
e

of
cu

rr
en

ts
pe

ed
)

an
d

(d
)

ci
rc

ul
ar

(c
on

di
tio

na
lv

ar
ia

nc
e

of
cu

rr
en

td
ire

ct
io

n)
va

ria
nc

e
fu

nc
tio

ns
:

,s
ta

te
1;

,s
ta

te
2;

,s
ta

te
3



Segmentation of Sea Current Fields 21

moderate speed (α = 2:80 and β = 0:24). Compared with the data of field A, field B data are
more heterogeneous and, as a result, an additional transition component is required to provide
a reasonable approximation of the data distribution. Further, the estimated spatial dependence
parameter (ρ=0:25) is significantly less than its counterpart of field A (ρ=0:72), indicating that
field B is more heterogeneous not only in the variable space but also across the spatial domain.

We recall that, under each latent state, the conditional distribution of the intensity y given the
angular direction x is Weibull with state-specific parameters and that the conditional distribution
of the direction x given the intensity y is a skew von Mises distribution with state-specific
parameters (Section 3.2). The estimates of Table 3 can therefore be exploited to compute regime-
specific regressions and variance functions, by respectively evaluating the conditional mean and
the conditional variance of speed given direction and direction given speed at the maximum CL
estimates. Figs 8(a) and 8(b) and Figs 9(a) and 9(b) respectively display the regression functions
of current speed and current direction, under each latent state. For simplicity, these curves
are depicted on the plane, but they actually live on the surface of a cylinder. These regression
functions not only describe the non-linear functional relationship between current speed and
direction in two case-studies but also, and more interestingly, demonstrate that the shape of such
relationships dramatically changes with the latent state. This indicates that, in general, current
speed should not be used as a predictor of direction (and, vice versa, current direction should not
be used as a predictor of current speed), without accounting for the environmental heterogeneity
that is detected by the latent states. The variance functions in Figs 8(c) and 8(d) and 9(c) and
9(d) further reflect the distributional skewness of both the linear and the angular components
of the data. In particular, the shape that is taken by the conditional variance of direction given
speed indicates that the variability of current directions decreases with current speed, although
at state-specific paces. Even though this analysis is restricted to 2-hourly snapshots of the surface
circulation in this area, our results suggests that in the Gulf of Naples faster currents tend to
be concentrated around single modal directions, as shown, for example, by the fields presented
by Menna et al. (2007). This is generally true for coastal semienclosed areas, representing a
characteristic of circulation constrained in confined basins.

7. Concluding remarks

We proposed a hierarchical model for spatial cylindrical data that parsimoniously integrates a
parametric cylindrical density and a latent MRF. It segments the data according to cylindrical
latent classes, by simultaneously accounting for spatial dependence and unobserved hetero-
geneity. In the two specific cases that are considered in the paper, the model offered a clear-cut
description of sea current patterns in terms of intuitively appealing environmental regimes. It
correctly captured regime-specific non-linear relationships between the speed and the direction
of the currents, through state-specific regression functions and variance functions. It finally pro-
vided a classification that reflects the orography of the study area on current dynamics, through
regime-specific skew cylindrical densities.

Our proposal is motivated by issues that arise in marine studies, but it can be easily adapted
to a wide range of real world cases, including for example environmental studies of wind fields,
where the speed and the direction of wind are recorded across space, or ecological studies of
animal behaviour, where direction and speed of movements are recorded across space.

A limit of the model is the intractable likelihood function, which complicates parameter
estimation. This issue was addressed by taking a CL approach, which is based on the definition of
a class of subsets that covers the study area. The numerical tractability of this approach depends
on the size of the largest covering subset. This suggested the use of pairs of neighbouring sites as
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covering subsets. This method, however, depends on a spatial neighbourhood structure, namely
the nearest neighbourhood structure, which is assumed a priori on the spatial lattice and which
is not necessarily the best choice for defining the CL function. However, the simulation studies
that have been carried out show that this method provides estimates with good distributional
properties.

A second limit of the model is represented by the assumption of a homogeneous latent field,
which depends on a single spatial interaction parameter. We assume that the spatial auto-
correlation is constant across space. This assumption is reasonable in studies that involve rela-
tively small areas, such as in the case of the Gulf of Naples that was considered in this paper.
Larger studies might require the specification of a non-homogeneous Potts model, with an
auto-correlation parameter that depends on space varying environmental covariates.

Despite these limitations, the approach proposed flexibly describes the plasticity of the sea
surface, indicating that the joint distribution of current speeds and directions changes under
different environmental regimes. Regime switching not only changes directional and linear av-
erages but also, and more interestingly, it shapes the non-linear functional relationship between
speed and direction. That said, we remark that our proposal was conceptualized to segment
coastal areas at a given point in time, and, as such, it does not include a temporal component of
the sea circulation process. It cannot therefore be directly exploited for temporal forecasting. A
good method of spatial segmentation is nevertheless a big step forward for reliable forecasting
methods in a coastal setting. Our proposal could in fact be integrated with a hidden Markov
model for cylindrical time series (Lagona et al., 2015) to open up new perspectives in the analysis
of space–time cylindrical data and, more ambitiously, to forecast sea motion in coastal areas.
A possible approach in this direction, for example, is the specification of a sequence of condi-
tionally independent hidden Markov fields, whose parameters evolve according to the states of
a latent Markov chain. Further research is, however, needed to explore ways to integrate CL
methods for spatial cylindrical data with the forward–backward estimation methods that are
routinely exploited in models that involve latent Markov chains.
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