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ABSTRACT

High-frequency radar (HFR) surface current data are an increasingly utilized tool for capturing complex

dynamics of coastal ocean systems worldwide. The radar is uniquely capable of sampling relevant temporal

and spatial scales of nearshore processes that impact event response activities and basic coastal ocean re-

search. HFR is a shore-based remote sensing system and is therefore subject to data gaps, which are pre-

dominately due to environmental effects, like increased external noise or low signal due to ocean surface

conditions. Many applications of these surface current data require that these gaps be filled, such as La-

grangian numerical models, to estimate material transport and dispersion. This study introduces a new pe-

nalized least squares regression method based on a three-dimensional discrete cosine transform method to

reconstruct hourly HFR surface current data with a horizontal resolution of 6 km. The method explicitly uses

both time and space variability to predict the missing value. Furthermore, the method is fast, robust, and

requires relatively low computer memory storage. This paper evaluates the method against two scenarios of

common data gaps found in HFR networks currently deployed around the world. The validation is based on

observed surface currentmaps along themid-Atlantic coast of theUnited States with specific vectors removed

to replicate these common gap scenarios. The evaluation shows that the newmethod is robust and particularly

well suited to fill a more common scenario with complete data coverage surrounding an isolated data gap. It is

shown that the real-time application of the method is suitable for filling data gaps in large oceanography

datasets with high accuracy.

1. Introduction

The coastal ocean is an intricate system that forms

the boundary between the land and the deep ocean. This

environment consists of tightly linked chemical and

biological processes that coexist in a causal relationship

with complicated flow dynamics. As the water depth

decreases, physical forcing shifts from density gradients

to turbulent mixing and frictional forcing along the

surface, bottom, offshore, and inshore boundaries

(Robinson and Glenn 1999). In addition, tidal oscilla-

tions interacting with low-frequency features along the

offshore boundary contribute to the complexity of

the shelf dynamics that govern the exchange between

the coast and the deep ocean (Magnell et al. 1980).Wind

forcing is a large component in coastal ocean flow and

can quickly change the dynamics, resulting in the gen-

eration of large wave disturbances greater than or of

the same magnitude as the underlying low-frequency

current. High-frequency radars (HFRs) are commonly

used to observe and classify these complicated pro-

cesses through hourly two-dimensional maps of surface

currents.

HFR systems are one technology deployed along the

coast to remotely measure the complex surface cur-

rent dynamics over these highly variable seas. In the
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Mid-Atlantic Bight (MAB), a network of over 40 land-

based radar sites provides hourly maps of surface ocean

currents in support of oceanographic research and ap-

plications ranging from developing offshore wind en-

ergy (Seroka et al. 2013), pollution and storm response,

and U.S. Coast Guard search and rescue (Roarty et al.

2010). These radars can reliably measure currents from

a few kilometers off the coast out to 200 km offshore

through a large range of weather and ocean conditions

(Fig. 1). The shore-based antenna approach provides

continuous temporal and broad spatial surface current

observations, enabling the delivery of data in real time.

Nearly every application of ocean monitoring requires,

to some extent, measurements of surface current

velocity maps.

While the coastal deployment of these networks pro-

vides some great advantages in setup, maintenance, cost,

and access, the remote sensed nature of themeasurement

leads to sporadic gaps in data coverage in both time and

space. Each coastal site within an HFR network uses a

radio signal backscattered off the ocean surface to esti-

mate the velocity component in the direction of the an-

tenna.Data fromoverlapping sites are then geometrically

combined to provide a two-dimensional surface current

map over time. Throughout the community two primary

algorithms are used to combine individual site radial

component maps into total vector current maps, un-

weighted least squares (UWLS; Lipa and Barrick 1983),

and optimal interpolation (OI; Kim et al. 2007, 2008).

Gaps in the final surface current map are therefore de-

pendent on the coverage of each remote site that feeds

the combined product. Many research products and ap-

plications require that these data gaps be filled. For ex-

ample, to predict the material transport, the standard

approach is to run a Lagrangian numerical model.

Lagrangian applications provide an understanding of

transport in complex surface current fields (Peacock and

Haller 2013). Traditionally, Lagrangian applications

track the trajectories of individual particles determined

by time-evolving spatial current fields. Assuming that the

velocity field is observed for times t over a finite interval

[t1, t2], the existence of missing values in HFR observa-

tion poses a major obstacle.

Several techniques have been used to fill the gaps in

either theUWLS orOI derived total vector maps. These

are implemented using covariance derived from normal

mode analysis (Lipphardt et al. 2000), open-boundary

modal analysis (OMA) (Kaplan and Lekien 2007),

and empirical orthogonal function (EOF) analysis

(Beckers and Rixen 2003; Alvera-Azcárate et al. 2005);

and using idealized or smoothed observed covariance

(Davis 1985). A comparison of these methods was given

by Yaremchuk and Sentchev (2009), who proposed to

add a cost function with the terms penalizing grid-scale

variability in the divergence and vorticity fields. How-

ever, the mapping methods mentioned above are

statistical techniques; therefore, their performance

depends on the accuracy of the covariance used for

interpolating the HFR data both in space and time.

Moreover, present mapping techniques often do not

make full use of the dynamical information from the

observations.

The goal of the present study is to design an HFR

interpolation algorithm capable of filling data gaps in

near–real time over the regional scales of a coastal

network. To do that we apply a penalized least squares

(PLS) regression as a real-time solution to fill gaps in the

total vector surface current estimates from an HFR

network as a postprocessing step on the derived total

vector fields from either the UWLS or OI approach.

PLS regression is based on a three-dimensional discrete

cosine transform (DCT) (Garcia 2010). The method has

been successfully applied to a global soil moisture

product derived from Earth observation satellites

(Wang et al. 2012). This method is introduced specifi-

cally to fill gaps as a required step in many post-

processing real-time applications, including particle

trajectories, search and rescue, and spill tracking.

FIG. 1.Map showing the location of theHF radar stations used to

construct the MARACOOS surface current maps. The 70% data

coverage contour for 2012 (black) marks the best coverage domain

that is utilized by the DCT-PLS algorithm to fill data gaps, and the

100-m isobath (gray) are also shown.
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In practice, the occurrence of small data gaps due to

environmental factors are more frequent than the larger

dropouts due to significant hardware failure or power

and communication disruptions at individual radar

stations. The highly nonrandom occurrence of missing

values inHFRobservations challenge their interpretation,

since the possible causes include—but are not limited to—

geometry of antenna setup, sea state, radio frequency

interference, and instrumentation failure. This paper in-

troduces the DCT-PLS technique to HFR gap filling and

evaluates it against common gap scenarios observed in

regional HFR networks. The paper is organized as fol-

lows. In the next section we describe the method and the

HFR network used in the evaluation. Section 3 describes

the gap-filling results and evaluation. We then discuss

these results and implications for application of the

method across similar regional networks deployed around

the world in section 4.

2. Methods

a. DCT-PLS gap-filling method applied to HFR data

According to Ohlmann (2007), a typical 2D instanta-

neous HFR velocity field can be expressed from HF

radar total vectors as

V(t, x)5V
total

(t, x)1V0(t, x),

whereVtotal(t, x) is the total HF radar velocity, which is

an average over time (t) and space (x); and V0(t, x)
is largely a nondeterministic subgrid-scale velocity

component that is not necessarily uniform in space

and time.

In the study here, we introduce for the first time a

DCT-PLS method applied to HFR data processing. The

DCT-PLS method was originally proposed by Garcia

(2010, 2011), and we adapt it here for the purpose of

filling data gaps of HFR data for real-time and post-

processing. We now give an introduction of the DCT-

PLS algorithm. For more details on the mathematics of

the method, the reader is referred to Garcia (2010).

1) AUTOMATIC SMOOTHING WITH THE DCT-PLS
METHOD

The proposed method based on the penalized least

squares approach, combined with the DCT, allows for

automatic smoothing of multidimensional data that may

include outlying and missing data. Let us define the 2D

HFR m3 n velocity field V5 (u, y) surface current

(shown in the equation above), where u is the zonal

(east/west) component and y is the meridional (north/

south) component. First, we assume that the HFR data

are corrupted by noise only (no outliers, no missing

data). Following Garcia (2010) the smoothed velocity

field V̂ can be expressed as

V̂5 IDCT2[G+DCT2(V)] ,

where DCT2 and IDCT2 denote the type II 2D DCT

and its inverse (IDCT), respectively; and + stands for

the element-wise product. The filtering matrix G is de-

fined by

G
kl
5

�
11 s

�
42 2 cos

(k2 1)p

m
2 2 cos

(l2 1)p

m

��21

,

where the subscript (k, l) refers to the position in the

2D HFR current field and the parameter s is a positive

scalar that controls the degree of smoothing. An un-

suitable selection for s causes under- or oversmoothed

velocities; as s increases, the smoothness of V̂ also in-

creases. For small values of s, the value of V̂ will be

dominated by noise. The value of the parameter s is

determined by minimizing the generalized cross vali-

dation (GVC) score method introduced by (Craven and

Wahba 1978). The GVC criterion makes the DCT-PLS

method fully automated.

2) EFFECT OF THE SMOOTHNESS PARAMETER

Our goal is to find the best estimated ŷ(t) from the

observed value y(t) for the t5 t1, t2, . . . , tn predictor,

where the index n refers to the number of predictors.

The technique is to minimize F to balance the in-

fidelity of the data measured by the residual sum of

square RSS5 ky2 ŷk2 and a penalty functional P(s)

evaluated by a square second-order difference derivative

skDŷk2. The procedure is known as smoothing splines

(see Wahba 1990):

F(s)5RSS1P5 ky2 ŷk2 1 skDŷk .

The parameter s specifies the ‘‘constant’’ number s 3 n

of neighboring observation points used to calculate the

local fits. Thus, the bandwidth s determines the degree of

smoothness of the fitted data: Choosing too small an

s value leads to undersmoothing, whereas selecting an s

too large may result in oversmoothing of the fitted data

that ignores local features of the data, as shown in Fig. 2.

In the frequency domain, increasing the smoothness

parameter s reduces the low-pass-filter bandwidth. Ex-

tremely large values of s, which cause the loss of high-

frequency components, may happen with turbulence or

high shear flow.

The tuning parameter s controls the amount of regu-

larization, so choosing a good value of the tuning pa-

rameter is crucial. We can question what might be

considered a good choice of a tuning parameter.
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A common solution to select the optimal value of s

is to use the cross-validation (CV) procedure. The

classical concept of CV consists of splitting the dataset

into a train set and a test set ft(i), yi, i5 1, . . . , ng. We fit

the model on the train set and test its predictive per-

formance on the test set. By testing the model on a dif-

ferent dataset than the one used for training, we avoid

overfitting.

There are many ways to split the initial set dataset

into parts like this. One possibility is to remove one

sample to form the train set and to put this one sample

into the test set. This is called leave-one-out (LOO)

cross validation. With N samples, we obtain N sets of

train and test sets. The cross validated is the average

performance on all these set decompositions.

The expected prediction error rate is defined as

EfF[ y0, ŷ(t0; s, S21)]g, where the CV score has to be

taken with respect to new data (t0, y0) from the same

source and all possible subsets minus one S21. Those

prediction estimators are also linear in the observation

ŷ(t0; s, S21)5H(s)y(t0), whereH(s) provides a measure

of leverage. The average leverage is by definition in the

range of [0, 1]; weak smoothing occurs if the average

leverage is close to 1, while oversmoothing appears

when the average leverage is 0. A naïve approach of the

problem selection of s is to select s equal to the value s0,

thus minimizing the CV score:

min(EfF[y
0
, ŷ(t

0
;s,S

21
)]g)5min

(
1

n
�
n

i

[y
i
2ŷ(t

i
;s,S

21
)]2

[12H
i
(s)]2

)
.

We note that for each positive s$ 0, there exists a unique

P(s) that optimizes the normalized mean-square error

(NRMSE), so that the minimum of F(s) is also the so-

lution to the problem known as fair optimizer.

Craven and Wahba (1978) derived an alternative CV

criterion. The idea is to replace the weights factor by

their average value. This leads to aGCV criterion, which

is quickly calculated using

min(EfF[y
0
, ŷ(t

0
; s, S

21
)]g)

5min

�
n

i51

[y
i
2 ŷ(t

i
; s,S

21
)]2/n

f12Tr[H(s)]/ng2

0
BB@

1
CCA.

Furthermore, Garcia (2010) reduced the computational

complexity and increased the speed of the GCV scores

by evenly spacing the data.

Thus, ŷ can be expressed by

ŷ5 IDCT[G3DCT(y)] ,

where G is given by Gi,i 5 (11 sf22 2 cos[(i2 1)p/n]g2)
and Gi,j 5 0 if i 6¼ j.

However, the smoothing with the minimization of the

GVC score has no clear relation to the smoothing pa-

rameter and the gap-filling result in time or space. If the

variance of the magnitude of the HFR data is great, then

an oversmoothing might occur even with an extremely

small smoothing parameter (see Fig. 4). Similarly, in

Fig. 2, when a smaller smoothing pattern (1022) is used,

there is no relation to the gap filling. Both figures

demonstrate that there is no correlation between the

smoothing parameter and the actual smoothing achieved.

3) REPLACEMENT OF THE OUTLYING DATA WITH

THE DCT-PLS METHOD

The remote sensed nature of the HFR data can lead to

spurious vectors. These outliers are commonly the result

of a low signal-to-noise ratio due to either a weak return

signal often near the outer edges of the coverage or

heightened noise due to external sources. Neglecting

these outlying HFR current vectors can affect the

smoothed HFR field. To overcome the outlying data, the

DCT-PLS method uses a robust procedure that is almost

not influenced by the outliers. Garcia (2010) expressed

the robust procedure of the DCT-PLS method as

V̂5 IDCT2fG+DCT2[Wbs+(V2 V̂)1 V̂]g .

The method uses the initial current velocity (V̂5V) to

generate successive weights coefficients from bis-

quare weights (Wbs) of the residual current (V2 V̂)

until V̂ matches reasonably well Vtotal. We note that

the ‘‘robust’’ procedure discussed here avoids the

FIG. 2. Smoothness vs original HFR data from 1 Jan 2012 for

given s values 0.01, 0.1, 100, and ‘. Increasing the smoothness

control parameter removes the high frequency. The mean HFR

velocity is obtained for s/‘.
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weakness related to the linear model of the least

square techniques.

4) DEALING WITH MISSING VALUES AND MASKS

To utilize the algorithm, we first have to define the

best coverage domain. This was defined as the grid

points within the 70% data coverage from Fig. 1, which

was taken for the year 2012. Seventy percent was

chosen, as this was the highest contour that covered the

entire domain of the MAB. This best coverage is a

compromise of the data. Any data gaps within the best

coverage domain will be filled; however, if the real-

time measurement extends beyond the best coverage

domain, then the algorithm will remove it. So, it is

critical that an appropriate domain be chosen as input

to the algorithm. In the presence of missing data, the

corresponding weights coefficient is zero, while an ar-

bitrary value is assigned to the velocity. The DCT-PLS

method easily deals with missing and masked data by

introducing a second weight matrix Wm, defined by

zero if the velocity located in (k, l) is masked or missing

and 1 otherwise,

V̂5 IDCT2fG+DCT2[Wm+Wbs+(V2 V̂)1 V̂]g .

This is the equation of the robust DCT-PLS method

used for HFR data.

b. HFR

HFR systems deployed along the coast use trans-

mitted radio signals (3–30MHz) scattered off the ocean

surface to calculate radial components of the total sur-

face velocity at a given location (Barrick et al. 1977).

Peaks in the backscattered signal are the result of an

amplification of a reflected wave, at grazing incidence,

by surface gravity waves with a wavelength equal to half

that of the transmitted signal (Crombie 1955). The fre-

quency of the backscattered signal will be Doppler

shifted depending on the velocity of the scattering

surface. Using linear wave theory, the phase speed of

the surface waves can be separated from the total fre-

quency shift, leaving only that shift due to the surface

current component in the direction of the antenna

(Barrick et al. 1977). The radar software isolates the

strongest sea echo returns from the Bragg scattering

and uses that portion of the radar spectra to calculate

radial current velocities.

Over a given time period, sites along the coast generate

radial maps of these component vectors with resolutions

on the order of 1–6km in range and 58 in azimuth (Barrick

and Lipa 1997; Teague et al. 1997). The HF radar sites

in the Mid-Atlantic Regional Association Coastal Ocean

Observing System (MARACOOS) network are all

SeaSonde direction-finding systems manufactured by

CODAR Ocean Sensors (Barrick 2008; Roarty et al.

2010). The direction-finding radars use a three-element

receive antenna mounted on a single post to determine

the direction of the incoming signals. Since the antenna

can resolve only the component of the current moving

toward or away from the site, information from at least

two sites must be geometrically combined to generate

total surface current maps.

The MARACOOS HF radar network consists of 43

SeaSonde-type radars (Fig. 1), 17 of which are long

range, 18 of which are standard range, and 8 of which are

medium range. Table 1 provides the typical character-

istics of the different types of systems. For the long-

range systems utilized in this study, the radar cell is

defined by a range resolution (Ds) of 6 km and an azi-

muthal resolution (DQ) of 58. The maximum range is on

the order of 200 km, and the effective bearing angles of

individual radars are different due to the coastline ge-

ometry. The focus of this study will be the broader

coverage provided by the lower-frequency long-range

network (Fig. 1).

Each site collects hourly measurements of the radial

component of the surface current and wave conditions

within a footprint local to the antenna. A suite of

CODAR software programs processes the received ra-

dar signals to generate the hourly radial current files at

each site. Further processing is used to combine the ra-

dials from two or more sites to produce total current

velocity maps. The existence of a total vector solution

depends strongly on the bearing angle diversity of the

radial velocities within a search radius at each vector

grid point. Since at least two radial velocities from dif-

ferent radar sites are required for a vector solution,

the regions with overlapping radar range cells from

multiple radar sites have better data coverage through

time. The regional radial-to-total processing is accom-

plished using an OI adaptation developed by Kim et al.

(2008) with the MATLAB HFR community toolbox,

HFR_Progs (Kohut et al. 2012; Kim et al. 2008). For this

method, we used an asymmetric search area stretched

parallel to the isobath direction and consistent with

the length scales of the currents in the region (Beardsley

and Boicourt 1981; Kohut et al. 2004). For quality as-

surance (QA), we require that both u and y component

TABLE 1. Typical characteristics of long, medium, and standard

range HF radar systems.

System type Radio frequency (MHz) Range (km)

Long range 4–6 180

Medium range 12–14 80

Standard range 24–26 30

JUNE 2016 FRED J 1101



uncertainty be less than 60% of the expected variance

(Kohut et al. 2012). Each remote site was operated with

the quality assurance/quality control (QA/QC) recom-

mendations from the MARACOOS operators and the

Radiowave Operators Working Group (ROWG) com-

munity (Kohut et al. 2012). These are the same data

provided to the national HF radar server at the National

Oceanic and Atmospheric Administration (NOAA)

National Data Buoy Center (http://hfradar.ndbc.noaa.

gov/). Every hour the available radial velocities are

combined into a single total vector map on the national

network 6-km grid (Terrill et al. 2006). A total vector

was generated only if at least three radial velocities from

at least two remote sites were available to the combi-

nation algorithm.

c. The Mid-Atlantic Bight study site

For our study we used the MAB as a natural labora-

tory, as it has an extensive coastal HFR network that

supports both research and applications that depend on

reliable surface current data delivery. The seasonal

forcing cycles drive significant variability in the physical

environment of the MAB. Water masses originating

from the watershed, deep ocean, and northern latitudes

collide in the waters off New Jersey. Ocean fronts,

relatively narrow zones that separate these different

water types, are important both because of the role

they play in ocean dynamics and because they mark

some water mass boundaries. Their dynamical impor-

tance in the coastal ocean stems from their association

with strong currents, such as the equatorward jet ob-

served at the shelfbreak front off the east coast of North

America (Loder et al. 1998; Ullman and Cornillon 1999),

and with the strong vertical velocities that often occur

in coastal regions (Barth et al. 2005; Houghton and

Visbeck 1998).

From events lasting several hours to days on through

interannual and decadal scales, the variability of the

currents helps define the structure of the marine eco-

logical system. The physical structures within the MAB

are characterized by transport pathways and strong

hydrographic and velocity gradients that vary in space

and time. On longer scales of seasons to years, circu-

lation patterns drive persistent cross- and along-shelf

transport pathways (Kohut et al. 2004; Dzwonkowski

et al. 2009; Gong et al. 2010). On shorter scales of days

to weeks, upwelling and strong coastal storms can dis-

rupt or enhance these patterns (Kohut et al. 2006;

Dzwonkowski 2009).

d. HFR gap scenarios

The gap-filling method was tested for two scenarios

commonly observed in HFR-derived surface current

maps. Based on a 7-yr dataset (MARACOOS; http://

maracoos.org/), the hourly coverage of the regional

HFR network in theMid-Atlantic Bight is characterized

based on both spatial and temporal coverage. The op-

erational data coverage goal of the network is to provide

at least 80% spatial coverage 80% of the time. In this

metric, the percentage of spatial coverage is the pro-

portion of grid points within the data footprint beyond

the 15-m isobath and within 150km of the coast with

measured data. The measurements within the 15-m

isobath are excluded because the deep-water wave as-

sumption that the radar utilizes is no longer valid at

our operating frequency of 5MHz. The points beyond

150 km are excluded, as this is themaximum range of the

radar stations during nighttime interference. The tem-

poral coverage can be variable between hours to a time

frame of years. This linked spatial temporal metric de-

scribes the typical coverage observed across the network

over our study period, January–December 2012 (Fig. 3).

Figure 3 shows that over much of the year, small spatial

gaps of less than 20% of the complete data footprint are

more common than larger gaps (.40%) observed dur-

ing significant hardware or communication disruptions.

These smaller data dropouts are isolated areas of the

data footprint due to local environmental factors. The

larger gaps observed less frequently are due to more

significant issues that remove one or more remote sites

from the network. In this analysis we define two sce-

narios that reproduce each of these situations. These

FIG. 3. The ratio of spatial and temporal coverage of the

MARACOOS surface current maps for 2012 (blue line). The data

delivery target of the network for 80% spatial coverage at least

80% of the time (dashed black line).
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more detrimental gaps will typically reduce the coverage

by at least 40%.

1) SCENARIO 1

The first scenario tested replicates a major hardware

or communication disruption that effectively removes

at least one site from the network. Observed gaps un-

der this scenario can be best described as a gap that

extends along the coast from the shore to the offshore

edge of the coverage, effectively splitting a single data

footprint into two. This is very uncommon and is pri-

marily due to a disruption in either the real-time

communication link or a hardware failure. The result

is a gap that stretches from the coast out to the edge of

the coverage (Fig. 4). The size of the band with no data

depends on the site spacing and the number of sites

that are not reporting data. For the purposes of this

analysis, we are simulating a loss in contributing radials

from a single site in Sandy Hook, New Jersey, near the

apex of the MAB in the vicinity of the approaches to

New York Harbor.

2) SCENARIO 2

The second gap scenario tested replicates more

common situations in which each site is contributing

radial vectors, but there is a reduction in the number

of radial data from one or more of the sites (Fig. 5).

These dropouts could be due to a number of environ-

mental factors. The most common cause is an increase

in external noise that lowers the signal-to-noise ratio

and therefore limits the range a detectable signal can

be used to determine radial velocity (Barrick 1971).

For the long-range system, this is more common during

local nighttime hours, when the ionosphere effects

FIG. 4. Surface current maps showing artificial gaps under scenario 1 for the (a) winter,

(b) spring, (c) summer, and (d) fall test periods.
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increase the range at which a given site receives ex-

ternal noise. Additional environmental factors like

local wind and waves could also reduce coverage.

These reductions in coverage from sites contributing

radials are manifested in the total vector maps as iso-

lated holes in the coverage. The size and location of the

gaps depend on the location and magnitude of the re-

duction of coverage from each individual site. To rep-

licate this in our evaluation, we chose three holes,

approximately 30–50 km in diameter, that simulate

reduction in coverage from a site in the south, central,

and northern regions of the MAB coverage. Based on

our analysis of the 7-yr (2007–13) dataset in the MAB

coastal radar network, scenario 1 occurs less than 20%

of the time with gaps and the smaller, more isolated

gaps of scenario 2 represented by any of three gaps

shown in Fig. 5 occur 80% of the time with gaps (Fig. 3).

This analysis will quantify the accuracy of estimated

vectors from our DCT-PLS method for each of these

scenarios.

3. Results

a. Gap-filling results

First, we verify that the new automatic gap-filling

method discussed in this paper is appropriate for HFR

data gap filling. To do this the DCT-PLS-filled vectors

were evaluated over time at grid points in the northern

MAB (Fig. 6a). The data coverage during January 2012

and the location of our two analysis points are shown in

Fig. 6a. The coverage shows high data returns over the

continental shelf with reduced coverage along the edge

of the data footprint well offshore near one of the

analysis points. The DCT-PLS algorithm was applied to

the entire spatial dataset over the month of January to

FIG. 5. Surface current maps showing artificial gaps under scenario 2 for the (a) winter,

(b) spring, (c) summer, and (d) fall test periods.
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fill some of these data gaps. The two test sites fall along

the same line of longitude and originally possessed 39%

and 76% temporal data coverage. We chose these two

points to quantify the impact of the gap-filling algorithm

over the month. In Figs. 6b and 6c, we show two time

series for our selected points in which the algorithm

filled the temporal gaps with information from the

grid surrounding these locations with higher temporal

coverage over the month. The more complete time

series of the DCT-PLS-filled values are shown in red

and green for the two test sites, respectively. The

method does a good job of filling gaps in the time se-

ries while retaining the integrity of the data in the

surrounding regions without gaps. In a spatiotemporal

dataset, the spatially continuous gaps can be tempo-

rally intermittent, or vice versa as in shown in Fig. 6.

Here the method takes advantage of the spatial and

temporal data provided by the HFR to fill gaps

in time.

The method was also tested against varied levels of

noise in the input data. Specifically, the DCT-PLS

method was analyzed on the HFR field with additive

Gaussian noise with a variance of (0:13Vmax)
2. The

results of this test are shown in Fig. 7. An amount of 0%–

50% (using an increment of 5%) of clustered missing

data were included within the original HFR data field

from 1300:00UTC 8 January 2012 using randomPoisson

distribution, and 100 Monte Carlo simulations per con-

figuration were performed.

The performance of the methods is evaluated by using

the NRMSE. The NRMSE remained relatively low

(,28%) even with 50% of additional missing vectors

and was mostly influenced by the additive noise.

Although this case represents an artificial HFR velocity

field, it clearly illustrates that the DCT-PLS method can

efficiently deal with a large percentage of clustered

missing data. In conclusion, these results demonstrate

that the DCT-PLS method is highly robust to clustered

missing data.

b. Comparison between DCT-PLS and OMA
methods

In practice, hardware and environmental factors lead

to gaps in HFR-derived surface current maps. In such

cases, local interpolations often fail over gap scenarios

highlighted in Figs. 4 and 5. As part of our DCT-PLS

evaluation, we computed interpolated vectors across the

large data gap due to one or two site outages within the

MAB network with both the DCT-PLS and OMA

methods during autumn (scenario 1; Fig. 4d). We im-

plemented the OMA in a way that could be run across

the entire domain in a real-time mode to address po-

tential gaps across the entire domain.

The OMA was performed with the OpenMA toolbox

developed by Kaplan and Lekien (2007). The applica-

tion of OMA to hourly current data is carried out in

several steps. First, modes are generated on a specific

domain with a continuous boundary. Next, the modes

are typically interpolated on the total current grid. The

next step is to fit data to the modes. This can be done

with either radial current measurements or total cur-

rents. After the fits theOMA currents are ready to be used.

We applied the OMA method to the MARACOOS

domain hourly sampling on a uniform grid with 6 km3
6 km intervals. The fits were performed using minimum

spatial scales of 6 km (all modes) on the total current

FIG. 6. (a) HFR data coverage over January 2012. The location of our two test sites with 39% (white

circle) and 76% (white triangle) are shown. (b) Time series of HFR observations (blue) and the corre-

spondingDCT-PLSmodel reconstructions (red) for the 76% coverage (white triangle). (c) Time series of

HFR observations (blue) and the corresponding DCT-PLS model reconstructions (green) for the 39%

coverage.
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measurements based on the OpenMA toolbox default

value of 200 modes. We acknowledge that the 200

modes fall short of the theoretical ;6000 total modes,

at least 3000 Dirichlet modes and 3000 Neumann

modes, needed resolve features approaching the grid

resolution over our domain. Given the computing

constraints and our intention to use the OMA as an al-

ternative to benchmark the DCT-PLS method in a real-

time data delivery setting, the available OMA tools will

fail to produce this large number of modes. So, we had to

reduce the number of modes to the toolbox default of

200. The OMA method has two primary input parame-

ters: the spatial length scaleL, which defines the number

of modes used for the interpolation; and the diffusion

parameter ‘‘k,’’ which penalizes the magnitude of the

modes. The parameters used in our application of OMA

were L 5 6km and k 5 1024.

We investigated the reconstruction of the missing

data performance of both algorithms on the fall sce-

nario 1 and analyzed the reconstruction of the current

patterns within the data gap (Fig. 8). A visual com-

parison showed that for this scenario, the DCT-PLS

method performed as well as and across much of the

domain better than the OMA interpolated vectors. The

velocity pattern of the DCT-PLS interpolated vectors

better replicated the patterns of the removed vectors

across much of the gap and were more realistic com-

pared to the OMA velocities. Table 2 presents the RMS

error statistics for the vector magnitude and direction

comparison between these two methods and the with-

held vectors. We caution the reader that the quality of

the OMA interpolation is very dependent on the

number of modes selected. Our intention in this paper is

to see whether the new DCT-PLS application is com-

parable to the OMA application that has been more

widely applied to HFR gap filling over our entire

domain as a real-time tool. This required us to reduce

the number of modes to the toolbox default value of

200. Therefore, the OMA-derived fields will not be

able to resolve the finer spatial scales. In general the

DCT-PLS method had smaller RMS errors in both

scenarios across our four seasonal test periods. In

the OMA formulation, the number of modes is pro-

portional to (D∕L)2 (see Kaplan and Lekien 2007),

where D is the horizontal size of the domain and L is

the spatial length scale introduced previously. To

achieve a better reconstruction of the more spatially

complex current fields with OMA, we must increase

the number of modes by reducing L 5 2–3 km, which

will require an increased k. This optimization of the

OMA for our specific region and data gap is beyond

the scope of this study. In addition, both the OMA and

DCT-PLS methods did not accurately represent the

small-scale features of the HFR velocity field, espe-

cially in scenario 1.

In conclusion, when a large data gap is present, the

DCT-PLS method with RMS differences between 3.5

and 18.9 cms21 and 14.4 and 204.3 cms21 for the vector

magnitude and phase, respectively, is better than the

OMAwith RMS differences between 8.6 and 31.2 cms21

and 19.98 and 1918 for the vector magnitude and phase,

respectively. These are lower averages on average be-

cause of the robust statistical ability of DCT-PLS to

estimate the current within the gap. Based on this basic

evaluation, the DCT-PLS method is comparable to

the OMA method, and in many regions of our test

scenario it produces more realistic interpolated vec-

tors. Since the DCT-PLS method does not require any

preprocessing, it is also more computationally efficient

to run on large HFR networks like that deployed in the

MAB. More work is needed to quantify the differences

and similarities of these two methods and others in

filling a variety of gaps in HFR networks. The details

of the comparison between the DCT-PLS method in-

troduced in this manuscript is discussed in more detail

in the following section.

c. Synthetic data validation of the DCT-PLS method

The evaluation of the interpolated fields is organized

into tests that replicate typical gap scenarios observed in

the coastal networks deployed around the world

(Lipphardt et al. 2000; Paduan andRosenfeld 1996). The

FIG. 7. HFR data postprocessed with the DCT-PLS method:

NRMSE (between the postprocessed and original velocities fields)

as a function of the percentage of Gaussian noise with a standard

deviation of 1% of the maximum velocity.
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challenge we had in designing the evaluation of the

method was to artificially define the gaps so that we

could use the withheld data as truth. The size of the gaps

in each scenario was chosen based on the analysis de-

scribed in Fig. 3. Since the gaps represented in our two

scenarios do occur in the spatial time series, we could not

consistently identify observations to remove and use as

truth throughout the entire time series. As an alterna-

tive, we identified four maps with complete coverage

that represent the range of spatial complexity observed

in the maps over our 7-yr time series (Dzwonkowski

et al. 2009; Dzwonkowski 2009; Gong et al. 2010).

During the windier better mixed months of the fall and

winter, the maps tend to be more uniform compared to

the shorter decorrelation scales observed during the

calmer months of the spring and summer. These hourly

current maps sampled in each season provide the con-

sistent ground truth needed for our evaluation and the

variability in the flow fields representative of the entire

time series.

For scenarios 1 and 2, we evaluated these four velocity

fields by comparing the interpolated vectors to those

removed within each gap. The comparison between the

removed vectors and the predicted values from our

method for each scenario is shown in Fig. 9. The scatter

shows a stronger agreement between the predicted

currents and the observed under scenario 2 repre-

senting the more common occurrence of small isolated

data gaps. Under this scenario the method performed

well with slopes for all four time periods above 0.7 for

both the u and y components. The slopes less than one

indicate that, on average, the filled-in values were

slightly less than the observed velocities. For the less

frequent gap scenario 1, the method does not perform

as well with slopes below 0.35 and increased variance.

The comparison statistics between the removed and

predicted vectors across each of these scenarios are

shown in Table 2. For scenario 1, the RMS error be-

tween the DCT-PLS predicted and removed vector

magnitudes across the four time periods range from

3.4 to 18.9 cm s21. This variability across the time pe-

riods tested is shown in Fig. 10. The four time periods

represent a range in the characteristics of the flow

surrounding the gap. They were chosen to represent

the typical structure observed throughout the year in

the MAB (Gong et al. 2010). The lowest correlation in

FIG. 8. Scatterplots comparing the estimated velocities with the removed observations for the

DCT-PLS (blue) and OMA (red) methods for the (a) east and (b) north velocity components

for scenario 1. Vector maps showing the CODAR observations (blue) and the filled values

(red) for the (c) DCT-PLS and (d) OMA.
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the winter is characterized by broad scatter with slopes

close to zero for both the u and y components (Fig. 10).

The highest correlation occurred in the summer with a

slope closer to 1, particularly in the north/south com-

ponent (0.82).

In contrast to the large range of values seen in scenario

1, the correlation of the interpolated vectors in scenario

2 was more consistent. Similarly, the scatterplots all

show a more concentrated distribution along a line closer

to the target 1:1 line (Fig. 11). The exception was the fall

test, when the slopes for both components fell below 0.5.

In the winter, the correlation was the highest observed at

0.95 with slopes for both components above 0.7. The

relatively high winter RMS differences reported in Table

2 compared to the other seasons tested over scenario 2

are due to the small number of points above the 1:1 line

(Fig. 11a). Because of the faster currents in this winter

scenario, these points bias the RMS difference statistics

high compared to the majority of filled values in this test

that fall on the 1:1 line.

4. Discussions and conclusions

In this study we introduced an efficient automated

DCT-PLSmethod for filling data gaps in theHFR ocean

spatiotemporal dataset applied to the MARACOOS

domain. The procedure explicitly utilizes both spatial

and temporal information to derive the statistical model

and to predict the missing values.

The evaluation highlights the sensitivity of the gap-

filling method to the vectors surrounding the gaps. In

our analysis we chose two scenarios to replicate the

conditions typically observed in coastal networks oper-

ating around the world. The band scenario is a less

common occurrence in which either a communication or

hardware failure causes a gap in the coverage that

stretches from the coast to the outer edge of the cover-

age. In this scenario we saw a large range in the accuracy

of the interpolated vectors. Since this scenario by defi-

nition does not have observed vectors surrounding the

gap, the quality of the interpolated vectors is dependent

TABLE 2. RMS error between the DCT-PLS and OMA estimated velocities and the removed observations over each scenario and season.

Scenario 1

DCT-PLS magnitude (cm s21) DCT-PLS direction (8) OMA magnitude (cm s21) OMA direction (8)

Winter 18.9 204.3 31.3 191.0

Spring 5.3 41.4 8.7 94.4

Summer 6.1 14.4 8.6 20.0

Fall 3.5 30.8 12.8 104.9

Scenario 2

DCT-PLS magnitude (cm s21) DCT-PLS direction (8) OMA magnitude (cm s21) OMA direction (8)

Winter 14.4 105.1 34.5 169.8

Spring 5.2 66.7 11.6 91.5

Summer 8.4 28.5 23.1 35.0

Fall 9.1 76.7 12.2 110.8

FIG. 9. Scatterplots comparing the estimated velocities with the removed observations for the

east (blue) and north (red) components in the gaps under (a) scenario 1 and (b) scenario 2 for

all the seasonal tests.
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on the spatial structure of the flow on either side of the

data gap. For those times when the flowwas uniform and

flowing along the gap, the comparison was quite good

with a correlation of 0.7. If the flow was not uniform or

flowing mostly across the band, then the lack of vectors

nearshore and offshore of the band reduced the quality

of the interpolated vectors. This is most evident in the

wintertime image with flow around the band moving

mostly across the band.

Scenario 2 tested gaps that are much more typical in

regional networks. Under this scenario the gaps are

smaller and isolated within complete coverage. They

occur when environmental conditions reduce the

range of individual coastal sites. Under this scenario

the comparison on average was much better. Unlike

the band scenario, observed currents that informed the

interpolation method surrounded these gaps. With in-

formation surrounding the gap, the method performed

better. The flow characteristics did impact the quality

of the interpolated vectors with the highest correlation

observed when the flow was largely uniform across the

gap. As the complexity of the flow reached scales

equivalent to the size of the gap, the correlation

dropped.

The user, however, should be aware of some limita-

tions of the automatic gap-filling procedure. The method

was tested as a gap-filling solution to a real-time HFR

data stream. Consequently, the GVC criterion was ap-

plied for the fully automated smoothing algorithm.

Therefore, good results are expected for aGaussian noise

with zero mean and constant variance (scenario 2).

Garcia (2011) and Wahba (1990) reported that the GVC

criterion is fairly well adapted to non-Gaussian noise and

nonhomogeneous variances. Additionally, the GVC cri-

terion may cause problems when the area of missing data

size is large with incomplete surrounding data coverage

(scenario 1). Under these conditions, the automated ap-

plication of the method may lead to poorly predicted

vectors. In this case, the best smoothing parameter will

need to be determinedmanually based on the specific gap

location and size. As a consequence, the efficiency of

the automated gap filling depends specifically upon the

original data and on the properties of the additive noise,

as shown above.

FIG. 10. Scatterplots comparing the estimated velocities with the removed observations for

the east (blue) and north (red) components in the gaps under scenario 1 for the (a) winter,

(b) spring, (c) summer, and (d) fall test periods. Note that the velocity scales of each panel

change as they are optimized for the range of the input data.
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We have evaluated the DCT-PLS method for filling

gaps inherent in HFR real-time data streams. The

method is shown to be a robust solution for the most

common gap scenarios characterized as holes, approxi-

mately 30–50 km in diameter, in the data coverage

with observations completely surrounding the gap. Un-

der the less common scenario in which more significant

outages can remove entire sites from a coastal network,

the effectiveness of the method depends on the char-

acteristics of the surrounding flow. Individual HFR

network operators will need to assess the scales of var-

iability in their operating area to determine the optimal

way to apply this method in either a real-time or post-

processed application.
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