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Letters 

Comments on “Theory and Application of Calibration 
Techniques for an NDBC Directional Wave 

Measurements Buoy”: Nonlinear Effects 

D. E. BARRICK, SENIOR MEMBER, IEEE, B. J .  LIPA, AND 
KENNETH E. STEELE 

Abstract-Steele et al. 131 present an extensive set of linear calibration 
techniques that are applied to NDBC wave-buoy sensor spectral output 
before calculating and disseminating directional wave spectra. We here 
identify and estimate the nonlinear effects that produce biases still present 
in the output. These effects are due both to wave nonlinearities 
themselves and to constraints on the buoy and mooring system to the 
driving forces. Simple models used here show that these nonlinearities can 
produce spectral energy biases of 5-15 percent at and above the spectral 
peak frequency, and even greater errors below it. NDBC presently records 
wave data from vertically stabilized and fixed accelerometers and slope 
sensors. Our calculations show that these sensors all incur bias due to 
wave nonlinearities; this bias is greatest for vertically stabilized acceler- 
ometers and is least for slope sensors. Effects of the resulting inconsisten- 
cies between the different sensors are most pronounced below the spectral 
peak where the nonlinear terms dominate; these effects are illustrated 
with measured data. 

I .  INTRODUCTION 
The pitch/roll wave buoy is more widely accepted and employed 

than any other instrument for measuring ocean surface wave-height 
directional information; it has been demonstrated and used since 
1955[1]. Ideally, it should follow the surface of the sea, giving a 
perfect measure of its elevation and slopes from which wave 
information could then be derived. Such buoys, most frequently 
configured with discus hulls, have been deployed in a free-drifting 
mode [2] (requiring a boat standing by for eventual recovery) or with 
a slack-line mooring [3] to allow unattended operation. 

Many factors, related both to the buoy system and the ocean 
surface itself, conspire to limit the accuracy and utility of this device 
from obtaining the true wave-height directional spectrum. Considera- 
ble attention has been paid to sources of error within the instrument 
and mooring. Recently, a thorough description of extensive calibra- 
tion techniques developed and used at the National Data Buoy Center 
(NDBC) has been published by Steele et ai. [3]. While the methods 
presented therein deal with amplitude and phase bias factors at each 
wave spectral frequency that can be measured and removed, there are 
other sources of bias that are not so easily removed. The latter 
originate mainly from nonlinearities introduced from surface cur- 
rents, the mooring, and the waves themselves. These sources of 
errors were cited at a U.S.  National Research Council Symposium 
and Workshop in 1981, and efforts to quantify and account for them 
were recommended [4]. 
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The present note considers the effects of both wave and current/ 
mooring nonlinearities on pitch/roll buoy performance. Through 
simplified examples we estimate the nature and order of magnitude of 
errors in the region near the wave-energy spectral peak. These 
nonnegligible biases are not presently removed from the NDBC or 
any other measured data. We feel that it is important to point this out, 
for the directional wave buoy has come to be considered a standard 
against which other instruments under development should be 
compared for accuracy. This has occurred naturally because of the 
device’s longevity, its widespread usage, and because NDBC and the 
U.S. National Weather Service have deployed many of these buoys 
and disseminates the data obtained from them to the public. 

11. EXAMPLES AND MODELS OF NONLINEANTIES 

The waves and currents acting on a complex-shaped finite-sized 
buoy constrained by a mooring cause it to respond nonlinearly to the 
driving forces. An accurate analysis of this problem is very complex, 
depending specifically on an exact formulation of the hydrodynamic 
buoy/mooring response as well as a knowledge of the forcing current 
profile and wavefield. The latter two items vary considerably from 
day to day and hence are unknown; in fact, the wavefield itself is 
sought from the instrument. To obtain “order of magnitude” 
estimates of these biases we use simple models based on reasonable 
physical processes and assumptions about buoy response. 

A .  Buoy Response to Wave Nonlinearities 
A wave buoy responds differently to nonlinear wavefields than a 

fixed sensor like a wave staff. We assume in this section that a pitch/ 
roll buoy: i) Floats freely; ii) measures the slope perfectly; and iii) 
measures the surface elevation perfectly via its vertical acceleration. 
The latter two responses, of course, assume low-pass filtering or 
averaging across the (discus) diameter. Similarly, we assume for a 
strapped-down accelerometer that the surface elevation is measured 
via the acceleration normal to the wave surface; this acceleration 
includes both the orbital motion of the buoy as well as the variation of 
the gravitational component with tilt due to gravity. The slack 
mooring offers slight constraint (i.e., the buoy does not drift away) to 
assumption “i” above, but we assume that as a wave passes under the 
buoy it follows the wave in the orbital manner of any free-floating 
particle. 

The first two terms of the classic periodic Stokes wave [5] 
represent the simplest wave nonlinearity: the height, slope, and 
velocity potential at a (horizontally) fixed point X are 

~ ( x ,  t )  = a cos $ + (a6 /2 )  cos 2$ + a o ( s 2 )  

qx(x, t )  = - 6 sin 1c/ - h 2  sin 2$ + 0 ( S 3 )  

(1) 

(2) 

and 

where $ = k x  - w t  is the phase of the wave progressing in the + x 
direction, with the temporal radian wavenumber w and spatial 
wavenumber k related to each other through the phase velocity c = 

w / k  and the (deep water) dispersion relation U *  = gk,  where g is the 
acceleration of gravity (9.806 m/s2). 6 = ak is the waveslope 
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amplitude, and O(u") denotes that all remaining terms are of an order 
at least U" in the smallness parameter U. The z direction is taken as 
being upwards from the mean surface. 

As this wave passes under the perfect pitchholl buoy the first two 
equations above do not describe the height and slope it measures 
above the first order. Before developing the outputs of buoy- 
mounted instruments, we first find the horizontal and vertical 
displacements of a free-floating particle X(x,  t) and Z(x, t )  
"orbiting" about x.  The particle's horizontal and vertical velocities 
are derived in terms of these velocities at fixed x by expanding the 
latter in a Taylor series about x + X and z + Z and retaining the 
lowest three terms. The x and z velocities at the fixed point x are 
obtained by differentiating the velocity potential ( 3 )  with respect to x 
and z. These particle velocities (with terms retained through the 
second order in 6) are then integrated with respect to time (the 
constants of integration are dropped) to give 

X ( x ,  t )  = - a  sin 45 + 62ct + a o ( s 2 )  (4) 

and 

Z ( x ,  t ) = a  cos $ + a 0 ( s 2 ) .  (5 )  

The second term in (4) is the familiar drift of a particle on the surface 
due to the nonlinear Stokes current, which shows up as a slight 
nonclosure of the particle orbits (to second order); this term is of 
course suppressed by the buoy mooring, for the buoy does not drift 
away. The slope of the water under the buoy likewise is obtained by 
expanding  AX, t) in (2) about x + X in order to obtain: 

z,(x, t ) =  -6  sin $-(S2/2) sin 2 4 5 + 0 ( 6 3 ) .  (6) 

Now we can give the heights as determined from the instruments 
mounted on a discus buoy that perfectly execute the orbital position 
and slope responses of (4)-(6). The double-integrated (with respect to 
r )  output Zu(x, r )  of a vertically stabilized accelerometer is a height 
given by (5) above and repeated here: 

ZU(X, r )  = a cos I(, + a o ( s 2 ) .  (7) 

To obtain an elevation from the slope sensor correctly one would 
integrate the slope of (6) with respect to x, giving 

Zs(x, t ) = a  cos 45+(a6/4) cos 245+aO(s2). 

However, this is not how the slope-sensor data from the buoy is used 
in obtaining cross spectra, for a buoy does not measure the spatial 
wavenumber directly; the first-order dispersion equation is used to 
relate temporal-to-spatial wavenumber, and does the integration by 
dividing by the resulting spatial wavenumber. For the solitary wave 
train considered here, the energy at the second harmonic 2w is thus 
related to a pseudowavenumber k, = ( 2 ~ ) ~ / g ,  and the height that 
would be obtained from buoy measurements is actually 

Zs(x, t )  = a cos 45 + (a6181 cos 245 + a 0 ( s 2 )  ( 8 )  

rather than that obtained from the previous equation; they differ by a 
factor of two in the second-harmonic term. 

Finally, the "displacement" measured by a strapped-down hull- 
mounted accelerometer is obtained by: i) Double integrating the 
acceleration normal to the wave surface using (4)-(6); and ii) adding 
and double integrating the fluctuating acceleration component of 
gravity g{  1 - cos [tan- ' Zdx, t ) ] } ,  sensed by the tilting accelerome- 
ter (again omitting constants of integration), to get 

Zn(x, t ) = a  cos $+(3a6/16) cos 245+a0(s2). (9) 
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Fig. 1 .  Slightly nonlinear model used for the buoy tilt-angle response to 
wave-slope angle, illustrating buoy resistance to capsizing at large wave 
slopes. Curve with open points includes a mean buoy list of - 5" that may 
result from strong current/wind straining on the mooring. 

We note that none of the above three heights measured by perfect 
buoy-mounted instruments: i) Agree with the true height at a fixed 
position given by (1) beyond the first order (they underestimate the 
height); nor do they ii) agree with each other beyond the first order. 

B. Nonlinear Buoy- Ti[r Restraints 
If the discus buoy followed the wave surface perfectly it would 

encounter breaking waves on occasion that would have vertical 
slopes. Thin unmoored discus designs [ 2 ]  respond to these conditions 
(as they should) by regularly flipping upside down. Large perma- 
nently moored buoys of the NDBC design must of necessity avoid the 
"upside down" condition for obvious functional reasons. Hence the 
combination of their center of mass, buoyancy, and mooring 
constrains them so that they follow waveslopes linearly up to a point, 
beyond which their tilt is limited so that they cannot capsize. 
Furthermore, currents and winds near the surface which are likely to 
be strongest during storm conditions when higher slopes are 
encountered will strain the mooring in a manner to further limit the 
tilt response to waveslopes. These currents and winds will cause 
greater tilt constraint along the windkurrent direction than across it 
and will give the buoy a list Bo along this direction. 

Since this limiting tilt condition is not a sharp cutoff, we model it 
by the hyperbolic tangent function as 

e = e, tanh [(a - e0)/e,i (10) 

where 0 is the tilt-angle output from the buoy, 0, is the maximum tilt 
that the mooring, currents, and buoy hydrodynamics will allow, 00 is 
the list of the buoy, and (Y is the true angle of the normal to the wave 
under the buoy from vertical, related to the slope by a = tan-' ZJx, 
t ) .  Fig. 1 shows this function plotted for 0, = 30", Bo = 0" and 
- 5 ' ,  where one should keep in mind that typical rms slope angles for 
even steep waves are less than IO". As Fig. 1 shows, the buoy- 
measured tilt and waveslope angle are equal at small slopes. 

Since rms slopes and angles for typical ocean waves are small, we 
intend to expand all quantities through the third order in 6 ,which is 
the slope amplitude of the sinusoidal waves assumed in (6); e.g., we 
let a z Z ,  - Z i / 3 ,  tanh U s U - u3/3 ,  etc. Finally, we substitute 
Z,(x, t) from (6) and expand the powers of trigonometric functions 
into their harmonics, retaining the lowest-order terms in radian 
angles and harmonics through the second to obtain 

0 = 60 - 6, sin 45 - 6* sin (245 - t 2 )  (n) 
where 6o -eo[i - ( 0 ~ / 8 , ) ~ / 3  - e o ( 6 / e , ) 2 / 2 ~ ,  6 ,  = 6[1 - (Bo/ 
e,)~ - (et, - 0; + 1)(s/2em)z1, h2 = (s2/2)[1 + e;(1/2 - et,)/ 
e",, and t 2  = &,/et,. Note that if there were no upper limit to the 
buoy tilt, so that 0 = a (or 8, + m), and there were no list, so that 

Authorized licensed use limited to: D Barrick. Downloaded on February 3, 2009 at 20:00 from IEEE Xplore.  Restrictions apply.



270 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 14, NO. 3 ,  JULY 1989 

Oo = 0, then ( 1  1) reduces to 0 E Z,(x, t )  = - 6 sin $ - (6'/2) sin 
2$, as it should. 

111. DISCUSSION OF NONLINEAR BIASES 

Because the random ocean surface to the lowest order is a sum of 
sinusoids (giving rise to a continuous spectrum) rather than the single 
sinusoid we considered here, the details of the nonlinearities will 
necessarily be different from our Stokes-wave model. Expressions 
for second-order nonlinear waves resulting from continuous spectra 
have been calculated, for example, in [6]-[8]. The order of 
magnitude of the biases they produce, however, are the same and 
furthermore, the simple models used here allow one to examine 
qualitively when and where to expect distortions in the sensor 
spectra. Since realistic waveheight spectra typically have sharp 
peaks, the ultimate narrow-band representation we have used here- 
i.e., a single sinusoid-is not that far from reality [8]. 

In order to meaningfully employ the above model, we choose 
parameters that are not exaggerated extremes. For tilt restraints we 
take Om = 30", 00 = 5" as it seems reasonable that the buoy hull and 
mooring design should not allow tilts beyond 30". The only nonlinear 
wave parameter we need is the slope amplitude 6 = ak (the rms slope 
corresponding to this amplitude is 6/J2). Longuet-Higgins [9] shows 
that the maximum value this parameter can attain is 0.4432. 
Mechanically generated waves in wave tanks report slope amplitudes 
as high as 0.3 [9], [IO]; when 6 is kept less than 0.11, breaking is 
precluded at the primary frequency [IO]. Let us take here 6 = 0.2; 
this gives an rms slope that is nearly the same as the JONSWAP 
spectrum [ I  11 under developing conditions when waves are breaking. 
(The spectrum was integrated out to four times the spectral peak 
frequency to obtain the rms slope.) It corresponds to an rms wave tilt 
angle of J(a2)  = 8", a condition that certainly should not be 
considered too extreme. These parameters will then give 6, a 0.926, 
62 a 1.02 (6'/2), and t2  * 18.2". 

Comparison of ( I )  and (7) shows that the vertically stabilized 
accelerometer completely omits the second-order nonlinearities 
present in the true wave profile. (A similar comparison of (1)  and (8), 
(9) shows that the second-order nonlinear term in the surface 
elevation obtained from the slope sensors and fixed accelerometer is 
underestimated by factors of 2 and 8/3, respectively.) Longuet- 
Higgins arrived at similar conclusions [9] when he studied the 
accelerations at the surface of a single periodic wave containing all 
nonlinear terms (with the trochoid as its limit). As the sharp crest of 
this wave passes a fixed point its acceleration tends toward infinity 
because of the abrupt change in slope across the crest; he showed that 
a free-floating buoy/particle observes no such sharp spike in 
acceleration, meaning that the device suppresses the nonlinear 
contributions. integrating acceleration twice to obtain the waveheight 
has the effect of dividing the nonlinear harmonic amplitudes by the 
square of harmonic frequency, further decreasing their relative 
contribution to height. Hence, although a trochoidal wave may 
have passed beneath the buoy, all it sees is a sinusoid. 

Since the directional spectrum at and near the peak is most 
important to users, we discuss the region within a factor of two of the 
peak frequency; this also covers most of the 5-20-s region measur- 
able by NDBC buoys. 

A .  Beyond the Spectral Peak 

The second temporal harmonic of the Stokes wave (for 6 = 0.2) is 
a factor IO  lower in amplitude than the fundamental, as seen in (1); in 
(spectral) power it is therefore lower by 100. Since (7) shows that the 
secord harmonic is missing entirely from the vertically stabilized 
accelerometer response to the Stokes wave, the buoy underestimates 
the true waveheight energy in this region. A continuous spectrum 

with a Phillips temporal law u-5  will drop by a factor -32 (i.e., 
0.03) from the peak to a (frequency) factor of two beyond the peak. 
Since our Stokes-wave analysis suggests that the nonlinear error at 
twice the peak is 0.01 of the fundamental spectral energy, the error 
with respect to the Phillips law may be of the order 0.01/0.03 a 30 
percent in this region. Our reasoning here is further supported by the 
analysis in [12] where a continuous Phillips spectrum is used to 
calculate the second-order temporal spectral contribution and is 
shown in [12, fig. 21. At a factor of 3 beyond the spectral peak the 
second-order waveheight level is 10 percent of the first order; if the 
buoy does not respond to second-order wave nonlinearities it will thus 
be in error by IO percent. Therefore errors due to nonlinearities in the 
region which lie at a factor of 2-3 beyond the peak frequency may be 
expected to produce waveheight energy biases 10-30 percent too low. 

B. A t  the Spectral Peak 
The buoy-tilt constraint modeled by (10) and ( I I ) ,  along with our 

assumed parameters, show that at the fundamental the slope 
amplitude is 0.92 and hence the slope energy is 0.84 of its true value. 
The actual directional height energy distribution (in terms of Fourier 
angular coefficients) depends on accurate, unbiased measurement of 
both height and slope energy. Hence this can be expected to be in 
error by 5-20 percent even at and near the spectral peak if the model 
for tilt constraint considered here is realistic. Direction itself, 
obtained essentially from the ratio of x-to-y tilt sensor output, will be 
biased somewhat if the current/wind/wave forcing on the mooring 
causes different values for Bo and Om in the two orthogonal directions. 

C. Below the Spectral Peak 
Although the solitary Stokes wave model produces no energy 

below the spectral peak, it does show that wavebuoys underestimate 
the second-order energy present in the wave. Continuous input 
spectra, however, do produce significant second-order energy below 
the peak; [12, fig. 21 demonstrates this even though the input first- 
order spectrum cuts to zero below the peak. Even wave-tank 
measurements with very narrow-band spectral energy (generated 
mechanically by a sinusoidally moving piston [lo, fig. 21) show 
energy at 1/2 the spectral peak frequency, down by a factor of 40 
from peak energy. 

Iv. SUPPORT FROM MEASURED DATA 

We examine data measured by a NDBC buoy (Discus Hull 10D4) 
at Site 46025 (46/25) off Port Hueneme, California, during the 
Spring of 1986. The calibration methods described in [3] have been 
applied. In particular, the signal time series from the various 
instruments were weighted with the parabolic window [3]. Because 
windows (or the absence thereof) in spectral estimation can deposit 
energy from a dominant peak (via sidelobes) at other frequencies 
where the true energy is low, one must be sure such effects do not 
bias the interpretation of data. Two assurances are offered: i) At the 
regions away from the spectral peaks examined here the sidelobe 
levels produced by the parabolic window are predicted to be many dB 
below the signal levels analyzed; ii) the same window was applied to 
data from all instruments over the same time periods and hence any 
sidelobe effect remaining in the data from different instruments at the 
same frequencies will cancel when their ratios are taken, as they are 
here. Also, we note that a fixed slope-to-height hull calibration factor 
measured for each frequency was applied (as described in reference 
[3]) over all data sets, i.e., this factor was not recalculated and 
changed versus time for each observation period; this is the only 
meaningful way to examine nonlinear effects that will vary versus 
time based on the wave intensity. 
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Fig. 2. The ratio of hourly readings during March 1986 of the nondirectional 
spectrum at 0.07 Hz from a fixed accelerometer (46025) to simultaneous 
measurements from a vertically stabilized accelerometer (46125) on the 
same hull. Measurements below three times the estimated electronic noise 
have been excluded. This illustrates the upward skewing of the distribution 
at low amplitudes below the spectral peak. 

From the analysis in previous sections we can now make a series of 
predictions on wave-buoy measurements below the spectral peak; we 
then show that measured data support these predictions. (The 
instrument signal levels for all data analyzed and presented here were 
at least 10 dB greater than the noise at the same frequency.) 

1) CO-located, strapped-down, and vertically stabilized accelerom- 
eters will produce inconsistent results for a wave elevation below the 
spectral peak when nonlinear wave energy is dominant, with the fixed 
accelerometer producing the higher, more accurate result. This effect 
is illustrated in Fig. 2 for data at a particular ocean wave frequency 
(0.07 Hz). 

2) From the properties of co-spectra C, measured by the vertically 
stabilized heave sensor and two slope sensors on a pitchholl wave 
buoy (labeled 1 and 2, 3,  respectively) it follows that 

If S, and s h  denote slope and height spectral energy measured by the 
buoy, respectively, then the ratio U should have the approximate 
dependence 

- s s  /sh . (13) 

Now, if s h  erroneously tends rapidly to zero below the spectral peak 
because it misses important second-order energy contributions, while 
S, still includes second-order energy, then U will exceed unity. This 
behavior is illustrated in Fig. 4, in which several hourly data records 
for U are plotted versus frequency. Fig. 3 shows the corresponding 
nondirectional spectra. 

3) As shown in [ 11, the output of the pitchholl wave buoy can be 
expressed as the first five coefficients of a Fourier series for the 
directional spectrum at each wave frequency: 

S ( f )  = ao/2  + (al cos 4 + bl sin 4) + (a2 cos 24 + b2 sin 24) + . . . 
(14) 

where the Fourier coefficients are given in terms of the CO- and quad- 
spectra through the relations 

UO=CII /T,  01 = Q I Z / ( ~ T ) ,  bl = Q , 3 / ( k ~ )  

hi 

- 

27 

Frequency (Hz) 

Fig. 3. The nondirectional spectrum obtained hourly from a vertically 
stabilized accelerometer between 03002 and 20002, May 6, 1986, off Port 
Hueneme, California. The spectrum corresponds to long-period swell from 
the Pacific. 

I ,  , , , , v ,  
0 . 0 0  0 0 5  0 . 1 0  0 . 1 5  0 . 1 0  0 . 1 5  0 . 3 0  

Frequency (Hz) 

Fig. 4. The ratio U of the height spectrum from the slope sensors to that from 
the vertically stabilized accelerometer plotted versus frequency. Times and 
location are the same as for Fig. 3. The value of U has been set to zero at 
frequencies where the spectral energy is less than 10 dB above the noise 
level. 

As the directional spectrum is necessarily positive, it follows from the 
Schwarz inequality that the ratios r l  and 12, as defined in [3] (for 
idealized spectra) and repeated here, 

rl = &a; + b;)/ao, r2 = J(az + b:)/ao (16) 

are less than unity. However, it follows from the above definitions 
that r l  and r2 depend on the slope and height spectral energy 
approximately as 

r l - d ( S s / S h ) ,  r2-SJSh. (17) 

H e n E  in the region below the spectral peak, where nonlinear energy 
dominates and s h  + s,, the instruments mounted on the buoy will 
indicate that both rl and r2 exceed unity and even further, than r2 will 
increase more rapidly than r l .  Fig. 5 shows how these conclusions are 
verified by the buoy data. 
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(b) 
The ratio rl versus frequency (a) and r2 versus frequency (b). Heave 

is also here obtained from the vertically stabilized accelerometer. Times 
and locations are the same as for Fig. 3. The values of rl and r2 have been 
set to zero when the spectral energy is below the noise level. Note that r2 
increases below the spectral peak more rapidly than r , ,  as is expected from 
equation (17). 

Fig. 5 .  

V. CONCLUSIONS 
The pitch/roll buoy has and will continue to provide useful wave- 

height directional spectral information. Users should be aware, 
however, that nonlinearities can be expected to produce presently 
unpredictable biases in height and slope energy of 5-15 percent near 
and above the spectral peak, and much greater bias below it. Two 
types are considered here: i) Wave nonlinearities themselves, which 
will cause bias even in a perfect buoy; and ii) nonlinear constraints 
within the buoy and mooring hydrodynamic response. Biases 
produced by both types of nonlinearities studied here increase in 
severity with the parameter 6, which is the wave slope of the 
dominant waves. 

For many oceanographic applications one can live with a 15 

malfunctioning; rather, this is the performance one will obtain even 
from a perfect, free-floating height/slope follower! 

Once the equations describing a nonlinear phenomenon are 
formulated exactly and all parameters affecting the nonlinear 
response are known (e.g., currents, winds, waves), it is theoretically 
possible to remove the bias. The above considerations and analysis 
suggest that these biases may be more easily removed or corrected 
either: i) In the time domain (i.e., by operation on the time series) 
before Fourier transforming to the frequency domain; or ii) in the 
frequency domain by calculating and applying a different calibration 
factor at each observation time. The efficacy of such methods is 
presently unknown. Nonetheless, some quantitative improvement in 
bias reduction can certainly be expected based on more detailed 
analysis of the nonlinear effects suggested herein. 
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