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Least-Squares  Methods  for  the  Extraction  of  Surface 
Currents  from CODAR Crossed-Loop  Data: 

Application  at  ARSLOE 
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Abstract-Least-squares  methods are  demonstrated  that  extract 
surface  current  radial velocities from  first-order  Coastal  Ocean 
Dynamics  Applications  Radar  (CODAR)  sea-echo  Doppler  spectra  for 
the  compact  crossed-loop/monopole  antenna  system. Based on the 
known  physics of first-order  sea  scatter  at HF, these  techniques, 
implemented  as  software,  are  objective  and  automatic  in  that  they:  a) 
determine  from  the  sea-echo  phase  and  amplitude  correction  factors 
for  the  antenna  elements;  b)  separate  the  first-order  spectrum  from 
the  surrounding  continuum  for  arbitrarily  varying  current  condi- 
tions:  c)  using  statistical  hypothesis  testing, select and use either  a 
single or  dual-angle model  for  radial  current  patterns,  whichever  best 
fits  the  data:  d)  calculate  angles  associated  with  given  radial velocities; 
e)  combine  the  data  into  a  polar-coordinate  map of radial velocity 
versus  position;  and f) calculate  radial velocity uncertainties  at  each 
point  on  the  map. In addition,  as  interpretive  aids,  two  methods  are 
evaluated  and  compared  that  provide  total  current  vectors  from 
single-site  CODAR  data,  along  with  their  uncertainties:  model  fitting 
and  the  application of the  equation of Continuity. It is shown how these 
methods  can  be  applied  to  the  older,  CODAR  4-element  antenna 
system,  however,  the  following  advantages of the  crossed-loop/mono- 
pole  system are discussed:  it  is  physically  more  compact:  analysis 
procedures  are  more  efficient:  resulting  current velocities are  more 
accurate,  because  there  are no side-lobe  problems:  and  finally,  it also 
gives  the  ocean  wave-height  directional  spectrum. 

These  methods  are  tested  and  optimized  against  data  taken  during 
the  Atlantic  Remote  Sensing  Land  Ocean  Experiment  (ARSLOE) 
storm  (October 23-27,  1980), when surface  currents  varied  in  speed 
between 0-50 cm/s and over  nearly 300" in  angle.  Current velocities 
were  measured  to  a  range of 36 km from  the  radar.  Standard  devia- 
tions  in  angle  are  typically 1'-3"; these  translate  to 2-3 cm/s  rms 
radial velocity  uncertainties  over  most of the  coverage  area, with 
decreased  accuracy  in  angular  sectors  nearest  the  coast.  Total  current 
velocity  vectors  in  strips  parallel  to  shore  obtained from model  fitting 
have  typical  speed  and  angle  uncertainties of 4  cm/s  and 12", respec- 
tively. Of the  several  formulations  for  the  equation of continuity 
evaluated  here,  the  best  gave  uncertainties of 5 cm/s, 12" at  the closest 
range  cells;  these  values  increase  rapidly  with  range  to  exceed 20 cm/s, 
30" for  distances  greater  than 20 km. 

The surface  currents  were  observed  to follow the wind throughout 
most of the  storm  at  ARSLOE,  but  the  current was almost  always 
more  closely  parallel  to  the  shore  than  the  wind. An interesting ex- 
ception  occurred  when  the  onshore  storm wind that had  prevailed  for 
two  days  ceased:  there  was  a  rush of surface  current  directly  offshore 
as  the  storm-surge  sea level dropped.  The  surface  current  speed 
measured by CODAR in the  upper  meter of the  ocean was, on the 
average, 2.1 percent of the  windspeed. 

Manuscript  received  March 7, 1983; revised July 28,  1983. This 
work  was  supported in part by the NOAA Coastal Waves Program, and 
in part by Gulf Oil Exploration  and  Production  Company. 
B. J. Lipa is with  Ocean  Surface  Research,  Woodside, CA 94062. 
D. E. Barrick is with  Ocean  Surface  Research,  Boulder,  CO 80303. 

I. INTRODUCTION 

T" E MEASUREMENT of  currents near the  ocean surface 
1s difficult using conventional systems, and  the  formation 

of fine-resolution current maps at  a given point in time  has 
been virtually impossible. These currents in the  upper  meter 
are highly variable temporally  as well as spatially,  being driven 
(as are all currents)  by  geostrophic  forces,  tides, and runoff 
from rivers, but especially influenced  by the local surface 
wind and wave fields. Tracking of  dye  and  drifting  buoys has 
been  employed  historically, but gathering and  interpreting 
such  data  (either  with shore-based or aircraft/spacecraft  sen- 
sors) is expensive for  the sparse spatial sampling provided. Near 
shore where considerable  maritime  activity  occurs, routine 
continuous  monitoring of surface currents in both space and 
time is becoming increasingly desirable. 

Nearly three decades  ago,  Crombie [ l ]  discovered experi- 
mentally that  HF radar signals backscattered from  the rough, 
moving sea surface select as their  dominant targets ocean wave- 
trains (or spectral components)  of precisely half the radar 
wavelength X. Spectrally  analyzed, these first-order sea-echo 
signals appear as dominant  peaks  surrounded  by  a  continuum 
due  to higher order  scatter  and noise. In the absence of ocean 
surface currents,  the first-order  peaks occur  at  two discrete 
frequency positions  symmetrically  arrayed about  the radar 
carrier frequency. Their displacements, or Doppler  shifts,  are 
directly proportional to the phase velocity of the Bragg-scat- 
tering  ocean wavetrains, of h/2 wavelength, through  the 
gravity-wave dispersion equation. Barrick [2] related their 
amplitudes to  the wave height  directional  spatial spectrum 
evaluated at  the Bragg wavenumber 2k0 (=47r/h). Crombie 
[3] first showed that  a smaller Doppler  shift detectable  by 
HF radars was a measure of  currents  transporting  the Bragg- 
scattering ocean waves; he  demonstrated this  qualitatively 
with a small, 2-element, direction-finding receiving antenna  by 
looking at the  strong flow of  the Gulf Stream  east of Florida. 
In this  sense, the scattering  ocean waves are tracers of  the  un- 
derlying currents moving radially toward the radar, much 
as chaff reflectors are used to  detect wind velocities with 
microwave radars. Narrow-beam radar investigations at  San 
Clemente Island by  Stewart  and  Joy [4] and Barrick etal. [5] 
proved the qualitative  accuracy of this technique,  and  demon- 
strated  that  currents in layers of varying depth  could  be meas- 
ured by changing the radar operating  frequency,  and hence the 
wavelength of the Bragg-scattering ocean waves. Narrow-beam 
radars at HF have antennas  hundreds  of  meters long;  their 
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practicality for coastal and offshore  applications is therefore 
limited. Skywave  narrow-beam  radars at HF use ionospheric 
reflections to observe the ocean to distances of  thousands  of 
kilometers. Ocean wave parameters  can  be extracted  from sky- 
wave echo,  but measurements of  current velocities are compli- 
cated  by  unknown ionospheric  movements; usually current 
measurement  of coarse spatial resolution is possible only in the 
vicinity of fixed  targets such as land, islands 163. Narrow-beam 
dual-frequency microwave radars have successfully measured 
surface current velocities with  a high degree of spatial  resolu- 
tion [7] ,  (81, but  the observations  are  limited to line of sight. 

In  order  to  adapt HF radar to fill the need for  monitoring 
coastal currents, NOAA’s Wave Propagation Laboratory began 
a program  in 1975  to develop a  compact,  transportable system 
that could map surface currents in near-real  time. Called 
CODAR (Coastal Ocean  Dynamics  Applications Radar),  this 
system operated at -25 MHz, thereby backscattering from 
-6-m ocean waves [9]. Using small (and  hence nearly omni- 
directional)  separate  transmit and receive antennas, this sys- 
tem  determined  the bearing to  a scattering  element  with a 
given Doppler frequency by using a 4-element  direction-finding 
antenna  concept [ lo ] .  With a range of -60 km from  shore, 
this  system has been  used successfully in some 14 experiments. 

In  later  efforts to  extend CODAR to measure coastal  ocean 
wavefields [ l l ]  , an even more  compact  antenna system was 
devised, consisting of  three elements: two crossed loops  and  a 
monopole, which will be referred to as the CODAR loop sys- 
tem.  It measures -2-m high and  -0.6-m laterally. (See Fig. 1) 
This antenna  forms and scans a beam electronically, rather 
than relying on  the earlier direction-finding  concepts. It was 
initially envisioned only  for  monitoring  the waveheight direc- 
tional  spectrum  from  the second-order  echo. However, varia- 
tion  of radial currents across the broad beam was found  to de- 
grade the wave spectral  resolution obtainable in some situa- 
tions,  and  hence we began developing methods  to measure the 
surface currents  from  the  Fist-order  echo so that  they could 
be removed from  the second-order  echo. In  the process, we 
found  that  the  loop system can in fact measure  surface cur- 
rents  with several advantages over the previous NOAA 4ele- 
ment system.  This  paper develops, presents, and  demonstrates 
the analysis methods  that accomplish  this,  starting  with the 
voltage time series from  the three antennas  and ending  with 
current velocity  maps. 

The analysis is automatic  throughout, including  derivation 
of hardware calibration  factors  from  the sea echo  and  the iso- 
lation  of  the first-order spectrum  from  the surrounding con- 
tinuum. Signal analysis is based on  the least-squares method 
and provides an objective treatment  of all available data using 
the  known signal statistics. These methods require  detailed 
knowledge of the statistical distribution of the signal, its  co- 
variance matrix  and  correlations as a  function  of range and 
frequency.  Theoretical expressions  are given for these quanti- 
ties; we verify the  theory by analyzing unaveraged experi- 
mental  data.  The  random  nature of the signals originates  be- 
cause the sea echo itself is a Gaussian random variable [ 171 
and  contains  an additive Gaussian noise component.  The sig- 
nal uncertainties are propagated  through the analysis, and 
must be traced throughout, firstly in order  that  the  data may 
be properly  combined  at each  stage and secondly so that  un- 

Fig. 1. Photosaph of  the CODAR crossed-loop/monopole  antenna at  
ARSLOE. Vertical  height is =2 m. Efficient  operation at  25-26 MHz 
is achieved by inductive  energy  coupling  from  the  large  copper  outer 
loops via the smaller inner loops. 

certainties in the final results will be available. This is easily 
accomplished  with standard least-squares  procedures. The  end 
result is a  current velocity map with uncertainties provided at 
every point. 

The analysis presented here is the first complete statistical 
treatment of data from  a CODAR system. Numerous com- 
parisons have been made between CODAR measurements 
made  by the NOAA 4-element system and  other  instrumenta- 
tion  [9] , [13]  -[MI ; these intercomparisons  show agreement 
in velocity ranging between  5  and  25  cm/s.  Instrument  inter- 
comparisons have only  a limited use in the  interpretation of 
CODAR velocity uncertainties,  however, since different  en- 
vironmental conditions (winds/waves) varying with  time and 
position  on  the ocean can significantly change the accuracy 
of CODAR results. In addition, it has been mentioned  [13] 
that use of different processing software  on  the same data  set 
can lead to nontrivial  differences  in the  extracted radial  cur- 
rent velocities, clearly indicating the need for  error  estimation. 
What is really required is an estimate in the  uncertainty of 
each current vector every time  a  map is produced. Analysis 
methods  for  the NOAA 4-element  system have been based on 
closed-form  calculations of signal direction [9] ,   [ lo ] ,  [ 161 
and  do  not readily  provide  estimates of  uncertainty  from  the 
sea-echo data. This is one  of  the  important advantages of least- 
squares  techniques; we show in this  paper how  our  methods 
could be applied  directly to  the NOAA 4element system to 
give least-squares  estimates of current velocities and their 
uncertainties;  however, we also show  that analysis of data from 
the  loop system is simpler and more  accurate. 

ARSLOE  provided  particularly interesting  conditions with 
which to develop and  demonstrate  our  methods  for  extracting 
currents. Only one CODAR site was deployed, since we 
originally intended to measure only  the ocean wave spectrum 
at ARSLOE;  normal CODAR measurement of surface currents 
involves the  combination  of vectors from  two sites to give the 
total  current velocity. Over a period from  October 22 through 
October  27,  1980,  a  storm occurred  off the Eastern  coast. 
Starting  from very calm,  quiescent wave and  current condi- 
tions,  the wind began blowing steadily toward shore from  the 
Northeast at 10-15 m/s  for -60 h, developing strong wave 
and storm-driven currents;  the  latter  opposed  the normal flow 
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in  that area very near  shore, as dstermined  by observations of 
dye packages dropped daily from  the  end of a  pier 0.5 km 
from  shore.  On  October  25,  the wind turned  to  Southeast,  and 
ended blowing strongly from  the West for -36 h ,  quieting  by 
October  27.  Currents followed the wind in  direction, ending 
finally  in their  normal  pattern near shore: South to North. 
Therefore,  the radial current velocity  spread and  the direc- 
tional  pattern varied considerably over this period, allowing 
us to exercise and  optimize  our algorithms under a  wide range 
of  conditions. Finally,  since we had data from only one  site, 
we developed and evaluated two  methods  for deducing total 
current vectors and  their  uncertainties  from single-site CODAR 
data  at ARSLOE:  model-fitting and  application of the  equa- 
tion  of  continuity.  The  total  current vectors derived provide  a 
consistent  picture  of coastal  surface-current patterns  that de- 
velop under a rather  complex storm. 

Fig. 2 is an example of the sea-echo  Doppler power spec- 
trum measured at ARSLOE  during the  storm  on  the  monopole 
antenna. Having a  spectral  resolution of 0.00745  Hz, this plot 
is an average of 16 individual  power  spectra at sequential  times 
134 s apart. Recorded when the wind was blowing onshore 
from 25" North  of  the perpendicular to  the coast at -12 m/s 
for -30 h,  this spectrum illustrates the  typical  features  of CO- 
DAR sea echo: a) dominant first-order peaks, somewhat 
broadened by currents  and stronger on the positive Doppler 
side because of onshore  winds and waves, and b) a pronounced 
second-order region resulting from  the  storm waves present 
(with -3-m significant waveheight). The ocean current veloc- 
ities in  a range cell are  obtained  from  the first-order spectrum 
as follows: the  Doppler frequency of each  spectral point de- 
fmes  a value of radial current  velocity;  the sea echo received 
by  the broad-beam antennas  at a given frequency  comes  from 
one  or  more directions,  which are derived from  the  data using 
the  known  antenna patterns.  This gives the angle as a function 
of radial velocity;  the inversion of  this  function gives the veloc- 
ity versus angle, i.e., the  current map. 

In  the  next  section we present  a  description of  the CODAR 
loop  antenna system, as it was developed for  and  operated  at 
ARSLOE. Section 111 gives a theoretical description of the 
physics and resulting  analytical methods used for  extracting 
surface currents  from  the  loop system. In  Section IV we de- 
scribe the  application  of these methods  to  the ARSLOE data 
set  and present the resulting current  patterns observed by 
CODAR during the  October storm. In  order  that this manu- 
script  can serve as a  self-contained  reference, we support gen- 
eral descriptions of  the  methods given  in the  text with de- 
tailed  appendices. AppendixA presents  elements of  those least- 
squares and error-propagation methods  that we have employed 
for estimating  data products  and uncertainties.  Appendix B 
gives statistical properties  of cross spectra that we use to derive 
the data covariance matrix  for  uncertainty calculations.  Ap- 
pendix C verifies the statistical theory  on which the analysis 
methods are based by treating unaveraged data  measured at 
ARSLOE. Appendix D describes an  automatic  technique  for 
separating the first-order spectrum  from  the  surrounding  con- 
tinuum; this method is based on knowledge of  the  nature  of 
the  spectrum  (both sea-echo and noise) and can be  applied for 
varying current regimes. Appendix  E shows how these meth- 

Sm-Echo Doppler SpeCiNm 
at 25.4 MHz 

-1.0 -10 0 fa +1.0 

Fig. 2. Example of a sea-echo Doppler  spectrum  measured at ARSLOE 
with the  monopoleantenna  on  October  24,19230 GMT, when  winds 
and waves were  onshore from 0:45 T. Sixteen  independent  power 
spectral  samples  were averaged to produce  the  spectrum;  the  he- 
quency  resolution is 0.007451 Hz and  the Bragg frequency is 0.5 14 
Hz. 

Doppler Shift, liz 

ods can be applied to give the same data  products  and  un- 
certainties from  the CODAR 4-element system. 

11. THE CODAR LOOP SYSTEM AT ARSLOE 

The  actual hardware for  the  loop  antenna system deployed 
at ARSLOE was a  considerable improvement over that used in 
an earlier CODAR experiment at  Pescadero,  CA, during  January, 
1978 [ l l ]  , [22]. As described in [ l l ]  , a loop  that is suffi- 
ciently small electrically to have a  cosine radiation  pattern (i.e., 
appear as a  magnetic  dipole) also has a very low  radiation re- 
sistance. With the circumference less than  0.3  times  the radar 
wavelength, the  radiation resistance is of  the  order  of 1 !2 or 
less, although  the inductive part of the impedance is much 
higher. In the process of eliminating the inductive  reactance 
by  resonating  with an equal capacitive reactance,  and trans- 
forming  the remaining resistive component up to  standard 
transmission-line values, small ohmic resistances in the wires 
become larger along with the  radiation resistance. Therefore, 
small loop systems are lossy; the system operated  at Pescadero 
was some 20 dB  less efficient than a monopole resonant at  the 
same frequency (i.e., 25.4 MHz). 

One way of reducing ohmic losses and  therefore increasing 
efficiency is to increase the  copper  conductor  diameter,  to  the 
point where it is in  effect  a pipe;  that used at  ARSLOE was 
hollow, with an  outer diameter of approximately 4 cm. The 
method  of feeding  a single loop efficiently was developed and 
patented  by  Antenna Research Associates [23] ; this  method 
employs  a much smaller,  inner loop near the base of-and co- 
planar  with-the larger loop.  Therefore,  there is no direct line 
excitation  of  the  main, radiating loop; capacitive tuning occurs 
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at  the  top of the  outer  loop. This design allows the  loop to 
radiate 2-3 dB more efficiently than  a quarter-wave  monopole. 

The primary and  truly novel adaptation  of this proven, sin- 
gle-loop technique  to  our CODAR  application was designed 
and  patented by Carr [24]. This puts  two  such rigid pipe 
loops (each with  its smaller,  coplanar  exciting loop) in orthog- 
onal planes, as shown in Fig. 2. Again, each loop is tuned 
separately  by  capacitors at  the  top  of  the  outer loops. The 
copper pipes  in the  outer  loop  structures are welded together. 
No insulation is necessary to isolate the  outer radiating loops 
because they are  geometrically orthogonal to each other; elec- 
trical  tests  showed the  isolation between them  to be better 
than  50 dB. 

Unlike the Pescadero antenna system  in  which an electrically 
separate  short  monopole was located  beneath  the  two  loops 
(colinear with  the  intersection  of their planes), here the  cop- 
per stem below is simply  welded to  the crossed-loop  frame. 
The  entire  structure, all electrically continuous,  therefore 
serves as the  “monopole”,  or E-field  radiator. The  symmetri- 
cal,  electrically small crossed-loop  frame on  top  of  the vertical 
frame  acts much like “top-hat’’ radials sometimes used on  a 
monopole, serving to reduce  its  resonant  length and increase 
its  bandwidth  somewhat.  Therefore,  there is no electrical  in- 
sulation anywhere  between the  three effective  elements (two 
loops  and  the monopole) that comprise the  upper radiating 
structure.  A 4-element  quarter-wavelength  radial counterpoise 
(located  in the same planes as the  crossedloops) served as both 
the  ground plane for  the  monopole  and as a mechanical stand 
for  the vertical structure.  Standing less than  2  m in height, 
the device weighs about  20 kg. 

The  pattern  of  the  “monopole” was observed to  be indeed 
isotropic.  The  loop power patterns were  measured on  a  turn- 
table in  Boulder, and  are  shown in Fig. 3. Departures  from  the 
desired cosine-squared pattern are always less than 10 percent 
in power,  with  a  standard deviation  between the measured and 
desired over the  entire  patterns  of -2.7 percent. At  ARSLOE, 
the  structure was operated  from  a dune ridge parallel to  the 
water,  about 5 m in height and back about 30 m from  the 
water. At  the site the power pattern was again verified by tests 
with a  transponder on  a  boat  that  took  up different azimuthal 
positions at  constant range. 

This crossed-loop/monopole structure is used only for re- 
ception. Transmission is accomplished  with an  omnidirectional 
monopole  located  about 30 m away. The  loop planes were po- 
sitioned approximately  45” with respect to  the straight coast- 
line. Power probes were located 80 m  away,  on  the shoreward 
side, one each  in the loop planes and  one bisecting the planes 
(along the perpendicular to  the coast). These were used period- 
ically over the  two-month  experiment  to verify that  the  an- 
tennas were functioning  properly. 

During  radar operations, 8-ps pulses were transmitted every 
2’ ps .  One  each of  the  three  antenna elements were sequentially 
sampled after transmission of each  pulse,  along  with a  fourth 
dummy-load port,  to receive the signal over the time  span be- 
tween  consecutive transmitted pulses. Each receiving element 
was thus revisited every 2l ps .  For sea echo with a typical 
Doppler spectrum between 21 Hz from  the carrier, reception 
on “sequential” pulses this close together is therefore con- 

Fig. 3. Power patterns  for  the crossed-loops  measured on a  turntable 
(dots  and crosses) compared to the  theoretical cosine-squared  pre- 
diction; scale is linear in normalized power, with  circles a t  1.0 and 
0.5. Position  of  feed  cable  beneath  the  antenna  (shown  by  the 
dashed  line)  may  have  caused  the  slight  distortions  from  ideal. 

sidered  “simultaneous”. Because the CODAR system at  that 
time  retained  only 32 range samples (starting  from shore), we 
could  analyze data  out t o  37.8 km with our 8-ps pulsewidth. 

The  loop radiation patterns must have equal  amplitudes 
with each other  at  their maxima and also with the  monopole; 
their phase differences  must all be zero  (for  the positive loop 
lobes). In  reality, because of  the symmetrical design, the crossed 
loops always maintained  the desired amplitude/phase relation- 
ships to each other during  normal  operations. The slight  de- 
partures from  the cosine-squared power  patterns,  and  the  con- 
tinuous  but rapid phase transition  that  approximates  the  theo- 
retical 180” discontinuity  at  the null between  the positive and 
negative lobes, were studied in simulations.  These departures 
from ideal were shown to  produce biases in the  data (in an- 
gle of arrival) that are less than  the  standard deviation due to  the 
sea-echo’s statistical fluctuations,  and  hence can be ignored. 
The  amplitude  and phase mismatches  between the  loops  and 
the  monopole were not eliminated in hardware; it is much 
easier to remove these in the software (as described  subse- 
quently)  than  to  attempt  to keep the hardware  matched. 
Both  the sea-echo data,  the  probe  tests,  and  the ship  calibra- 
tion tests showed  that indeed these loops are more efficient 
antenna  elements  than  the  monopole,  by 1-2 dB. 

111. ANALYSIS TECHhrIQUES FOR THE CODAR 
LOOP SYSTEM 

This  section gives a  complete description of analysis tech- 
niques used to  produce  current vector  maps from  the voltage 
time series measured by  the three antennas. In Section 111-A 
we describe  initial  data processing: the analysis starts  .with 
the  Fourier-transformation of the voltage time series and  the 
formation of conjugate voltage products  (or cross spectra), 
followed by  the  combination  of signals to effect  the  rotation 
of  a  broad beam over the ocean  surface. The angular Fourier 
coefficients of the broad-beam  return are then calculated; 
these  may be regarded as convenient intermediate data prod- 
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Each  spectral value is a complex Gaussian random variable. 
Conjugate products of the voltages are then  formed;  they (4) reduces to 
arg crooss-spectral estimates of infmite ensemble averages 
(Vi (o )~*(a ) ) .  Before further analysis, the  amplitude  of  the 
antenna  patterns  must be adjusted to be equal  at  their beam 
maxima  and relative phase corrections applied to equalize the ( I (a) 1 2 >  = $ 1: cos2 #o(a, #) dQ 
phase  paths. It is only the relative gain between the  loops  and 
the  monopole which must  be equalized; the  absolute value of where we have written 
the  monopole beam  maxima is irrelevant t o  this analysis. 

vanes as cos # where the angle Q is taken relative to  the beam - G~)) o(w, # 1 ) 6 ( ~ 2  - @l) 
1 

maximum;  the crossed loop  at right angles has  a pattern sin Q 2Y 
with respect to the same axis. The  complex voltage spectra at  
any  frequency can be expressed in terms of  the sea-echo pat- where o(w, bb) is the narrow-beam  radar cross section, with 
tern as follows: similar relationships for  the  other  antennas 

A single electrically small loop has  a voltage pattern which 
( 6 )  

(3) Combining (5), (7), and (8) gives 

where aa, #) is the  complex, narrow-beam sea-echo, vertically 
polarized  E-field return  at a given angle and y is the angle sub- 
tended by the coastline at  the radar (Fig. 4). In the presence 
of phase and  amplitude mismatches of  the  loops  with respect 
to  the  monopole,  the right-hand  sides of (1) and (2) must be 
multiplied by  the complex correction factors aleie 1 and 
a2ge 2 .  We will now describe how these factors may  be  calcu- 
lated  from  the  data. 

The measured squared voltage can be written as follows: 

where the angular brackets  denote  infmite ensemble averages. 
Bamck  and  Snider [17] have shown  that  the sea echo is un- 
correlated  for angular separations as small as 0.5"; therefore 

(I 9&) 1 2 )  = (9) 
0 1  a2 

The  amplitude mismatch  factors are obtained  by  fitting (9) 
to  the data using the least-squares  techniques described in 
Appendix  A. In  our analysis we used the  strong signal sur- 
rounding  the B r a g  frequencies. Use of (9) is not  limited to 
first-order sea echo, however; it  can also be used with  second- 
order  echo,  the  only  requirement being that  the signal decor- 
relate with  azimuth angle according to (6). 

To obtain  the phase angle corrections 01, O 2  of  the  loops 
relative to the  monopole  from  the  $ata,  the  mean phase  an- 
gles of <?1(0)83*(0)> and (82(a)V3*(a)) ar? calcukted as 
an average over frequency.  The phase angle of <Yl(w)V2*(w)> 
can  be  calculated as a  check and should equal (91 - 0 2 )  to 
within  a  few degrees. 

The complex-conjugate voltage products are then  corrected 
for phase and  amplitude mismatches: for  example,  the  corrected 
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version of (Vl(w)V2 *(a)> is 

2) Calculation of Fourier  Angular Coefficients: To scan  a 
bJoad beam electionically to angle $ (Fig. $), we multiply 
Vl(o)  by  cos $, V 2 ( 0 )  by sin $, and  add  to V3(w) to give the 
following  expression for  the broad-beam output  at  frequency w :  

where K is an  arbitraw  constant  containing  such factors as sys- 
tem gains and  path losses. The value of K is irrelevant  in our 
analysis; therefore  for simplicity it will be set  it  to  unity.  It 
follows from (1) (and [ 1 11) that q w ,  $) may  be  expressed as 
a Fourier series over angle with exactly five nonzero  coefficients 

where t fn($)  are trigonometric functions defined by 

Using (1 1) and (12) we write  the following  expression for 
the Fourier  coefficients: 

where 

2, for n = 0 

1, fo rn  f 0. 

Expanding the angular brackets  and performing the  integration 
in (14) relates the Fourier  coefficients to  the cospectra of  the 

voltages. The  cospectrum Pij between two voltage spectra 
V,iw) and %(a) is defmed by 

0 0  

Pij f (Re [ Vi(w)Vi*(w)] ). (1 5) 

The relationship is given by 

b-,(w) = 2a (Re [ f l (w)~2*(w)] ) -2aP12 

b - ~ ( w )  = 477 (Re [ V2(w)V3*(w)])= 47rP23 
0 0 

b,(o) = 37r( I ;3(w) 1') 3aP33 

b 1 (0) = 47~ (Re [ f1 (w) a 3  *(a)] ) 4d'13 

bz(w)=dl  fl(w)12 - 1  ?2(w)l2)S a(Pl1 -P22). (16) 

Although we have maintained  the  concept  of a broad beam 
being scanned  to  an angle for illustrative  purposes, the scan an- 
gle and  integrations over it as in (14) do  not actually enter  into 
our data analysis. The  Fourier angular coefficients of  the sea 
echo bn(w) are obtained as  cospectra (complexconjugate 
products) of  the  Fourier-transformed  antenna voltages. The 
Fourier Coefficients (16) represent  convenient intermediate 
data  products because, as will be shown in  Section 111-B, they 
are readily  expressed in terms  of  the radial current velocity. 

Ideally, the averages indicated  by angular brackets C-> are 
infinite-ensemble averages. In practice we form a fmiteN-sample 
average of  the various cospectra defmed in (16). As shown  in 
Appendix B, such cospectra  can  be averaged over N independ- 
ent samples to  reduce  the fractional variance of  their  statistical 
fluctuations by  a factor of AT. The  actual Gaussian voltages 
from  the  antennas  cannot be averaged; this  destroys  informa- 
tion  and does not reduce the  fractional variance. 
3) Data  Covariance Matrix: We will now derive an expres- 

sion for  the covariance matrix  of  the  Fourier coefficients  which 
is required for  the  determination of statistical uncertainties in 
the  current velocities. The complex voltages have real and 
imaginary components  that  are  independent, zero-mean Gaus- 
sian random variables. Expressions for  the  probability density 
and covariance between cospectra Pap and P,& for an AT- 
sample average are derived in Appendix B; the covariance is 
given by 

1 

2 A r  cov G v p , p  N P y B  1 = - ( P o p p E  + Pa&Pp,). (1 7) 

The covariance matrix Cm,n of  the  Fourier coefficients 
bn(w) follows from (1 5)-('17) 
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The cospectra  are easily calculated from b,(o) using (16) 
and  the  identity 

Therefore,  the data covariance matrix can be calculated from 
the N-sample averaged data values themselves. 

B. Radial Current Velocity Maps 

In  order  to  obtain ocean surface  parameters from  the 
Fourier angular coefficients, they  must be defmed in terms of 
the narrow-beam  radar cross section, which is related to ocean 
surface  parameters  in a well-established formulation [ 2 ] .  

Using the  definition  of  the voltages in terms of  the  seaecho 
return given in ( 1 ) 4 3 ) ,  ( 1  1) becomes 

where the narrow-beam  radar cross section o(w, @) is defined 
by (6). From  (1 2)  and  (20) we obtain 

Expanding the cosine term in (21)  as a trigonometric series 
gives 

where q-2 = 4 2  = l /8;q- l  = q1 = 1/2;qo  = 3/8 .  
Substituting this  expansion into (21)  and performing the 

integration gives the required  expression for  the Fourier  angu- 
lar coefficients  in  terms of the narrow-beam  radar cross section 

in 
Barrick's equation [ 2 ]  for  the first-order  radar cross section 
the absence of surface currents is given by 

where m = +1 denotes  the sign of  the Doppler shift, Eo is the 
radar wave vector (of  magnitude k, pointing toward  the  scat- 
tering patch  at  azimuth $), and s(*) is the directional  ocean 
waveheight spectrum. The Bragg resonance condition is im- 
posed by the delta function  constraint.  Thus ideally for a 
fzarrow-beam radar, the first-order peaks are  impulse functions 

at  the Bragg frequencies w, defmed  in terms of the radar 
wavenumber by  the dispersion equation 

where g is the gravitational  acceleration. In  the presence of  a 
surface current,  the peaks are Doppler-shifted in frequency  by 
an  amount 60 that is proportional to the radial current veloc- 
ity u(Q) at  the scattering patch 

6 w = 2k,v(Q). (26) 

For example, at  our radar frequency of 25.4 MHz, (25) gives 
a Bragg frequency wB/2n = 0.514 Hz, corresponding to -2-s 
or 6-m gravity waves; a  current speed u(Q) in (26)  of 50 cm/s 
would result in a  frequency shift 64277- = 0.085 Hz. 

Inserting (24)-(26)  into  (23) gives the following equation: 

- 6(w - muE - 2k,v(@))  dQ.  (27) 

This equation expresses the data in the  fust-order region in 
terms of the radial current velocity occurring over a range 
cell of constant radius. The radial velocity is a  function  of azi- 
muth;  therefore,  the  fust-order peak is not  only displaced in 
frequency (as it is for  a narrow  beam), but is also broadened in 
frequency  into  a  form  that  depends  on  the radial current ve- 
locity  pattern.  In  the remainder of this  section, it will be 
shown how  to  interpret  the  form of the peak through (27)   to  
give the radial velocity pattern. 

It follows from (27)  that  the Doppler shift  from  the posi- 
tive and negative Bragg frequencies  uniquely defines a value of 
the radial current velocity; interpretation of the  data using 
least-squares methods yields the  azimuth angles at  which this 
velocity occurs. The  exact  method used depends  on  unique- 
ness properties of the  function u(Q). We shall now identify 
two possible uniqueness conditions which are defmed  by  a 
wide variety of surface current  patterns, show how statistical 
inference  may  be applied to  the  data  to select the relevant 
condition,  and describe the  method  of  solution in  each case. 
Any text  on data analysis (e.g., [ 181 - [ 2 0 ] )  may be consulted 
for an introduction  to least-squares estimation  and statistical 
hypothesis testing. 

1 )  One-Angle Solution: In this case, it is assumed that  the 
velocity defined by  a given Doppler frequency occurs at only 
one azimuth angle. This condition applies at  the maximum 
velocity for any current  pattern  and  at every velocity  when a 
uniform current flows parallel to  the  coast. Application of  the 
delta function  constraint in (27)  leadsto  the following equation: 

where S(-Zn&,) is a  function  of Q through x0 .  
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Thus p 1  is a  function  of g1 but is independent  of  the  index 
n. At each  Doppler  shift (and hence  velocity) (28) defines a set 
of five equations in two  unknowns p 1  and G 1 .  Estimates of 
these  parameters and  their  standard deviations may be  made 
by minimizing the sum of  squared deviations  between the data 
and  the model given by 

Least-squares methods  to  effect this  minimization are described 
in Appendix A. Equation (28) is nonlinear in G 1 ;  therefore  a 
grid search over G1 is performed to find  the value that mini- 
mizes (30); however, (28) is linear in p l ,  a closed-form solution 
therefore exists for  the  optimum value of p1 corresponding to 
any choice of G1 (A4). This procedure gives estimates of p l ,  
g l ,  and  their  standard deviations. 

2) Two-Angle Solution: For  this case it is assumed that  a 
given radial velocity  occurs at  two  azimuth angles. Use of  the 
delta function  constraint in (27) now reduces that  equation  to 

i.e., a  set of five equations in four  unknowns pl ,  G1 p 2 ,  G2 at 
each value of Doppler frequency. Here p1  is defined  in (29) 
and p2 has  a similar definition at  azimuth angle r#~~. We solve 
for  the  four parameters  by minimizing the sum given by 

This involves a grid search over the nonlinear  parameters qjl 

and G2. Since  (31) is linear in p 1  and p2 closed-form  expres- 
sions for  their  optimum values and  standard deviations are pro- 
vided at  each  choice of & and q52 by  least-squares methods 
(see Appendix A), we denote these  estimates at  the  optimum 
values of G1 and G2 as 

Standard deviations in the angle estimates are also given. 
3) Statistical Resolution of One-  versus  Two-Angle Solution: 

Because the  number  of parameters  sought in the one-angle 
model is less, direct  comparison  between the least-squares  re- 
siduals cannot be used to decide  between the  two solutions. 
Therefore, we perform the following  statistical  test to decide 
objectively  between the  two hypotheses. The two-angle solu- 
tion is calculated first, as described above. For this to be valid, 
both p1  and p2 must be nonzero.  Since the data is effectively 
Gaussian (by  the  central limit theorem  and also discussion in 
Appendix B), one  can be  95.4-percent confident  of  a  nonzero 
solution  for p1 and p 2  if 

If (34) is true, we accept the two-angle solution; otherwise it is 
rejected and  the one-angle solution calculated and  employed. 

4)  Statistical Uncertainties in Radial Velocities: The above 

procedure gives the azimuth angle as a  function of radial ve- 
locity; this function must be inverted to give the radial veloc- 
ity  map.  The  optimum  solutions  for  the angles G1 and G2 fall 
on  a discrete grid of points selected for  the least-squares grid 
search. (For example, in our analysis of ARSLOE data, we 
used a grid increment size of 5".) Ideally, there would be a 
unique value of velocity corresponding to  a given grid angle 
#. However, because of noise and statistical fluctuation in the 
sea echo,  there may be two or more values. which we will 
write as vi($); in addition,  combination of data  from  the posi- 
tive and negative Bragg peaks will produce multiple values. 
When this happens we use standard statistical methods  to com- 
bine  the different velocities [ 191.  This gives the following op- 
timum estimates of the  current velocity Z(@) and  its  standard 
deviation (or  uncertainty) AU((0) based on weighting in the 
averaging process by  the individual  uncertainties: 

(3 5) 

In these expressions, the individual velocity uncertainties 
Aui(G) are obtained by  error propagation (described in [20] )  
from  the angular uncertainty A$ that is given by  the least- 
squares analysis: 

This relationship is valid for small fluctuations  and is easily de- 
rived by expanding vi(@) in a  Taylor series and retaining only 
first-order  terms. The slope (or  transformation Jacobian) 
avi(q5)/a@ is obtained by  numerical  differentiation and  the 
angular uncertainty A@ is obtained  from  the  data using stand- 
ard least-squares methods described in Appendix A. 

The  current velocity and  its  standard deviation given in (35) 
and (36) represent the  optimum  solution  produced by  mini- 
mizing the sums of  squared deviations given by (30) and (32). 
For  the  solution with  minimum variance: the  quadratic  form 
to be minimized  should  include  multiplications by  the co- 
variance matrix inverse as described in Appendix A. In (30) 
and (32) terms in the sum are weighted equally; we did not 
multiply by the covariance matrix inverse because both  theory 
and  experimental  data  show  it to be singular in the  first-order 
region. Equal weights are generally used when the covariance 
matrix is singular or  unknown. We are  presently extending  the 
standard techniques to handle singular covariance matrices. 

C. Calculation of Total Current Velocities 
The basic information provided  by the radar system is a 

two-dimensional map of radial current velocity obtained using 
the  methods described in  Section 111-B. One  normally  requires 
the  total  current  velocity; we  will now discuss how  to get total 
velocity vectors from  the radials. Three  methods are described: 
in the first:  radial velocities measured from  two geographically 
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Fig. 5. Combination of radial  current vectors (51, c2) measured  from 
two radar  sites A ,  B ,  at  pointP, def ied  by angles E1 and t2 with  re- 
spect to  the coast.  The  total  current  vector V is a t  angle v with  re- 
spect to the right  coastline. 

separated  locations are combined to form a total vector.  This 
method is free  of assumptions on  the  current  pattern,  but  the 
area that can  be  covered from  two sites is often  rather  limited. 
The  other  methods  may be applied  when data  from  only  one 
site is available. In  one, a  uniform current is assumed to  flow 
over an  extended region and  the  total vector obtained  by  fitting 
to  the radials. In the  other  method,  the  equation  of  continuity 
is solved in the radar coverage area to give the  azimuthal ve- 
locity  components. 

I )  Combination of Data from  Two Radar Sites: For  two- 
site  radar operation,  the  common coverage area is divided into 
area  cells;  radial velocities measured from  the two sites that 
fall within  a given area cell are interpreted  to give a total  cur- 
rent velocity.  This situation is illustrated in Fig. 5, where radial 
vectors u l ,  u2 measured from  the  two sites are available at a 
given point P. This is not always the case, however; methods 
described  below  apply to  an  arbitrary  number of radial velocities 
distributed anywhere  in the cell. 

In the remainder of this section,  it will be convenient to de- 
fine angles with  respect to  the right  coastline, as in Fig. 5. We 
define the radial velocities, standard deviations, and corre- 
sponding  azimuth angles within  agiven  area cell measured from 
either radar  site as ui, Aui, gi where i = 1 , 2 ,  - a ,  N .  The radial 
velocities are expressed in terms  of  the  total  current velocity 
(defined  to have magnitude  V and direction v) through  the 
equation 

ui = v cos (v - &). (3 8) 

When there  are  at least two radial vectors  within the cell, esti- 
mates of  Vand v can  be determined  from (38) by least-squares 
fitting  to  the data (vi, &) by minimizing the sum ofweighted 
deviations given by 

If N < 2, the  problem is underdetermined; a gap may be left 
on  the  map  at this location, indicating  insufficient information, 
or a larger area cell can be used to include  more radial vectors. 
For this problem we have included additional weighting factors 

wi in the least-squares sum. For  example,  the weights could 
represent an area averaging or filtering process, or if the  total 
current  at a  particular point within the area cell is desired, 
radial velocities could be weighted  according to their Cartesian 
distance from  the  point, as in the Lagrange interpolation  pro- 
cedure.  In this case, the weights w i  can  be  proven to be iden- 
tically the Lagrange interpolating weights given in standard 
tables, (e.g., “Bivariate Interpolation”, [29, section 25.2.65- 
671. Because (38) is nonlinear in v, we perform a grid search 
over this  parameter to  fmd  the value that minimizes (39),  with 
the  optimum value of V for  any choice of v defined by 

N 
wiui COS (V - t i ) / ( A ~ i ) ~  

v =  i= 1 
(40) 

wi cos2 (V - [ i ) / ( A ~ i ) ~  
i= 1 

The following  closed-form  expressions for  the  standard devia- 
tions in speed and  direction can  be derived using methods de- 
scribed in  Appendix A: 

We now  denote  azimuth angles measured from  the first and 
second  radar  sites as ti’ and t t ,  respectively. For small area 
cells, the values of ti1 are approximately  the  same;  therefore 
such pairs do  not  contribute significantly to  the value of the 
double  sum in the  denominator of (41) and (42). The same 
applies to l; - tj2 and  the  sum is normally dominated  by 
pairs from different sites. However, when the area cell lies 
close to  the line  joining the sites (where ti - i$ 0, n), all 
terms in the double summation become small and  the  corre- 
sponding  uncertainties AV, Av are very large; this is often  re- 
ferred to  as baseline instability [9],   [16].  

2) Model-Fitting Technique: In this technique,  the  cur- 
rent is assumed to be uniform in an  extended spatial  region, 
for example, in  bands several kilometers in width  paallel  to  the 
shoreline, if this  model is believed to be representative of 
typical  current flow  in the given region. Estimates  of  the  total 
current speed and  direction,  together with  their uncertainties, 
are then  obtained using least-squares methods, minimizing the 
sum of weighted  deviations given in (39); however,  in this case, 
i ranges over all points falling within the  band  and  the weights 
w i  would  normally  be set  to  unity. There is the usual tradeoff 
between spatial resolution  and  uncertainty:  the  bands  must be 
chosen to be wide enough that  the statistical uncertainty is 
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sufficiently  small;  this may reduce small-scale current  informa- 
tion. 

3) Application of the  Equation of Continuity: With this 
method, we determine  the  azimuthal velocity components 
from  the radial components measured  by the radar by solving 
the  equation of continuity  at  the surface,  ignoring the vertical 
water motion  [30]. 

In  order to apply  the  equation  of  continuity,  it is convenient 
to express both radial and  azimuthal  components of the veloc- 
ity  at  the  jth cell at range ri and  at  azimuth angle as a Fourier 
series over angle 

(43) 

(44) 

where u~($) and q(t) are the radial and  azimuthal  components, 
respectively, and  the angle t i s  defined with respect to  the right 
coastline as in Fig. 5. The radial Fourier coefficients and  their 
covariance matrix CR(ri) are determined  from  the measured 
radial components using least-squares fitting  and  error  propa- 
gation as described in Appendix A. The  quantity  to be  mini- 
mized is the weighted sum  of  squared deviations given by 

where the sum extends over the M available radial velocities 
in the range cell. Since the  problem is linear  in the coefficients 
Rn(rj), the  optimum values which  define the minimum value 
o f I  (i.e., Imin) are  closed-form expressions. 

Although there  may be  oceanographic  reasons why a given 
number  of angular harmonics  are appropriate in  (43) and (44), 
the first question to ask is how  many  terms in (43) can be 
fitted  to noisy radial velocity  data. With too few, the  model 
(43) will not describe the  data  adequately; if too  many are re- 
quested,  the uncertainties in the derived coefficients will 
dramatically increase. An objective  statistical method  to de- 
termine  the  number of coefficients  which  should be included 
in the least-squares sum (45) is the x’ test [19].  Both I and 
Imin are ?-distributed; I has M degrees of  freedom; if (21V + 
1) Fourier coefficients  are obtained by fitting, Imin has (M - 
2N - 1) degrees of  freedom. When the  fitting  function  (43). 
with N terms is a good  approximation to  the  data,  the value 
of Imin/(M - 2N - 1) should  be  reasonably close to unity. If 
it is considerably larger, the deviations  are too great,  indicating 
that  not enough  terms have been  included in  the  Fourier series 
expansion to fit  the  data  adequately. To use the 2 test, a sig- 
nificance level a (usually small) is chosen and  the value ofImi,  
compared  with  the fractile for ( M -  2 N -  1 )  degrees 
of  freedom. (Tables of ? ( l - a )  are available in the statistical 
texts [19] and [20] . )  The  number  of  terms in the  Fourier 
series should  be  increased  until Imin is approximately  equal to 
,? 

The  azimuthal  Fourier coefficients for  nonzero n can  be ob- 
tained  by solving the  equation  of  continuity, which is given in 
polar coordinates by 

where the vertical sea-surface movement  has been set t o  zero 
and  the  depth assumed to be constant. 

Substitution of (43) and (44) into (46) gives for  the jth 
range cell 

(47) 

For  uniformly spaced  range cells of  width Ar, the range at  the 
j th cell can be written 

The  differentiation in (47)  can be performed numerically to  
give 

(49) 

The covariance matrix  of  the  azimuthal  components follows 
from  the radial  covariance matrix CR(rj)  using (49). Since we 
have established that  the radial components in different range 
cells are essentially uncorrelated,  the (m, n)th element can  be 
written 

The  zero-order coefficient @,(q) is a constant  of  integration 
of the differential equation (46): and follows from  the  bound- 
ary condition  that  the normal  velocity component y(t) must 
be zero  at  the coastline ( E  = 0, n). The  frst-order differential 
equation allows for  the use of one  boundary  condition, al- 
though  there are two boundaries that physically require  zero 
normal  flow. Satisfaction of the  condition  at  one  boundary 
(e.g., E = 0) does not, in general, guarantee  satisfaction at  the 
other (4‘ = n). There are several possible ways to deal with  this 
problem: 

a) determine O0(rj) required for each boundary separately 
and average the  two; 

b) enforce  the  constraint (in a  least-squares sense) that 
ut ’ ( [ )  described by(44)  beminimizedoverland(a < t< 2n); or 

’ c) choose either a coordinate system or a current represen- 
tation over land  such  that  both  boundary  conditions are auto- 
matically  satisfied. 

It can be shown  that a) is identical to b) for  arbitrary  cur- 
rent  patterns; we  will examine formulations  that invoke c). x ‘ (  1 -CY). 
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We will now  outline  three  methods  for  the detailed  appli- 
cation  of these equations. These methods differ  in the  type of 
Fourier expansion used and in the  current velocity assumed 
overland, which is arbitrary. 

MethodA:In this method,  the  Fourier  expansions in (43) 
and (44) are taken over all integer values of n such that I n I < 
N .  For a  stable determination  of  the  Fourier coefficients, we 
must have u,(E) defined over the  total angular range 0 < 4 < 
271, since the basis functions are orthogonal  and  complete over 
this range. If one  attempts  to fit to  the radial velocities over the 
half-plane  defined  by sea only (0 < E < n), the uncertainties 
in the derived parameters will be unacceptably large. In this 
method, we take  the radial velocity to be zero over the  land 

Boundary conditions as outlined in a) and b) for  the azi- 
(71 < E < 271). 

muthal  component uE(E) both give the same result for Oo(rj): 

The covariance matrix elements  containing the zero element 
follow from (5 1) 

for m # 0 

Method B: In an alternative treatment of the velocity 
pattern over land, we “reflect” the velocity about  the  coast, 
i e . ,  make it an even function  of E such  that u,(() = u,(-E). 
It follows that  the  Fourier series (43)  and (44) will contain 
only cosine  and  sine  terms, respectively. Therefore,  the azi- 
muthal velocity component is automatically  zero at  the 
coast (( = 0, n) as required physically. Similarly, the zero- 
order  azimuthal  Fourier coefficient is zero. 

Method C: Here we expand  the  current fields  in  a set  of 
trigonometric basis functions  that is orthogonal and com- 
plete over the range 0 < < 71, by retaining  only even values 
of n in (42)  and  (44), i.e., -N, - e ,  -4 ,   -2 ,0 ,2 ,4 ,  - - , N .  The 
coefficients of the modified series (43) can then be deter- 
mined stably  by  fitting  to  the measured radial velocity over 
the sea surface. The  condition  that uE($) be zero along the 
coast  (which is now one and the same boundary in  this co- 
ordinate system) gives the following  expression for  the zero- 

are  defined  by 
N 

N N  

. m=ln=l  . I  

Whichever of these methods is used, the  number  ofterms 
in the  Fourier series expansion must be increased until  the 
2 test is obeyed.  On  the  other  hand, statistical uncertainty 
in the derived parameters increases with  the  number  of terms 
fitted, because we are  seeking more  information  from  the same 
data  set. 

The radial and  azimuthal velocity components  at a given 
range and  azimuth can then be calculated from (43) and 
(44). It can be seen from these  formulas that  the  standard 
deviations in u,(E) and are given by 

I N  N 

and  that u,(E) and q(() are uncorrelated, because the On(rj) 
are calculated using data  from adjoining range cells. The 
total velocity, of  magnitude V and  direction v, is obtained 
by combining ~ ~ ( 4 )  and uc(E) 

V = d u m  + @ ( 4 )  

v = E + tan- [74(E)/Ur(E)l 
(5  6 )  

with  standard deviations given by linear error  propagation 

Of the  three  methods  outlined above, the  one  that produces 
the lowest values of  the  uncertainties AV,  Av should be used. 
In  our analysis of ARSLOE  data we found  this  to be Method 
A. Another  of these methods might prove superior for a dif- 
ferent coastline  angle, or  for  operation  from a  platform. 

IV. APPLICATION OF ANALYSIS TECHNIQUES TO 
ARSLOE DATA 

The ARSLOE experiment was held  in October  and Novem- 
ber, 1980, near Duck in North Carolina. The CODAR system 

order coefficient: a was operated in  a research mode  for a  period of  two  months 
taking  measurements of waves and currents. We report here 
on  the analysis of  the  most  interesting  portion  of  this data set 

ber 26, a storm  front passed the area, causing complete wind 
The covariance matrix elements containing  the zero  element reversal and leading to  complex  current  conditions.  The radar 

O&j) = - c. 0 2 n ( r j ) .  
n = l  ,Z;..,N (53) to give ocean  surface current  maps;  from  October 23 to Octo- 
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TABLE I 
DATA RUNS DURING THE ARSLOE EXPERIMENT 

RUIl Time (a) 

2 
1 Dctaber 22  1130 

2330 
3 O c t o b e r  23  0010 
4  0515 
5 0555 
6 0915 
7 1130 
B 
9 

1330 

10 
1530 

11 21 30 
1730 

12 
13 

2330 

14 
October 24 0130 

15 
0330 

16 
0530 

17 
0730 
0930 

1B 
19 

1130 

20 October 25  0920 
1330 

21 0956 

23 
22  1036 

1130 
24  1230 
25  1330 
24  1628 
27 
28 

1730 

29 
1951 
2030 

30 
31 OctDber 26 0014 

2320 

32  0130 
33 0330 
34 
35 

0530 
0730 

was operated  throughout  the  storm,  with  the  exception  of  an 
18-h gap when the system malfunctioned  due  to  water in one 
of  the cables. Data were collected  during 35 runs,  each  lasting 
36 min (Table I). The CODAR site was located  about 3 km 
north  of  the CERC pier (Fig. 6). Radar  data were taken  from 
30 range cells, each of 1.2-km extent, with a radar transmitter 
frequency  of  25.4 MHz. In this section, we give details of  the 
application of theoretica1,methods outlined in the previous 
section to  the  experimental  data set and give examples of  cur- 
rent velocity maps  obtained.  Section IV-A describes the initial 
data analysis that  produced  the voltage conjugate products, 
gives results of  a statistical analysis of these quantities,  and de- 
tails the  method  that was applied automatically  to separate 
the first-order spectrum  from  the  surrounding  continuum. Sec- 
tion IV-B describes the calculation of radial current velocities, 
gives examples of current  maps  obtained,  and  tabulates  the  sta- 
tistical uncertainties  obtained as a  function  of range and azi- 
muth.  Section IV-C describes the calculation of total  current 
vectors and  their  uncertainties  from model fitting  and use of 
the  equation of continuity  and shows maps of current flow 
patterns  throughout  the storm.  Uncertainties in current speed 
and direction  are tabulated  and  the  current  and wind velocities 
compared.  Section IV-D gives a general description of  the  cur- 
rent  patterns observed during the storm. 

A. Initial  Data Analysis 
I )  Spectral  and  Statistical Analysis: The  complex voltage 

time series from  the  three  antennas were transformed using a 
four-sample Blackman-Harris window; this reduces  sidelobes 

237 

Fig. 6. The experimental confi,ouration at ARSLOE. Radar  range cells 
are  indicated by circles, the depth contours by dashed lines. 

by  92 dB from  the main lobe maximum, but  destroys  frequency 
resolution  by  a  factor  of  two. This  sidelobe  suppression is in- 
cluded in the initial data analysis because it is essential to  the 
derivation of the wave-height spectrum  from  the weaker  higher- 
order  echo.  Fifteen 4.5-min time series were overlapped by 
50 percent  to give a  total  run  time of 36 min.  The  correlation 
between  consecutive spectra resulting from this overlap is 
theoretically  only 4 percent  [25].  Therefore, employing  only 
every other  frequency  point in the  output  spectrum, we end 
up  with the same frequency resolution as for  nonoverlapped, 
rectangular-windowed time series segments of half the  length, 
with the same number  of statistically independent samples for 
subsequent averaging. We have thus reduced the sidelobe levels 
drastically,  at the cost of calculating  longer Fourier  transforms. 
Time and spatial sampling resolution were 0.26 s and  1.2  km, 
respectively. 

Before  spectral averaging, we performed  a detailed  statistical 
analysis of spectra obtained  from  two  data runs-October 24, 
05:30 GMT (Run  15)  and  October  25,  16:28 GMT (Run 26). 
Details of these  calculations are given in Appendix C. Correla- 
tion coefficients were calculated as a  function of time, range, 
and  frequency. This information is required for  the  estimation 
of  the  number  of  independent samples present in a composite 
spectrum  obtained by averaging. From  the results, we con- 
clude the following. 

1) The  correlation between  adjacent  spectral  power points 
(i.e.> squared voltages) is about 60 percent;  at greater frequency 
separation the  correlation is not statistically significant. 

2) Correlation between spectra obtained  from  the  50-per- 
cent  overlapping  time series is not statistically significant. 

3)  Correlation between  spectra in adjacent range cells is 
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about  20  percent  due  to pulse stretching in the receiver; at 
greater range-cell separations,  the  correlation is negligible. 

We also calculated the number of degrees of  freedom per 
power spectral point as a check  on  the  theory. Theoretically, 
the voltages are complex zero-mean Gaussian random variables; 
spectral  powers  should therefore be x2 variables with two  de- 
grees of freedom, where “degrees of freedom” is defined to be 
the inverse of the fractional variance. In reality, the voltages 
are not  truly Gaussian, because the tails of the  distributions 
eventually cut  to  zero, whereas Gaussian tails extend to in- 
finity; this results in the observed number  of degrees of free- 
dom exceeding two; in our calculations (Appendix C) we ob- 
tained averaged results of 2.7 and  2.8  for  the  two  runs. 

2)  Spectral  Averaging: Because of  the  correlation  (or  sta- 
tistical  dependence) between adjacent  frequencies,  adjacent 
pairs  in the  spectrum were averaged; in addition, adjacent range 
cells were averaged to  further  reduce  the statistical fluctuation 
in the  composite  spectrum  The resulting range and  frequency 
resolutions, were 2.4  km  and 0.00745 Hz. After averaging the 
15 spectra from overlapping time segments, the  number of 
sample averages was 30;  thus  an  estimate  of  the covariance ma- 
trix  of  the data is given by (1 8) with N = 30. 

3) Separation of the First-OrderSpectntm: The  composite 
spectra were then analyzed to isolate the first-order region of 
the  spectrum  from  the  surrounding  continuum.  The  latter is 
due to higher order  scatter  from ocean waves and additive 
noise which can  dominate in the more distant range cells where 
the higher-order echo is weaker.  This separation is required  be- 
cause the  theory described in Section 111 for  obtaining  current 
velocities applies only to  the  fEst-order region. The  current 
velocity is proportional  to  the  frequency shfit from  the Bragg 
frequency;  therefore  the  definition  of  the boundaries of the 
first-order regions is v e v  important as they define the largest 
velocities. If the boundaries are set too wide, so that  second- 
order  echo is included and erroneously interpreted as first- 
order,  not  only will the  azimuth angles associated with  these 
spectral points be meaningless, but  more  important,  the radial 
velocities inferred from  them  and erroneously attributed  to cur- 
rents will be far  too large, totally biasing the  entire  current map. 
If  one must  err in  setting these  boundaries, they should be  set 
too  narrow,  for this will simply result in gaps in the  map (indi- 
cating  no available data). We developed a set of general cri- 
teria  which were applied  automatically to isolate the first- 
order region for  the ARSLOE date. These rules, described in 
detail in Appendix D, are based in part on  the fact that  the 
transition  between  the  first-  and  second-order  spectrum is ex- 
tremely sharp;  the  increment  of maximum magnitude  between 
successive points in the  spectrum (expressed in decibels) is 
used to define the  boundary.  In  addition,  no  data is accepted 
that is  less than  ten times the noise at the edges of a +l-Hz 
window surrounding  the carrier frequency, where the sea echo 
is negligible. Examples of the  separation  produced by this 
automatic  procedure are given in Fig. 7.  The  extent  of  the first- 
order region analyzed to give current velocities clearly  depends 
both  on  the maximum current velocity and  the signal power, 
and varies with  both  time  and range. Thus  the claim of Leise 

[16]  that  the limits of  the first-order region need be  set  only 
once  for any  experiment is demonstrably  incorrect. In  our 
analysis, the  procedure  to isolate .the first-order  region is ap- 
plied independently  for positive and negative Doppler  shift, 
for  each range cell, and  for every data  run. 

B. Radinl Current Maps 
We then  produced  maps  of radial current velocities and. 

their statistical uncertainties  from  the first-order spectra.  The 
first  step is the calculation of  the  azimuth angle corresponding 
to a given current velocity, using the basic methods described 
in Section 111; however, we also included  in the  representations 
several models for additive  noise; that which  best fit  the  data 
was a nondirectional noise component (A). Thus  the  models 
(28) and (31) for  the  one-  and two-angle solutions were re- 
placed by 

bn(m)/qn = P l t f n ( @ l )  + Asno (5 9) 

bn(w)/qn = P l t f n ( @ l )  + ~ 2 t f n ( ~ 2 )  + ~ 6 , ’  (60) 

where 6,’ is the Kronecker  delta function  and we estimated 
the noise term A, together  with  the angles and multiplicative 
factors, by  least-squares fitting  to  the  data. This additional 
noise parameter was found  to  be small but statistically signifi- 
cant;  its inclusion  improves the model-fit to  the  data  without 
signifcantly  affecting  the results for  current velocity. 

The present calculation  of a radial current  map  from  echo 
spectra  for a  36-min run  takes  about  10 min on a PDP 11/23 
microcomputer for current velocities of  the  order of +40 
cm/s.  Coded in Fortran, we have as yet  made  no  attempt  to 
speed up  the program for  operational use. Even at  its present 
speed, this portion  of  the calculation  can be considered  “real 
time” in relation to the data-acquisition  time. 

The intrinsic  statistical uncertainty in the resulting esti- 
mates of azimuth angle due to data fluctuations is typically 
between 1’ and 3’. This can be compared with 10’ estimates 
of  uncertainty  made  by Leise [16]  for  the N O M  4-element 
system; this  difference is no doubt  due to different analysis 
techniques. The grid increment should  be  chosen so that its 
contribution  to  the  total  uncertainty is small. Our results for 
the intrinsic angular uncertainty led to  the choice of a grid 
spacing of 5’. The  uncertainty  (or  quantization noise) due  to 
the finite grid spacing was estimated as follows: the variance 
2 arising. from a uniform  distribution of points falling within 
the grid spacing p is given by 

$2 P I 2  P2 
0 dB=-- .  

12 (61) P o  

This quantity was added to  the variance due  to  the statistical 
fluctuation in the  data (i.e., the square of  the intrinsic  statis- 
tical uncertainty discussed at  the  start of this paragraph). The 
standard deviation  in angle AQ is then  the square root of the 
total variance and  uncertainties in velocity follow  from  those 
in angle as explained  in  the previous  section.  Table I1 presents 
the mean uncertainty in  velocity taken over 30  angular  sectors, 
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13 18 23 25 30  31 34 

Run Number 
Fig. 7. Examples  of  the  separation of the first-order  region  used to 

give current velocities,  which lies between the vertical lines. The 
four  spectra in a  vertical column have the same run  number, indi- 
cated below-, with  corresponding t i m e s  given in Table I. Rows  of 
spectra  are  as follows: (a) positive  Doppler,  range 12 k m ;  (b) nega- 
tive  Doppler,  range 12 km; (c)  positive  Doppler,  range 24 km; 
(dl negative  Doppler,  range 24 Ian. Positive  Doppler  frequency 
ranges from 0.2 to 0.8 Hz; negative from -0.8 Hz to -0.2 Hz. 
("Noise" level that  appearsflat has  been  artificially  set to a  threshold 
6 dB  above  the noise at  the edges of the spectral  window.) 

TABLE II coast  can  place the  apparent bearing of  the signal several de- 
MEAN STANDARD .DEVIAT1oNS IN grees out  to sea, and b) signal attenuation is considerably 

Rangetkm) Standard Deviation ( c m f s )  greater at angles grazing the coast. 
0-30' 30-60'  60-90° 90-120' 120-150° 150-180° 

2.4 
4.8 

2.7 1.7 2. 8  6.4 
2.3 

2.1 
5.4 

2.2 
2.6 

2.2 
2.3 

4.1  7.2 
2.2 

2.4 

2.6 
1.9 

4.4 9.6 
3.3 

3. 8 

4.3 
2.4 

2.1 
4.2 2.2 3.0 2.6 12.0 

2. 8 2.6 
3.4 

5.6 
3.0 
2.5 

2.3 
2.2 

4.3 2.3 2.0 21.6 
2.7 2.2 

2.7 
3.7 19.2 

6.8 
2.2 2.2 3. I 5. I 3.3 1tr.B 

3.2 
2.2 2.2 2.8 3.1 3.6 14.4 

3.4 
24.0 4.3 
26.4 4.7 

2.5 
2.7 

2.7 
2.5 

2.7 3.1 
3.3 

5.4 
3.3 5.9 

28.8 2.6 3.4 2.4 2.4 
31.2 8.7 2.6 2.2 2.6 

3.3 10.6 

35.6 3.3 2.6 
3.1 13.5 

36.0 8.7 
2.4 

4.1 2.2 
2. 8 
2.2 

2.9 7.2 
3.1 7.2 

averaged over the 35 data runs. The velocity uncertainty is 
greatest  (typically 4-10 cm/s)  in angular sectors close to shore 
(0"-30", 150"-180"), because these  sectors contain relatively 
few data points,  due  to  low signal power  resulting from  coast- 
line refraction and  attenuation effects. In  the remaining angu- 
lar range (30°-1500), the statistical uncertainty is between 2 
and 3.5 cm/s. 

Examples of radial current velocity maps  and  the associated 
standard deviations are given in Figs. 8, 9, and  10.  The largest 
gaps in the coverage occur in the sectors  near the  coast;  this is 
explained by  the  facts  that a)  radar  refraction  near grazing to a 

C Total Current Vectors 
I)Model Fitting: Using the  method described in Section 

III-C2) we assumed that  a  uniform  current was flowing in a set 
of strips parallel to shore and  obtained  the  total  current speed 
and direction by least-squares fitting  to  the radial velocities. 
Results for  the  total  current vectors  are shown in Fig. 11. Un- 
certainties in current speed and direction are given as a  func- 
tion of range in  Table 111. The width of  the  bands was chosen 
to increase with  distance to compensate for  the decreasing 
number  of data points resulting from  the loss of  power with 
range. In  fact, we overcompensated for this effect;  the  uncer- 
tainties  actually decrease with range. The  sum  of  squared  de- 
viations between  the  fitted model and  the  data were too large 
(by  about  a  factor  of  two)  to  obey  the x2 test, because of  in- 
homogeneity within the strips.  Inclusion of  more parameters 
in the  model to describe the inhomogeneity  would have pro- 
vided a  better  fit  to  the  data; however, a condensed interpre- 
tation is produced by "forcing" an average over distance  along 
the shore. Note  that  the  standard deviations  listed in Table 111 
correspond  to statistical  uncertainties in the  data;  the low 
values indicate that  the "forced" average is stable with  respect 
to data fluctuations. We have not  estimated bias in the results 
due  to  the  inadequacy  of  the model fit. 
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Fig. 8. (a)  Radial current  vectors  for Run 1 3  (October 24, 01302). 
The length of each arrow is proportional to the radial velocity;  the 
bar in the  upper  left  corresponds to 20 cm/s. (b) 95.4 percent  con- 
fidence intervals (t2u) for  the radial current vectors. 

Before the  start of the storm, current flowed northward 
along the  coast. As the  northerly  storm winds started  to  blow, 
the  current flow turned  south  and increased in speed, until 
the wind reversed, causing a complete reversal in the  current 
direction.  The general direction of the  current observed by 
CODAR was verified by the  motion of dye samples dropped 
from  the  end of the CERC pier,  which indicated if the flow 
was northward or southward  [31]. Fig. 12 shows  a  compari- 
son between current speed and direction (at 8-km range) and 
that of the  wind,  for  October  23-25.  The wind was measured 
at  the XERB buoy which was located 37 km out  from  the 
pier  (Fig. 6). Current  and  wind  direction are highly correlated 
and  the average current speed throughout  the period was 2.1 
percent  that  of  the wind. CODAR senses the  current in the 
upper  meter of the ocean, somewhat deeper than the direct 
wind-driven current;  therefore  wind/current  correlations may 
not always be high. 

2) Applicetion of the Equation of Continuity 
Using the  methods described in Section III-C3, we applied 

the  equation of continuity  to derive the  total velocity vectors: 

I I c I I i 

the  Fourier angular coefficients of  the radial  velocity  in  each 
range cell were first derived by fitting to  the available radial 
vectors and  the  azimuthal  components  then  obtained  by solving 
the  equation.  Methods A, B, and C were applied, the number 
of  terms  in  the  Fourier series (43) and (44) being increased un- 
til  the x2 test was obeyed. We then  compared  the  resultingun- 
certainties in the  total velocities; these did not differ markedly, 
but  Method A in general gave the lowest  uncertainties. We 
therefore present the results given by application of this 
method, which was found in the  majority  of cases to require 
nine Fourier coefficients  in order to satisfy the 2 test (i.e., up  
through  the  fourth harmonic). Maps of  total  current velocity, 
corresponding to  the radial maps of Figs. 8 , 9 ,  and 10 are given 
in Fig. 13. 

Table IV gives standard deviations in current speed and 
angle, obtained in 30' angular sectors and averaged aver 
the 35 runs. Uncertainties in the  total velocities depend  both 
on  the  uncertainties in the  input radial data and its angular 
extent. Gaps in the angular coverage, the largest of which  oc- 
curs at  the coast (see Section IV-B) decrease the accuracy of 
the  total velocity estimate over the whole range cell. The 
coastal gap  is larger at  the  more  distant range cells where the 
signal/noise ratio is less, the observed radial  velocities tending 
to cluster in  the region of maximum signal strength.  This causes 
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Fig. 10. As for Fig. 8 :  Run 30 (October 25,23:20  GMT). 
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12 
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(b) 

Fig. 12. (a) Comparison  between  current  and  wind  direction. @) Com- 
parison between  current  and windspeed. Total current vectors 
measured by CODAR 8 km from  shore  (plotted as points with +lo 
standard  error bars). Wind measured at the XERB buoy  (plotted as 
a  continuous line). 

TABLE III 
MEAN STANDARD DEVIATIONS IN VELOCITY FROM 

MODEL FIT 

Range {kml ResDlut im(km) V(Cm/S)  u (deg rees )  

1.8  0.9  5.5 20 
4.8  1.2 3.9 13 
6.0  2.4  4.1 13 
8.4 

10.8 
2.4  3.2 10 

13.2 
2.4 3.4 12 
2.4 4.5 11  

14.4 3.6 4.5 1 1  
16.8 3.6 3.8 11  
19.2 3.6 3.6 11  
21.6 3.6 4.0 10 
28.5 8.2 2.7 E 

the  uncertainty in total velocity to increase as a  function  of 
range. 

In Table V, we compare results for  total  current speed and 
direction  obtained straight out  from shore at  a range of 9.6 
km with the  two  methods, giving the  standard deviation in 
each case. Results of  the comparison are fair,  considering that 
the model fit did not satisfy the x2 test: inhomogeneity  within 
the  strips parallel to shore is in fact demonstrated by the cur- 
rent maps produced using the  equation of continuity (e.g.. 
Fig. 13). 

I 

20 0 20 

Range (km) 
Fig. 13. Total current  vector  maps  obtained  using  the  equation of 

continuity. Times are  the same  as  for  the radial  maps in Figs. 8-10: 
(a) October 24, 01:30 GMT (b) October  25,  16:28  GMT (c)  Octo- 
ber 25, 23:20 GMT. The length of each m o w  is proportional  to 
the  current  speed;  the bar in the  upper  left  corresponds  to 20 m / s .  

TABLE IV 
MEAN STANDARD  DEVIATIONS. IN VELOCITY  FROM THE 

EQUATION OF CONTINUITY 

Range (km) S tanda rd   Dev ia t ion  in Speed k d s )  - 
0-30' so-60' 60-sd w-1~0. IZO-150' 1sO-mo' 

4.8 
4.2  6.0  7.2 
6.2  6.6  6.7  5.3 

4.1 
3.4 

7.0 5.1 9.6 
6.2  4.8 

3.9 4.7 

3.5  3.6 
7.6 11.5 12.4 9.6 12.0 

3.5 
3.3 

6.  8  4.6 
14.4 11.7 . 14.9 14.6 11.5 
16.8 19.4  29.3  26.4 22.1 15.0 

8.6  5.2 
e. 3 

19.2 14.0 20.0 20.6  14.8 9.2 
21.6 9.7 13.8 13.9 11.9 1 1 . 0  

5.7 

24.0 9.9 16.3 16.5 14.6  13.7 
6.8 

26.4 10.9 19.7 20.1 21.3  20.8 13.5 
e. 3 

28.8 11.4 21.2  21.1 20.4 22.4 15.4 
31.2 9.5 14.4 20.6 27.8  31.3  19-8 
33.6 13.0  22.5 30.8  40.9  44.8  24.0 

Range C km) Standard   Devia t ion  i n  Angle  (degrees)  

4.8 
7.2 

12.0 
9.6 

14.4 
16. 8 

21.6 
i t .  2 

24.0 
26.4 
28. 8 
31.2 
33.6 

28 
13 

21 
17 

35 
24 
35 

22 
27 

24 
23 

26 
43 

x) 
14 
12 

23 
23 

32 
30 

22 
23 

37 
41 
19 
29 

24 18 
13  10 
14 9 
16 
39 

13 

33 
24 
19 

25 
23 

16 
12 

19 13 
21 
33 

19 
29 

16 
25 

16 
26 

8 
7 
8 

10 
16 
15 
12 
14 

23 
15 

41 
24 
33 

13 
9 
9 

14 
14 
16 
12 

15 
18 

39 
26 

24 
28 
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TABLE V 

OF  CONTINUlTY  AT 9.6 km 
COMPARISON BETWEEN MODEL FIT AND EQUATION 

Run Speed f e d 5  1 CIngle (degref?s True) 

- 
tlDdel 

1 26- 
2 2Q+5 
3 
4 E t 1  

5f2 

5 25t 1 
6 
7 i7t2 
8 32t 1 
9 40t2 
10  37fl 
11 26t2 

13 
12 29s 

31+6 

15 
14 3s. 4 

32t. 6 
16 
17 

2111 
17f2 

18 
19  -10 
x, 
21 
22 
23 
24 
25 
26 
27 

17t10 

lati 

29ib 
1-5 
3-4 
19s 
24t2 
1-1 
27t2 
14tl 

29 
28 22i3 

2724 
30 
31 36t4 

52t20 

32  31t3 
33  27t 1 
34 19s 
35 21t3 

Equat z on 
I= 
7t4 
lot5 
29+3 
67f22 
zot2 

2 B f 2  
19t2 

41t3 
39*2 
2313 
Zltl 
24t 1 
26fl 
21tl 
17f2 
5tz 
19*2 
24tl 
3etB 

58f6 
30tl6 

32t2 
l b t l  
17t2 
25tl 
13fl 
35f4 
46t6 
53*12 
17t 1 

41tl 
7t3 

31s 
14- 

nodel 
175t44 

-55t26 
155+10 

-5t7 

Et40 
&6 

-lo& 
5*9 

-1OtB 
-5+5 
1 Ot7 

-sf10 
Oil3 

-1Ot6 
O M  

20fB 
50f10 
3-10 

O t 8  
120t8 
120*10 
1 4 5 M  
lbOt9 
21h12 
265f9 
2-1 2 

200i9 
230*10 

1BStlO 
170t13 
17-14 
l80t20 
190t7 
205i3B 
175s 

tquat 1 Dn 

226f31 
215i28 
145t31 

-1 t26 
9t6 

72t5 
22t7 
1 lf2 
M 4  

1 i t 2  
31f8 
31f4 
15f3 

3zt3 
17i3 

108G!6 
LB*5 

39*5 
1-3 
151t13 
156f31 
165A.6 
160f3 

273i.s 
266t3 

260f2 
258+_4 
-52i7 
-29f8 

2 2 6 s  
190116 

215t28 
19122 
234+7 
lB7t4 

D.  Current  Patterns  Observed  During the  ARSLOE S t o m  
Surface  currents measured under  the  rather  complex  storm 

at ARSLOE showed several interesting  features. The  current 
velocities varied little with  distance from  shore, suggesting that 
storm winds, currents,  and wave fields were reasonably homo- 
geneous over 40-km  extents along  this  straight section  of  coast. 
Before and  after  the storm, the normal  surface  flow  in  this  area 
is South  to  North, nearly parallel to  the coast as shown  by daily 
measurements of dye movement  [3 11. Tidal currents in  this 
area  are less than 5 cm/s. During strong, veering storm winds, 
surface currents followed the winds  reasonably closely, re- 
sponding almost  immediately to wind  direction changes. When 
the wind blew for a  considerable period at  an angle to  shore, 
however,  flow at  the surface became more parallel to  the coast. 
This is especially evident for  the period from 05:30 GMT 
October  23  to 07:30 GMT October  24;  the wind stayed  at 0:40 
T; while the  currents were from 0:OO T (3:40 T is parallel to 
shore).  Hence, only a slight angle to  the  coast is maintained by 
the  current as the  water level at  the beach was observed to rise 
steadily over this  period in the usual manner of a storm surge. 
As the wind veered from  the  Southeast  through  the  South  on 
October  25,  the removal of  the  onshore stress caused an "over- 
shoot," in which the surface current moved  directly offshore, 
rapidly  lowering the water level on  the beach  built up  by  the 
surge. Later, as the wind blew fairly  strongly from  the  South- 
west, the  current aligned itself nearly parallel to shore from 
the  South; as the wind intensity  died,  the parallel direction was 
maintained  but  the  current speed dropped back to  around 
20  cm/s. 

V. CONCLUSIONS AND RECOMMENDATIONS 
A. Uncertainties in CODAR Measurements of Current Velocity 

Ijstatistical Uncertainties: Applied to ARSLOE data to 
a range of 36 km under a  wide range of  current  conditions, 
least-squares methods estimate the angle at  each  radial  velocity 
with  typical rms uncertainties  between 1" and 3" for a 36-min 
data  run. These  angular uncertainties translate to radial  veloc- 
ity  uncertainties  of  2-3  cm/s  at radial and angular increments 
of 2.4 km  and 5". Radial  velocity uncertainties do not appear 
to be  a fixed percentage of total radial velocity, at least for 
ARSLOE, where  these totals varied between 10 and 50 c d s .  
The radial velocity uncertainties do not appear  to  depend 
strongly on range,  remaining the same out  to  the last range cell 
recorded with the CODAR (-36 km). They do deteriorate in 
the  two 30" sectors nearest to shore (increasing to 3-13 cm/s 
rms);  this is explained by  the fewer  samples  occurring  in  these 
sectors, due  to increased propagation loss and signal refraction 
effects. 

Two  methods were evaluated that provided total velocity 
vectors and  their  uncertainties  from single-angle CODAR data: 
model  fitting  and  application  of  the  equation of continuity. 
The model fitted consisted of a uniform  current vector in each 
of a set  of  bands parallel to  the  shore.  The  model  fit does not 
in fact  obey  the x' test  due to inhomogeneity within the  band; 
it is, however, a  convenient way to visualize the results. Statis- 
tical uncertainties in the results  (which do  not include bias due 
to  the  inadequate  model fit) are typically 4 cm/s, 12". The 
spatial resolution  (the  width of the bands) was chosen so that 
the accuracy is maintained  with range, in  spite of decreasing 
data density;  in  fact,  the results show  that we overcompensated 
for this effect. Several methods were evaluated for  the applica- 
tion of the  equation of continuity which produced  approxi- 
mately equivalent  results. For  the closest range cells, uncer- 
tainties were about  the same as for  model  fitting ( 5  cm/s, 12") 
but increased  rapidly  with  range to values exceeding 20  cm/s, 
30" beyond  the  20-km range. This is due  to  the  fact  that  at  the 
more  distant ranges, radial velocities are available only in a 
limited angular sector because of decreased signal strength. For 
successful application  of  the  equation of continuity using the 
methods described,  data over the  entire angular range is re- 
quire d. 

We have verified through analysis of measured sea-echo 
data that  theoretical assumptions made  about hardware per- 
formance  and signal statistics were indeed valid for  the  AR- 
SLOE  experiment. Correlation or coupling  between adjacent 
range cells is -20 percent,  consistent with the slight pulse 
broadening from  the 8 - p ~  nominal value as it passes through 
the receiver. Correlation  between adjacent spectral  power 
frequency  points is -60 percent, as predicted for  the Black- 
man-Harris window  applied to  the time series; we therefore 
retained  and used every other  point  for analysis (spaced 
.00754 Hz apart),  and correlation  there dropped  to -14 
percent, as expected. Correlation  between  power points  at 
the same frequency  for consecutive (but 50 percent over- 
lapped) time-series spectra was effectively zero (Le., below 
the  4-percent significance level), so that  our  assumption (based 
on theory) of 15 independent samples for a  1.2-km-range cell 
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over the  36 min is valid. The  number  of degrees of freedom 
associated with a single power cross-spectral point is slightly 
higher than  the  theoretical value for  the generalized 2 distri- 
bution,  consistent  with a Guassian signal having truncated  ex- 
trema. The covariance matrix measured from  the data agrees 
with  that predicted from  theory  for N-sampled cross spectra 
based on Gaussian signals. This verifies the  quoted  current ve- 
locity  uncertainties which were calculated using the  theoretical 
expression for  the covariance matrix. 

a) Systematic Errors: Sources of systematic bias in the 
measured current velocities include  the following. 

b) Departures of the  antenna  patterns  from  the  theoretical 
functions used in the calculations. Such angular biases, de- 
scribed in Section 11, are less than  the statistical uncertainty in 
the angle estimates and we conclude,therefore,  that  they can  be 
ignored. 

C) Refraction  of radar signals at  the coast. This is largest 
for signals arriving tangential to  the  coast, which can be dis- 
placed as much as 6” out  to sea. Statistical uncertainties are 
also greater  in the coastal  segments and are in general some- 
what larger than  the  refraction bias. 

3) Use of a  model which does not  adequately fit the  data. 
For example,  our analysis will produce biased results if the 
radial current velocity has the same value at  three angles within 
a range cell, since the model used only allows for  two. We note 
that  this is unlikely in normal  oceanographic situations.  In this 
event,  our results will show gaps in the coverage area and  at- 
tempts  to  interpolate across such a gap will produce biased 
results. Another example  could  occur in fitting  current models 
to  the radial  vectors as in  Section IV-C. If the x2 test is not 
obeyed,  the  solution must be regarded as  a “forced” average 
which does not describe all the observed variations of  the cur- 
rent  pattern. 

We note  that weather,  rain,  foam, and whitecaps produce 
no  errors due to propagation and  scatter  effects in current ve- 
locities observed at HF, as can occur at microwave frequencies. 

B. Recommendations for Current Measurement with CODAR 
In  any CODAR system used for  current mapping, the 

fundamental signal-processing operation is the  determination 
of angular patterns associated with  the radial velocities defined 
by  the radar spectrum. A great deal of  effort has been devoted 
to this problem  and several methods have been employed in 
the past  with varying degrees of success [9] ,  [ 101, [ 161. Ac- 
tually,  the problem (i.e., the estimation of parameters from 
data  containing statistical  fluctuations) is extremely  common, 
occurring whenever measured data is interpreted in terms of 
equations. We have calculated radial current velocities using 
standard least-squares methods which  are generally accepted 
[ 181 -[20]  to be the  optimum way to process noisy data in an 
objective fashion.  These methods produce the  fundamental 
geophysical data product provided by CODAR: radial veloc- 
ities and their  uncertainties over a  polar coordinate grid of 
radar range and bearing. These radial velocity maps must  be 
fully understood by the user, because errors or  incorrect as- 
sumptions will impact  the accuracy and validity of data prod- 
ucts  from  any  subsequent analysis. For  example, gaps will ap- 
pear at  times in the coverage, where there are no  data. Use of 
subsequent, interpretive routines (e.g., combining  data from 

two sites to  get-Cartesian vector components, area averaging, 
spaceltime filtering, interpolation,  extrapolation,  trajectory 
calculations,  model  fitting,  tidal analysis, use of the  con- 
tinuity  equation, etc.) is straightforward  once  the radial map 
data are properly prepared and  understood;  on  the  other  hand, 
blind use of subsequent  interpretive  routines can produce mis- 
leading  results that  could  destroy  the credibility of this power- 
ful, ocean  remote-sensing tool. All of these subsequent routines, 
when  used, should be applied in a  least-squares sense so that a) 
the applicability of  the  model/routine  to  the data  can  be tested 
statistically,  and b) uncertainties in the  output  parameters  are 
available, allowing the user to decide how  much weight to place 
in  subsequent geophysical interpretations. 

Radial  velocity  maps and their  uncertainties  should  be  de- 
rived completely automatically and are  conveniently produced 
in real time. For example, the techniques  described in this 
manuscript have been combined in an  automatic  software pack- 
age that  operates  on  the sea-echo voltage spectra. These pro- 
grams a) calculate antenna hardware gain and phase factors 
from  the sea echo, b) separate  first from second-order sea echo 
for each spectrum  analyzed, c) apply  statistical  inference to 
select the single or dual angle model  to best fit  the  data, d) use 
least-squares techniques  to estimate angles of arrival for each 
radial velocity component, e) combine  the data in an  optimal 
manner to produce maps of radial velocities and  their  uncer- 
tainties. Presently  programmed in Fortran  and  not as yet 
streamlined in the best operational form,  this package nonethe- 
less runs in  -25 percent of the data-acquisition time  (36 min) 
on  the same microcomputer  that  operates  the CODAR CpDP 
11/23). 

The  methods developed in this  paper were demonstrated 
for  the CODAR loop system, as it operated  at ARSLOE. In 
Appendix E we show  how these  same methods  could  be used 
for  extracting  currents  and  their  uncertainties  from  the NOAA 
4-element  antenna system. However, the CODAR loop system 
has several advantages over the  4element system. First, be- 
cause of lack of  pattern  symmetries  in  the  4element system, 
less computational efficiency is possible there.  Second, signifi- 
cant sidelobes in the  4-element array response pattern can  be 
expected to increase the errors in estimated angles, and  hence 
in the radial velocities. Third,  the  loop system is considerably 
more compact physically and will be even more so when  the 
same antenna is used for transmission and reception (as is 
planned in the  future); this will also result in an increase in 
the angular resolution.  Finally,  methods  and software have 
been demonstrated with the  loop system that  produce  the 
waveheight directional spectrum simultaneously with  the  two- 
dimensional current map [12].  For these  reasons, we recom- 
mend  the replacement of the 4-element by  the  loop  system  for 
all normal CODAR applications and operations. 

APPENDIX A 
LEAST-SQUARES ANALYSIS TECHNIQUES 

Standard data processing texts  [18]  -[20]  show  that max- 
imum  likelihood provides the  optimal  method  for  the  extrac- 
tion of parameters from signals containing statistical fluctua- 
tion. Maximum likelihood reduces to  the minimization of a 
weighted quadratic form of the data deviations (known as the 



LIPA AND BARRICK: METHODS FOR THE EXTRACTION OF  SURFACE  CURRENTS FROM CODAR DATA 245 

least-squares method) when the data fluctuations appear 
Gaussian. By the  central limit theorem,  any  data products 
which  are  sufficiently  sample averaged are  effectively Gaussian 
random variables; this is examined further in Appendix B for 
the voltage cross-spectral products.  Therefore,  throughout this 
analysis, we employ least-squares methods  for  the  extraction 
of  information  from  data.  In this Appendix, we summarize 
these techniques as we have applied them in our analysis. For a 
complete  treatment, see [20]. In  our problem, we have N 
pieces of  data Z,, n = 1 , 2 ,  s a - ,  N at N values of an  independent 
parameter x ,  and we wish to fit to  the data  a function  of I 
linear  parameters p i  and J nonlinear  parameters qj which is de- 
fined by 

Y n ~ , 4 ) = P l f 1 ( 4 , x n ) + P Z f 2 ( ~ , ~ n ) +  . . . + ~ I f i ( q , x ~ )  
(-41 1 

where the f i  are known  functions.  The (N X A? data covariance 
matrix Cz is known. 

We form a column  matrix  of  the deviations of  the measured 
data  from this functional  form 

The maximum  likelihood solution  for  the parameters pi ,  qj 
minimizes the  quantity 

Z(p, 4) = eTGZe 643) 

where GZ is a weight matrix  usedin  the least-squares quadratic 
form:  for  the  maximum  likelihood  solution, G Z  is the inverse 
of  the data  covariance matrix Cz;  for  unity weights as used in 
(31)  and  (32), GZ is the  identity matrix. 

A.  Obtaining the Parameters 

1) The Linear  Parameters: For any combination of the 
nonlinear  parameters,  a closed form solution exists for  the  op- 
timum linear  parameters. The  total differential of (A3) with 
respect t o  p l ,  p 2 ,  -, p~ must vanish; this  leads to  the  relation 

p* = [ A T G Z A ]  - ~ A T G Z Z  ('44) 

where the matrices  are  defined as follows, with the asterisk de- 
noting  the  optimum value 

p* = [ p l * ,   p 2 * ,  ... pr*] A = 

E =  

2) The Nonlinear Parameters: After  substituting  the  opti- 
mum values for  the linear  parameters in (A3) (to  form I@*,  G)), 
we performed a grid search over the nonlinear  parameters to 
find  the  optimum values of 7 that minimize I@*, 4). There  are 
more efficient methods  to  locate  the minimum involving the 
linearization of (Al)  and/or multidimensional  gradient root 
finders; however, we have not  yet  found  it necessary to imple- 
ment  such  methods in our programs. 

B. Obtaining the Covaknce Matrix 
Expanding (Al) as a Taylor series about  the  optimum gives 

the  approximate expression for  the variation in the residual 
with  distance from  the  optimum 

+[P1*G afl  + ..- + P I *  "1 a4 1 6q, 

+ ... Higher Order Terms. (-45) 

For  the least-squares solution in the vicinity of the opti- 
mum values, the parameters  minimize the weighted  sum of 
deviations of  the measured data including noise from  the ideal 
functional  form. In matrix  notation 

(Az - EAp)TGZ(AZ - EAp) = min 
with 

Az= 

where 

'"I U N  

Azi  = zi -vi@*, q*) 
and 
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The  total differential of (A6) with respect to 6pi and 6qj  must 
vanish; this  leads to  the  relation (similar to (A4)) 

Ap = FAZ (A71 

where 

F = (ETGzE)- ETGZ . 

Neglecting terms  of higher order,  the  parameter covariance  ma- 
trix is given by 

cp = upapT) = ( F L L Z A Z ~ F ~ )  = F C ~ F ~ .  (‘48) 

APPENDIX B 
THE STATISTICS OF CROSS SPECTRA 

Cross spectra  occur increasingly frequently in signal process- 
ing problems [ 181.  For  example,  they are used in the analysis 

, of pitch/roll buoy  output  to  obtain waveheight directional 
spectra and in data analysis for geophysical prospecting and 
seismic systems,  where cross spectra among separated point 
sensors are analyzed to determine the source of the signals. 
Although  historically  they were computed  by initially aver- 
aging lagged covariances among  the  instrument time series 
and  then  Fourier transforming,  with the  advent  of digital com- 
puters  and  the FFT, they  are now obtained  by averaging the 
conjugate products of the  instrument signal complex FFT’s. 
Cross spectra are particularly  convenient in the analysis of 
CODAR multiple-antenna signals. This appendix establishes 
the properties of cross spectra and their  finite sample aver- 
ages; this is readily accomplished since the  HF  seaecho signal 
voltage (both fHst and second  order) are zero-mean Gaussian 
random variables [17] . Then,  rather  than analyzing the  un- 
averaged, complex voltage signals, as has been done in the 
NOAA CODAR signal-processing software [ l o ] ,  we can pre- 
average several cross spectra, reducing  considerably the noise- 
like  fluctuation in the cross-spectral signal. Such preaveraging 
of cross spectra is also totally consistent with least-squares 
methods,  for  it is easy to show  that preaveraging Ncross spec- 
tra  (to reduce the  number  of  terms in the least-squares  sum  by 
a factor of N )  is equivalent to including all N unaveraged sam- 
ples in the original sum. The  former, however, is much more 
conservative of machine operations in the numerical  least- 
squares solution. On the  other  hand, such preaveraging is not 
possible when fitting models to  the actual Gaussian voltages 
without destroying independent samples and hence informa- 
tion. 

Assume that  the actual, zero-mean,  complex Gaussian nth 
voltage sample (at each frequency  point w output  from  the 
FFT) is defined as 

0 

nva =nT/olr + invai (B1) 
0 

where V, refers to  the voltage from  the  ath sensor.  Since the 
real and imaginary parts V,, and Vai are orthogonal,  they 
are both  uncorrelated  and statistically independent (because 
they are Gaussian) and have the same variances. Then we can 
define an N-sample-averaged cross spectrum between the  ath 

and  0th sensors as 

01 

and 

‘‘P” is often referred to as the cospectrum, while “Q” is 
tzrmed  the  quad spectrum. For  the CODAR loop system,  where 
V, represents any  of  the  three  antenna signals given by (1)-(3) 
in this manuscript,  it is easy to see that-after  mismatch  factors 
have been removed-only cospectra  are  nonvanishing in the  in- 
finite-ensemble  limit.  (Such k not  the case with other  instru- 
ments;  for  pitch/roll  buoys,  for  example, where the wave height 
and slope of sinusoidal components are in time-quadrature 
with each other,  the  quad  spectrum  between these sensor volt- 
ages is nonzero while the  cospectrum vanishes). 

First, we present an  outline of the derivation of  the  proba- 
bility  density of the N-sample-averaged co-  and  quad  spectra 
defined in (B3) and (B4) and give the result.  Define  first the 
infinite-ensemble averaged co-  and  quad spectra 

(Note here that we can,  of  course, have a = p.) Restricting our- 
selves to consideration of CODAR signals, we then have Qap = 
0. Nonetheless, the N-sample-averaged quad  spectrum ArQorp 
exists as a  zero-mean random variable, and  its  statistics are  ex- 
amined  here also. 

a) Express first the  quadruply  joint Gaussian probability 
density function  for  the single Gaussian samples Var, Vai, 

Ypr, Vpi with the  understanding  that  correlations  between 
V,, and Vai, Vp, and Vpi are both  zero, as well as corre- 

lations between V,, and Vpi, Vai and ,, Vp,. Convenient 
matrix  formulations  for  joint Gaussian probability  densities 
are found in [29]  and  other  texts. 

b) Define and  determine  the characteristic functions  of  the 
single-sample co- and  quad spectrum. These are the  products  of 

and 

and  the  joint probability  expressed  in the previous  paragraph, 
and  integrated over the  four  random variables. Although  tedi- 
ous,  these  integrations are straightforward because of  the 
mathematical convenience of Gaussian function manipulations, 
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and  may  be  found in the tables. These characteristic functions 
are then 

c) The reason for working  with the characteristic function 
is now especially appreciated. The characteristic function  of a 
sum  of  random variables is merely the  product of the individual 
characteristic functions when they are independent. Because 
of the scaling factor 1/N multiplying  each random variable in 
the N-sample  sums of (B3) and (B4), we therefore replace 7 in 
(B6) and (B7) by r/N and raise the resulting equation to  the 
Nth power. 

d) We then  Fourier transform the results above back to 
probability space, to  get  the density function  for ArP.6 and 
l ~ Q a g .  This is simply done  by a contour  integration, where 
residues at  the  Nth-order poles of the characteristic functions 
are evaluated. The resulting probability can  be  expressed as 

I (abpe-bX N -  1 

(a + b)2N-1[(N- 1)!12 n = ~  
x (2N-2-n)! 

( abpeaX N- 1 

(a + b)2N-1[(N- 1)!12 n=O 
x ( 2 A -  2 -n)! 

1 - + b)"> for x < 0 

where (:) are  the binomial  coefficients, and 

2 N   2 N  
a =  b =  

-pap -+pap 

2 N  
C E  =a 

dPa,Pp, -pap2 

and 

a + b =  w q .  
po,,Ppp -papz 

Here, x in (B8) represents the N-sample-averaged cospectrum 
NP,~ ,  if we use the expressions given for a and b above. On the 
other  hand, x in (B8) represents the quad spectrum N Q ~ ~  if 

we let a = b = c;  but where we have (a + b), replace it  with 

A special case of the above general probability density is 
the classical x2, which is obtained  when a = 0 (i.e., Pa, = 
Pap = Pop; a -+ 00; all other limits are taken  appropriately). 
Thus  the 2. density describes the sample average of  the abso- 
lute square of any voltage representing sea echo; N independ- 
ent samples averaged together is a x' random variable with 
2 N  degrees of  freedom  [17], [21].  The x 2 ,  existing only  for 
the  cospectrum NPap in place of x ,  is nonzero  only  for posi- 
tive x ;  the probability  density for  the  quad  spectrum  NQap 
from (B8) is seen to approach a Dirac delta function  centered 
on x = Neaa = 0, meaning that  the  quad  spectrum is always 
identically zero (as can be verified from (B4) when Q = 0). 

Fig. 14 is an example of the probability  density of (B8) 
plotted  for N = 4. We normalize  by  defining 

A 

p -  pas . 

.~ 

When-p = 1 we recover the 2 density with eight degrees of 
freedom. The case N = 4 is selected for  illustration here be- 
cause it is sufficiently large that  the shape of  the densities all 
begin to  approach  the classic Gaussian shape required as N -+ 

00 by the Central  Limit Theorem;  yet N = 4 is small enough 
that some departure  from  the Gaussian shape is still evident. 

We now  turn  to  fourth  moments  of N-sample-averaged cross 
spectra; these are required  when  calculating the covariance ma- 
trices used in the  text  for least-squares and  error-propagation 
purposes. We illustrate the derivation  here for  the variance of 
NPap, and  then merely give the results for all of  the remaining 
covariances, leaving verification to  the reader. 

First, calculate the average 

We use the familiar property  of averages of Gaussian quad- 
ruple products 

(wxyz) = (wx)(yz )  + (wy)(xz)  + (wz) (xy)  

to simplify the first term of the above equation,  and  employ 
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Normalized Croas-Spociral DenaliY 

Fig. 14. Probability  densities  for  normalized  cross  spectra  from (B8) 
with  four  independent samples  averaged.  Solid  curve has  a  conela- 
tion  coefficient p between  cross-spectral samples of  unity;  hence  it 
has  a  norm&ed  mean  of unity,  a variance of 0.25, and is identically 
x2 with  eight  degrees  of  freedom.  Dashed  line  has p = 1/2, mean = 
1/2, variance = 5/32; dotted  line  hasp = 0, mean = 0, variance = 1/8. 
Note  that  for  only  four cross-spectral  samples  preaveraged, the  prob- 
ability  density  functions  are  already  sufficiently close t o  Gaussian to 
justify  the use of the least-squares  representation  of maximum likeli- 
hood. 

the facts that real and imaginary parts are uncorrelated,  and 
different samples are uncorrelated (i.e., when m # 12) to  obtain 

The last term gives identically the same  result. The  second  term 
(which gives the same result as the  third  term) is simplified in 
the same manner described above to give 

Hence,  adding all terms together  and  subtracting  the square 
of the mean gives 

2 1 
(jVPap ) - (NPap)' =pap2 + - P P 

21v pp 

1 
2N 

+ - P a p 2  -Pap 2 

We note  the familiar property  for these cross-spectral vari- 
ances (and covariances below) of 2 sample averages: the  fluc- 
tuation in the A[-sample averages decreases inversely with the 
number of samples N .  

The remaining variances and covariances are similarly estab- 

lished 

The last three relationships are generalizations of  the vari- 
ances,  as we can see by  setting y = ar and 6 = p. Also, by using 
(B12)-which is the same as (17)-we readily establish the co- 
variance matrix  for N-sample-averaged ~ b ~ ( a )  from  the defi- 
nitions (1 6) to arrive at  (1 8). 

APPENDIX C 
CALCULATION OF SPECTRAL STATISTICS 

In this appendix, we describe  a  statistical analysis of voltage 
spectra  measured  during the ARSLOE experiment.  Data used 
in the analysis were voltage spectra obtained  from  the  three 
antennas during two  36-min runs-October 24,  05:30 Z (Run 
15) and  October  25,  16:28 Z (Run 26). The  total  data  set  con- 
sisted of fifteen spectra (produced  by overlapping the time 
series by 50 percent as described  in the  text) for each  of  four 
1.2-km range cells lying between  12 km and  16.8 km. The spec- 
tra were obtained  from a 1024-point  FFT, using a Blackman- 
Harris window. We analyzed the  strong signal within 50.05 Hz 
of  the Bragg frequencies,  which is primarily  first-order echo  but 
includes  some  second-order; this defines 54 frequency  points 
with resolution 0.0037 Hz. 

Correlation  coefficients were calculated as a function of 
range, frequency separation and time. The  correlation  coef- 
ficient rk between variables Xi  and Yi, where i = 1 , 2 ,  -, AT, is 
defined by 

where k is the  point  separation, X a n d 7  are means, and ox and 
uy are standard deviations. The  standard  error in this quantity 
is given by 

To calculate frequency  and range correlations, the  sum in 
(Cl) was performed over the 15 spectra  corresponding  to  the 
overlapping times. The mean correlation coefficient over the 
54 frequency  points was then calculated. For  the  time correla- 
tions,  the sum was taken over the  54  frequency  points. We give 
results for  the  monopole power spectrum in Table VI. Standard 
errors quoted correspond to  zero  correlation;  it can be seen 
from (C2) that this defines the maximum value. Equivalent 
results were obtained  for  the  two  loop antennas. 
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TABLE VI 
CORRELATION  COEFFICIENTS FOR THE MONOPOLE ANTENNA 

FREQUENCY CORRELATION 

15 12.6 -58 
13.8 .62 
15.0 .A1 
16.2 -60 

26 1 2 . A  -61 
13.8 .61 
15.0 -66 
1b.3 .59 

FarrelatM 

I5 12.6 -.08 
13.B -.02 

16.2 -.09 
15.0 -.02 

16 12.6 -.13 
13.8 -.OS 
1A.Z -.03 
15.0 -001 

EsW€ bLE~&iE?2 
J5 

26 - 1 8  
.22 

-12 -05 
-19 -11 

.i1 .02 

.I2 -04 

-15 .05 
.12 -006 .20 -07 .? -04 

-.06 -.14 
-.OB -.08 
-.08 -.14 -.03 -.le 
-. 11 -.05 
-.08 -.m 
-.O? -.05 
-.os -.06 

.OB -02 
-05 -01 

.003 -003 
-06 .01 
.05 -03 
-02 -01 

.003 .02 

.015 .05 
-09 .05 
. l o  . I 1  

-.la -.04 
-.09 -. 1 0  -.m -.os 
-.09 -.07 

-.04 -.06 
-.15 -.OB 
-.02 -.09 
-.OB -.05 

. 04  

.14 

.M 

As a check on  the  theory, we calculated the  number  of de- 
grees of freedom in the  power spectra  measured by  the  three 
antennas. As described in the  text, this  would be two if the 
voltages were truly Gaussian random variables, but is expected 
to  be greater than  two in  practice. The  number of degrees of 
freedom in a  power  spectrum X(w) is defined by 

This quantity was calculated for  the  three  antennas  by per- 
forming the ensemble average over the 15 spectra and  the 54 
frequency points.  Results are given in  Table VII. 

To verify the  theoretical expression for  the covariance ma- 
trix (1 8) of the  text, we first formed cospectra of the voltages 
and  obtained  the Fourier angular coefficients as in equation 
(16). The covariance between two  Fourier coefficients is de- 
fined by 

This was calculated from  the data using the spectra correspond- 
ing to different times and ranges to perform the ensemble 
average. The  “theoretical” covariance matrix  defmed  by (1 8) 
Ci,i was calculated from  the voltage cospectra,  after  they  had 
been averaged over time  and range. The  two  estimates of the 
covariance matrix were calculated at each  frequency. To dis- 
play the results of the comparison, we calculated the follow- 
ing matrix: 

and  formed  the mean over the  frequency points. The resulting 
matrix Ri,, represents the  mean weighted  deviation  between 

TABLE VI1 
DEGREES OF FREEDOM’PER  SPECTRAL POINT 

Run Antenna Range (ke) 

12.6 13.8  15.0 16.2 

15 1 
2 2.8 2.8  2.8 2.5 

2-6 2-9 2.8 2.6 

3 3.0 3.0 2.8 2.6 ’ 

26 1 2.5 2.6 2.4 3.2 

3 2.4 2.6 2.7 2.7 
2 2.5 2.9 2.5 2.4 

TABLE VIII 
.MEAN DEVIATIONS BETWEEN COVARUNCE MATRIX 

ESTIMATES 

Run 

15 

- 
R . .  

11 

.06 

.04 
.02 

.10 

.Q6 -04 -07 .04 -02 .04 

-05 -.Ob -.05 -06  -09 

26 -. 16 

-. 16 -.27 -.32 - . lo -.24 -.19 -.26 -. 07 -17 -00 -01 -.15 

.04 .23 

the  two estimates and should  be small compared  with  unity. 
Results are given in Table VIII; only half of the  matrix is 
shown since it is symmetric. 

APPENDIX D 
AUTOMATIC SEPARATION OF  THE  FIRST-ORDER 

SPECTRUM 

The following procedure was developed for  the  automatic 
isolation of  the first-order spectrum  from which the  current 
velocities are calculated. Frequency boundaries  are determined 
from  the  nondirectional Fourier  coefficient  (which is propor- 
tional  to  the  monopole power spectrum)  for  the  fifteen range 
cells independently; these same boundaries are then used for 
all of  the Fourier angular coefficients. 

a) The  spectrum is first smoothed  by taking a  running  mean 
of three in frequency. 

b) The logarithm of this smoothed  spectrum was taken.  A 
new spectrum was formed  by calculating the difference be- 
tween adjacent  points in the logarithmic  spectrum. We then 
define the first-order region as lying  between the largest posi- 
tive value of  the difference spectrum (defining the  left-bound- 
ary)  and  the largest negative value (defining the right-boundary). 

c) To be included in  the data set  for analysis, the spectral 
power had to exceed 10 times the noise power in the spec- 
trum, which was determined by averaging the  spectrum in the 
region of zero signal; we averaged over frequencies  greater than 
1 Hz and less than -1 Hz. 

d) To be included  in the data set,  the power had to exceed 
the maximum  spectral  power divided by 30, each half of  the 
spectrum being taken separately. 

Fig. 7 gives examples of first-order  regions  defined  by  these 
rules. The  methods described in this Appendix were developed 
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to apply to spectra in which the  continuum is dominated  either 
by  second-order scatter  or additive  noise, and will work 
for higher current velocities (i.e., broader  first-order  spectra) 
than existed atARSLOE (as in the  Straits of Juan  de  Fuca [ 141). 

APPENDIX E 
CROSS-SPECTRAL METHODS APPLIED TO 

MULTIELEMENT MONOPOLE ARRAYS 
Working with cross spectra when using least-squares model 

fitting  has  the advantage of being able to reduce  statistical fluc- 
tuation in the data by preaveraging N independent samples 
(i.e., the cross-spectral  data value at a given frequency averaged 
from N separate time series). This  advantage has been recog- 
nized and  exploited in geophysics, seismic, and oceanic (pitch/ 
roll buoys  and wavestaffs) applications, as well as in our  own 
previous analyses of HF radar  spectral  data. Signals from 
NOAA’s 4-element CODAR monopole  antenna array have not 
been  analyzed  in  this manner  in  the past. Rather, individual, 
unaveraged complex voltage samples are processed by closed- 
form  methods to give angle-of-arrival estimates. Besides the 
several classes of instabilities/singularities in the dual-angle 
closed-form solutions [ 101 , ind  their  overdetermined (and 
hence possibly nonunique)  nature, calculating angle solutions 
for each sample and  then averaging is numerically more time 
consuming than preaveraging before angle calculation.  Hence, 
we present in this appendix a formulation  and  interpretation 
of  4-element  antenna data (applicable also for  arbitrary  arrays 
of sensors), so that the methods developed and  demonstrated 
in this paper can  be  applied  directly to  that system. 

The defining equation we used for  the  loop system to relate 
the measured,  broad-beam echo  pattern 6(u, $) to  the nar- 
row-beam pattern u(u, 9) was fust presented as [l 1,  ( l ) ]  
and  repeated here  as (20).  The kernal of  the integral  relating 
the  two is the  antenna beam response pattern 

for  the  loop system.  This antenna system  with  its  reponse pat- 
tern has the desirable property of being convolutionally sym- 
metric in $ and 9 (and  hence  completely  invariant in shape 
rotationally). However, any general response pattern can be 
substituted in its place for  arbitrary  antenna systems,  with 
only somewhat greater algebraic complexity.  The proper 
beamforming  array response pattern  to use for an arbitrary 
receiving point-sensor (monopole)  array is [27],  [28] 

where for a  radar  wavenumber k ,  = 2n/X ( h  being the electri- 
cal wavelength), we have 

kJ, - Ea = [ko  (cos $ - cos @), ko (sin 9 - sin 9)] (E2) 

with Fi being the  position vectors from  an  arbitrary origin to 
each of  the K array  elements, and ai being the weights at- 
tached  to each of the signals from  the K elements. 

Bourse 

Anglo 

0 
+4 

+3 
0 

Fig. 15. Sketch of CODAR 4element receiving antenna array, with 
spacing “a” from  center  to elements. 

Applied to  the NOAA 4element square  array (see Fig. 15), 
K = 4, and ai = 1 (i.e., up  to  now,  no weights have been intro- 
duced to modify  the response). The  pattern can then be ex- 
pressed as 

[sin ($ - n/4) - sin (@ - r/4)] 

cos2 - [cos ($ - 744) - cos (@ - n/4)] . {; I 
Decomposition of (20)-with g($, 9) substituted  for 

-proceeds  more easily if g($, @) is expressed  as  a Fourier 
series over $ and 9. Unfortunately, because of lack of convolu- 
tional symmetry, we require  a  double series rather than  the 
single series used in (22);  furthermore,  the series in this  case, 
although  it converges fairly rapidly, does not  truncate as  does 
(22) 

g(J/, $1 = xx grnntfrn($)Gn(@) (E41 
r n n  

where we give the  dominant coefficients grn, for  the NOAA 
system  in  Table  IX (as that system has been operated in the 
past with a = h/4, and  hence koa = n/2). Table X gives the 
corresponding coefficients for  the crossed-loop  system. 

As we did in the  text  for  the  loop system in (23), we simi- 
larly  define  a set  ofbroad-beam coefficients bm(m) here, which 
are 

Y 

brn(m) = ,/ o(m, $1 grnntfn(@)d@. (E5) 
- Y  

For  the first-order  sea-echo situation we are ;resting in  this 
paper, we then arrive at  the  counterpart here for  the two-angle 
model  solution presented  in (3 1) 

brn(u) = grnn[pltfn(@l) + ~2ffn(@2)1  (E61 
n 

where p 1  and p2 are  identically as defined  in (29) of  the  text. 
Again, this  model is linear in the  two  unknown  amplitudespl 
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TABLE IX 
g,nn FOR NOAA SQUARE  ARRAY 

n 
I 

0 0 0 0 .001 0 .001‘ 0 0 0 0  0 0 0 -7 

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 

0 

0 -6 0 0 0 0  0 -.002 0 0 0 0 0 0 0 0 

-5 

-3 

- 4 0  0 0 0  0 0 0 0 0 0 0 0 0 . o  
0 0 .a01 0 .011 0 .001 0 0 0 0 0 0 0 0 

0 -.002 0 0 0 -319 0 0 0 0 0 -2 

.001 0 .oll 0 .083  0 -.044 0 0 0 0 0 0 0 0 

0 0 0 0  

-1 .001 0 .001 0 -.046 0 -346 0 0 0 0  0 0 0 0 

0 0  0 0 0  0 0 0 .278 0 0 0 - . o n  0 0 0 

1 0  0 a 0  0 0 0 0  m346 0 ,044 0 .DO1 0 -.001 

2 0  0 0 0  0 0 0 0  0 .236 0 0 0 .007 0 - 
3 0  0 0 0  0 0 0 0 .a4 0 .083 0 -.011 0 .001 

4 0  0 0 0  0 0 0 -0.028 0 0 0 .028 0 0 0 

5 0  0 0 0  0 0 0 0 .001 0 -.011 0 .001 0 0 

0 -  

6 0  0 0 0  0 0 0 0  0 .007 0 0 0 0 0 

7 0  0 0 0  0 0 0 0 -.001 0 .a01 0 0 0 0 

TABLE X 
g,n (=Qn6mn) FOR CROSSED-LOOP MONOPOLE (RECEIVE) 

n . . .  -2 -1 0 1 2 ’ ”  

. 
. . . 0 -12s 0 0 0 0 0 . :. -2 

. . .  0 0 0 a 0 0 0 . . .  

. . .  0 0 .500 0 0 0 0 . . .  -1 

u . . .  0 0 0 .375 0 0 0 . .  
1 . . .  0 0 0 0 .so0 0 0 . . .  
2 * . .  0 0 0 0 0 -125 0 . . . 
. . . .  0 0 0 0 0 0 0 . . .  

‘ I  
and p2- ,  and hence  these are readily eliminated before  the  non- 
linear  least-squares  search for  the angle solutions G1 and G2.  

In  terms  of  the measured, preaveraged cross-spectral data, 
we have 

(in place of (1 l)), where is the first  vector given in (E2), 
and NCij are the N-sample-averaged cross spectra among  the 
voltage pairs for  the  four  antennas, as defined in (B2). (Again, 

for  the NOAA system K = 4 and ii = -ax, -ay, +ax, +ay for 
i = 1 , 2 , 3 , 4 ,  respectively.) Since the above equation is a func- 
tion of $ through kJ,, the  Fourier coefficients bm(w) are 
evaluated for  the  data  through  the use of (14). (Because of  the 
complex way $ enters (E7),  unlike (1 1) for  the crossed loops, 
no simple separation is possible here  like that which led to 
(16); numerical  evaluation of these  coefficients from  the data 
is a  straightforward procedure, however.) Thus we have N-sam- 
ple-averaged data coefficients obtained  through (E7)  which 
are then least-squares fitted  to  the single or dual-angle model 
(E6); the procedure  followed is identical to  that described in 



the  text  for  the  loop system. Although the covariance matrix 
to be used here in  estimating  statistical uncertainties in the  an- 
gles  is not  the same as (18) for  that system, it can be  obtained 
in an analogous  fashion using the relationships for covariances 
among N-sampled cross spectra derived in Appendix B and 
given in (B9)-(B 13). 

For the  loop system, there was no arbitrariness  in deciding 
how  many data  coefficients b,(w) to use in the least-squares 
procedure; because (12)  contains  exactly five terms, there are 
only five nonzero  data coefficients (i.e., -2 < I? < +2). For 
the NOAA 4-element system, the series describing the meas- 
ured  data,  determined here  using(E7) in(14), must  be truncated 
at Some I n 1.  Table IX suggests that  truncating  at I n I = 3 
could result in -10 percent  error/bias because ofgo4  andg44 
being omitted. Including I n I = 4 would leave only -3 percent 
truncation error  (because of omission of g3 5 ,  g ,  3 ,  g- 3 -  5 ,  

g - 5 - 3 ) .  Therefore, data  coefficients b,(o) should be calcu- 
lated  and used for -4 < m < +4. This will result in nearly 
twice as many  terms in the least-squares sums, increasing the 
computation  time;  on  the  other  hand, somewhat  greater  ac- 
curacy  could be realized with the NOAA 4-element  system 
(for  the single-angle case) because of  the higher angular resolu- 
tion  of  the broad-beam  sea-echo pattern $w, $), represented 
by the increased number of Fourier coefficients b,(w). We 
will examine  this issue of angular resolution below. Note  that 
the  loop system-when  used for  both  transmit and receive, as 
it is to be operated in the future-has  a 

coss t*@) 
pattern which truncates  after -4 < n < + 4. Hence it has  the 
same inherent angular resolution  as the NOAA 4-element sys- 
tem. 

Another difference  between the  two systems is illustrated 
in Fig. 16; this  shows the  antenna response patterns d$$@) for 
signals from  three directions: @J = 0", 22.5", and 45". (Because 
of octant symmetries,  these patterns describe responses every 
22.5".) This shows that while the  4element main beam is nar- 
rower than  the receive-only beam of  the  loop system, three  un- 
desirable features arise: i) patterns are not  rotationally sym- 
metric (i.e.: they  are different for each signal direction 9); 
ii) response patterns are not  symmetric  about  the  input sig- 
nal direction  (e.g., Q = 22.5'); and iii) sidelobe levels are very 
high  in  some cases. All of these properties are  manifested in the 
nondiagonal nature  and  nonsymmetry  about  the anti-diagonal 
of g ,  ,, seen in Table IX. 

Sidelobes can be reduced  somewhat (at  the expense of 
mainlobe  broadening)  by using nonunity weights ai in (El )  
and (E7).  This  may be necessary, for in  a dual-angle situation 
(where,  for example,  a strong s i g n a l  comes from = 22.5" 
and a second signal more  than 6 dB weaker from  another di- 
rection), any two-angle fitting procedure  could recover a  sec- 
ond  solution r& from  the sidelobe  maximum of  the stronger 
signal at 235" (see Fig. 16), which is only 5 dB  weaker than 
the main lobe. 

We note in passing that a 4-element system of reduced di- 
mensions could theoretically give identically the same pattern 
and data  coefficients b,(o) as the  loop system. By forming 

' (b) 

Fig. 16. Calculated  response  patterns g($, @): (a) the CODAR. 4ele- 
ment  square  array  with a = h/4 (b) crossed-loop/monopole  antenna 
system  (for  receive  only).  Because  of the  4element  octant sym- 
metries,  these  patterns  represent  source  directions, 9, every 22.5" 
around Fig. 15 (the @ direction is denoted  by  the arrow) and  power 
patterns  are  plotted versus *. Circles  represent -10dB levels, with 
-20 dB  at  the center. 

the difference signal between Elements #l and#3,  for  example, 
we produce in  effect  a  dipole moment (as long as the spacing 
2a is less than X/4). This has an electric field with  a cosine 
angular distribution, analogous to an electrically small loop 
(which is a  magnetic dipole). Therefore,  the difference signals 
between #1 and #3, $2 and #4 produce  the same antenna  pat- 
terns as the  two crossed loops;  their  amplitude  factors are dif- 
ferent from-and they are in phase quadrature with-the  re- 
sponse of each omnidirectional  element.  Correcting  these,  one 
can then accomplish exactly  the same effect  as for  the  loop 
system. Disadvantages to this  scheme, however, are: a)  the 
mutual coupling between elements  becomes severe when they 
are this close together; b) shortening  the  monopole lengths to 
reduce mutual coupling  makes the  antennas less efficient;  and 
c) the resulting 4-element system is still larger laterally than  the 
crossed-loop/monopole  configuration. 
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