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Multiple Emitter Location  and Signal Parameter 
- - 

Estimation 
RALPH 0. SCHMIDT, MEMBER, EEEE 

Absfracf-Processing the signals received on an array of sensors for the 
location  of the emitter is of great enough interest to  have been treated 
under many special case  assumptions.  The general problem considers 
sensors with arbitrary locations  and arbitrary directional characteristics 
(gain/phase/polarization) in a noisehnterference environment of arbi- 
trary covariance matrix. This report is concerned first with the multiple 
emitter aspect of this problem and second with the generality of solution. 
A description is  given of the multiple signal classification (MUSIC) 
algorithm, which provides asymptotically unbiased estimates of 1) 
number of incident wavefronts present; 2) directions of arrival (DOA) (or 
emitter locations); 3) strengths and cross correlations among the incident 
waveforms; 4) noiselinterference strength. Examples and comparisons 
with methods based on maximum likelihood (ML) and maximum entropy 
(ME), as well as conventional  beamforming are included. An example of 
its use as a multiple frequency estimator operating on time series is 
included. 

T 
INTRODUCTION 

HE TERM  MULTIPLE signal classification  (MUSIC)  is 
used to describe experimental and theoretical techniques 

involved  in determining the parameters of  multiple  wavefronts 
arriving at an  antenna array from measurements  made  on  the 
signals received at the array elements. 

The  general  problem  considers antennas  with arbitrary 
locations and arbitrary directional characteristics (gaidphasel 
polarization) in a  noisehnterference  environment of arbitrary 
covariance matrix. The multiple signal  classification  approach 
is described; it can  be  implemented as an algorithm to provide 
asymptotically  unbiased estimates of 

1) number of signals; 
2) directions of arrival (DOA); 
3) strengths and cross correlations among  the directional 

waveforms; 
4) polarizations; 
5 )  strength of noisehnterference. 

These techniques are very general and  of  wide  application. 
Special cases of MUSIC are 

1) conventional interferometry; 
2)  monopulse direction finding (DF), i.e., using  multiple 
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colocated antennas; 
3) multiple  frequency estimation. 

THE DATA MODEL 

The waveforms  received  at the M array elements are linear 
combinations of the D incident wavefronts and  noise. Thus, 
the  multiple  signal classification approach begins  with  the 
following  model for characterizing the  received M vector X as 
in 

or 

X = A F +  W.  (1) 

The incident signals are represented in  amplitude  and  phase 
at  some arbitrary reference point (for instance  the origin of the 
coordinate system) by the complex quantities F,,  F2, - * , FD. 
The noise, whether “sensed”  along with the signals or 
generated internal to the instrumentation, appears as the 
complex vector W. 

The  elements of X and A are also complex  in general. The 
aij are known  functions of the  signal arrival angles  and  the 
array element locations. That is, aij depends  on the ith array 
element, its  position relative to the  origin of the coordinate 
system, and its response  to a signal  incident from the direction 
of the j th signal. The j th column  of A is a “mode”  vector 
48;)  of  responses to the direction of arrival 0, of  the j th signal. 
Knowing the mode vector a(&) is  tantamount to knowing 0, 
(unless a(&) = @(e2) with el # d2 ,  an  unresolvable situation, a 
type I ambiguity). 

In geometrical  language, the measured X vector  can be 
visualized as a vector in M dimensional space. The directional 
mode vectors a@,) = ai, for i = 1, 2, * - , M ,  i.e., the 
columns  of A ,  can  also  be so visualized. Equation (1) states 
that X is a particular linear combination  of the mode vectors; 
the elements of F are the coefficients of the combination.  Note 
that the X vector is confined to the range  space of A .  That  is, if 
A has  two columns, the range space  is  no  more  than a two- 
dimensional subspace within the M space  and X necessarily 
lies in the subspace. Also note  that a(@, the  continuum  of all 
possible  mode vectors, lies within  the M space  but  is quite 
nonlinear. For help  in  visualizing this, see Fig. 1. For 
example, in  an  azimuth-only direction finding system, 19 
will  consist  of a single parameter. In  an azimuth/elevation/ 
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Fig. 1. Geometric  portrayal for three-antenna case. 

range system, 8 will be replaced by 8,  4, r for example. In  any 
case, a(@ is  a vector continuum such as a “snake” (azimuth 
only) or a “sheet” (Az/EI) twisting and  winding  through  the 
M space. (In practice, the procedure by which  the a(@ 
continuum is measured or otherwise established corresponds 
to calibrating the array.) 

In these geometrical terms (see Fig. l ) ,  the problem of 
solving for the directions of arrival of multiple  incident 
wavefronts consists of locating the intersections of the a(@ 
continuum with  the range space of A .  The range space of A is, 
of course, obtained from the measured data. The means  of 
obtaining the range space and, necessarily, its dimensionality 
(the number D of incident signals) follows. 

THE S MATRIX 

The M X M covariance matrix  of  the X vector is 

or 

S=APA*+hSo (2) 

under the basic assumption that  the incident signals and  the 
noise are uncorrelated. Note  that the incident  waveforms 
represented by the elements of F may  be uncorrelated (the 
D x D matrix P & FF* is  diagonal) or may  contain  completely 
correlated pairs (P  is singular). In general. P will  be 
“merely” positive definite which reflects the arbitrary degrees 
of pair-wise correlations occurring between the incident 
waveforms. 

When the number of incident wavefronts D is less than the 
number of array elements M ,  then APA* is singular; it has a 

rank less than M .  Therefore 

IAPA*I = IS-XSol  =o. (3) 

This equation is only satisfied with X equal to one  of the 
eigenvalues of S in the metric of So. But, for A full rank  and P 
positive definite, APA* must  be nonnegative definite. There- 
fore X can only  be the - minimum eigenvalue Amin. Therefore, 
any  measured S = X X *  matrix can  be written 

where Amin is the smallest solution to IS - hSol = 0. Note the 
special case wherein the elements of the noise vector W are 
mean zero, variance u2,  in  which case, hminS0 = u21. 

C.4LCULATING A SOLUTION 

The rank of APA* is D and can be determined directly 
from the eigenvalues of S in the metric of So. That is, in the 
complete set of eigenvalues of S in the metric of So, Amin will 
not always be simple. In fact, it occurs repeated N = M - D 
times. This is true because the eigenvalues of S and those of 
S - X,,So =’ APA* differ by X,, in all cases. Since the 
minimum eigenvalue of APA* is zero (being singular), Amin 
must occur repeated N times. Therefore, the number of 
incident signals estimator is 

D=M-Jg ( 5 )  

where fi = the multiplicity  of Xmin(S, SO) and hmin(S, SO) is 
read “Xmi, of S in the metric of So.” (in practice, one can 
expect that the multiple Amin will occur in a cluster rather than 
all precisely equal. The  “spread” on this cluster decreases as 
more data is processed.) 

THE SIGNAL AND NOISE SUBSPACES 

The M eigenvectors of S in the metric of So must satisfy 
Sei = hjSoei, i = 1, 2, * - , M. Since S = APA* + XminSO, 
we have APAXej = ( X i  - hmi,)Soei. Clearly, for each of 
the Xi  that is equal to hmi,-there are N-we  must have 
APA*ei = 0 or A*ej = 0. That is, the eigenvectors 
associated with X,,(S, So) are orthogonal to the space spanned 
by the columns of A ;  the incident signal  mode vectors! 

Thus we  may justifiably refer to the N dimensional subspace 
spanned by the N noise eigenvectors as the noise subspace and 
the D dimensional subspace spanned by the incident signal 
mode vectors as the signal subspace; they are disjoint. 

THE ALGORITHM 

We now have the means to solve for the incident signal 
mode vectors. If Ex is defined to be the M x N matrix whose 
columns are the N noise eigenvectors, and  the ordinary 
Euclidean distance (squared) from a vector Y to the  signal 
subspace is d2 = Y*E,&;.Y, we  can  plot l ld2 for points 
along the a(@ continuum as a function of 8. That is, 

(However, the a(@ continuum may intersect the D dimen- 
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sional signal subspace more than D times; anouther unresolva- 
ble situation occurring only for the case of  multiple  incident 
signals-a type II ambiguity.) It is clear from the expression 
that  MUSIC is asymptotically unbiased  even for multiple 
incident wavefronts because S is asymptotically perfectly 
measured so that EN is also. a(@ does not  depend on the data. 

Once the directions of arrival of the D incident signals have 
been found, the A matrix becomes available and may  be  used 
to compute the parameters of the incident signals. The solution 
for the P matrix is direct' and can be expressed in terms of 
(S  - X-So) and A .  That is, since APA* = S - hminSo, 

P = ( A * A ) - ' A " ( S - X ~ S o ) A ( A * ~ ) - ' .  (7) 

INCLUDING POLARIZATION 

Consider a signal arriving from a specific direction Bo. 
Assume that the array is not diverse in polarization; i.e., all 
elements are identically polarized, say, vertically. Certainly 
the DF system will be  most sensitive to vertically polarized 
energy, completely insensitive to horizontal and partially 
sensitive to arbitrarily polarized energy. The array is only 
sensitive to the vertically polarized component of the arriving 
energy. 

For a general or polarizationally diverse array, the mode 
vector corresponding to the direction Bo depends on the signal 
polarization. A vertically polarized signal will  induce  one 
mode vector and horizontal another, and right-hand circular 
(RHC) still another. 

Recall  that signal polarization can be  completely character- 
ized by a single complex number q. We can "observe" how 
the mode vector changes as  the polarization parameter q for 
the emitter changes at the specific direction Bo. It  can  be 
proven  that as q changes through all possible polarizations, the 
mode vector sweeps out a two-dimensional "polarization 
subspace." Thus, only two independent mode vectors span- 
ning the polarization subspace for the direction Bo are needed 
to represent any emitter polarization q at direction eo. The 
practical embodiment of this is that  only the mode vectors of 
two emitter polarizations need  be calculated or kept  in store 
for direction Bo in order to solve for emitter polarizations 
where only  one  was  needed to solve for DOA in a system  with 
an array that  was  not polarizationally diverse. 

These arguments lead to an equation similar to (6) for P(8) 
but including the effects of polarization diversity among the 
array elements. 

where a,(@ and a,(@ are the two continua corresponding to, 
for example, separately taken x and y linear incident  wave- 

I (added in reprint)  Equation (7) is true if So, the  noise  covariance  matrix,  is 
the  identity  matrix. In general,  although  there are many estimators of P,  the 
least squares estimate  based  on X = AF + W with WW* = X,,.& requires 
whitening which  leads  to 

P=(A*S,'A)- 'A*S,' (S-~, , ,So)S, 'A(A*So'A)- ' .  (7) 
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Fig. 2. Block  diagram  for  multiple  signal  classification. 

front polarizations. The eigenvector corresponding to Amin in 
(8) provides the polarization parameter q since it is of the form 

THE ALGOIUTHM 

In summary, the steps of the algorithm (see Fig. 2) are: 

Step 0:  collect data, form S; 
Step 1: calculate eigenstructure of S in metric of So; 
Step 2: decide number of signals D; ( 5 ) ;  
Step 3: evaluate P,,&) versus 0; (6) or (8); 
Step 4: pick D peaks of PMu(8); 
Step 5: calculate remaining parameters; (7). 

4IT. 

The above steps have  been  implemented  in several forms to 
verify  and evaluate the principles and  basic performance. 
Field tests have  been conducted using actual receivers, arrays, 
and  multiple transmitters. The results of these tests have 
demonstrated the potential of this approach for handling 
multiple signals in practical situations. Performance results are 
being prepared for presentation in another paper. 

COMPARISON W m  OTHER METHODS 

In comparing MUSIC with ordinary beamforming (BF), 
maximum likelihood (ML), and maximum entropy (ME), the 
following expressions were used. See Figs. 3 and 4. 

PBF(e) = a*(e)sa(e) 
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where c is a column of S -  I .  The beamformer expression 
calculates for plotting the power one would measure at the 
output of a beamformer (summing the array element signals 
after inserting delays appropriate to steer or look in a specific 
direction) as a function of  the direction. 

PblL(0) calculates the log likelihood function under the 
assumptions that X is a mean zero, multivariate Gaussian and 
that there is only a single incident wavefront present. For 

multiple incident wavefronts, p M L ( 8 )  becomes 

which implies a D dimensional search (and plot!). 
&(e) is  based on selecting one of the M array elements as 

a “reference” and attempting to find weights  to be applied to 
the remaining M - 1 received signals to permit their sum with 
a MMSE fit to the reference. Since there are M possible 
references, there are M generally different PklE(8) obtained 
from the M possible column selections from S -  I .  In the 
comparison plots, a particular reference was consistently 
selected. 

An example of the completely general MUSIC algorithm 
applied to a problem of steering a multiple feed parabolic dish 
antenna is shown in Fig. 5.  sin x / x  pencil beamshapes  skewed 
slightly off boresight are assumed for the element patterns. 
Since the six antennas are essentially colocated, the DF 
capacity arises out of the antenna beam pattern diversity. The 
computer was  used to simulate the “noisy” S matrix  that 
would arise in practice for the conditions desired and  then to 
subject it to the MUSIC algorithm. Fig. 5 shows how three 
directional signals are distinguished and their polarizations 
estimated even though two of the amving signals are highly 
similar (90 percent correlated). 

The application of  MUSIC to the estimation of the frequen- 
cies of multiple sinusoids (arbitrary amplitudes and phases) for 
a very limited duration data sample is shown  in Fig. 6. The 
figure suggests that, even though there was no actual  noise 
included, the rounding of the data samples to six decimal digits 
has already destroyed a significant portion of the information 
present in the data needed to rcsolvc thc several frequencies. 

SUMMARY AND CONCLUSION 

As this paper was  being prepared, the works of Gething [l] 
and  Davies  [2] were discovered, offering a part of the solution 
discussed here but  in terms of simultaneous equations and 
special linear relationships without recourse to eigenstructure. 
However, the geometric significance of a vector space setting 
and the interpretation of  the S matrix eigenstructure was 
missed. More recent work by Reddi [3] is also along the lines 
of the work presented here though limited to uniform, 
collinear arrays of omnidirectional elements and also without 
clear utilization of the entire noise subspace. Ziegenbein [4] 
applied the same basic concept to time series spectral analysis 
referring to it as a Karhunen-Loeve transform though treating 
aspects of  it as “ad hoc.” El-Behery  and MacPhie [5] and 
Capon [6] treat the uniform collinear array of omnidirectional 
elements using the maximum likelihood method. Pisarenko [7] 
also treats time series and addresses only the case of a full 
complement of sinusoids; i.e., a one-dimensional noise 
subspace. 

The approach presented here for multiple  signal classifica- 
tion  is very general and of wide application. The method is 
interpretable in terms of the geometry of complex A4 spaces 
wherein the eigenstructure of the measured S matrix  plays the 
central role. MUSIC provides asymptotically unbiased esti- 
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Fig. 6. Example of MUSIC used for frequency  estimation. 

mates  of  a general set of signal parameters  approaching the 
Cramer-Rao  accuracy bound. MUSIC models the data as the 
sum of point source  emissions and  noise rather than the 
convolution of an all pole transfer function driven by  a  white 
noise (i.e., autoregressive modeling, maximum entropy) or 
maximizing  a  probability  under the assumption  that the X 
vector is zero  mean, Gaussian  (maximum  likelihood for 
Gaussian data). In geometric  terms MUSIC minimizes  the 
distance from the a(@ continuum to the  signal  subspace 
whereas  maximum  likelihood  minimizes  a  weighted  combina- 
tion all component distances. 

No assumptions have been  made  about array geometry.  The 
array elements may be arranged in a regular or irregular 
pattern and  may differ or be  identical  in directional character- 
istics (amplitude/phase)  provided their polarization character- 
istics are all identical. The  extension to include general 
polarizationally diverse antenna arrays will  be more com- 
pletely described in  a separate paper. 
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