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As more advanced versions of the computer programs
contained herein evolve, the authors will be happy to
forward them to interested users. Please write to
either author if you wish to be put on a mailing list
for future program listings.




Analysis Methods for Narrow-Beam
High-Frequency Radar Sea Echo

Belinda J. Lipa" and Donald E. Barrick

ABSTRACT. The analysis of high-frequency (HF) radar sea echo is based
on the interpretation of the echo power spectrum in terms of Barrick's
equations for the radar cross section, to give parameters of the ocean
wave, wind, and current-velocity fields. To provide an analysis of
these equations, which are straightforward but mathematically complex
and not generally well understood, a detailed review of analytical and
computational techniques for application to narrow-beam radars (both one
and two beams) is presented. Steps are given and a computer program is
supplied for the 'forward' calculation, i.e., the calculation of the
radar Doppler spectrum corresponding to a model of the directional ocean
waveheight spectrum. The 'reverse' problem is then considered, and the
derivation of ocean-surface parameters from the radar data, using least-
squares estimation techniques, is described. First, methods for esti-
mating the ocean waveheight, the dominant wave period, wave direction,
and wave beamwidth from the energy and centroid frequency of the domi-
nant peaks in the radar spectrum are shown. Since these four param-
eters are relatively insepnsitive to moderate frequency smearing that

may occur as a result of ionospheric motion, the methods described are
particularly suited to the analysis of skywave radar data. Then, meth—
ods for use with higher quality data are described, using the total
radar spectrum to give the longer-period (>8-s) ocean-wave nondirec-
tional spectrum, as well as the direction and beamwidth as a function of
ocean-wave frequency. Statistical tests are discussed that can be used
to assess the quality of the model fit and to place confidence limits on
the derived parameters. These techniques are illustrated by application
to simulated data for both single- and double-beam radar systems. It is
shown that the amount of directional information available from a single-
beam radar is somewhat limited; for example, ocean-wave parameters as a
function of ocean-wave frequency cannot be derived unless the wave direc-
tion is almost perpendicular to the radar beam, The two-beam system,
however, gives good statistical accuracy for the wave parameters at all
wave directions. Meant to serve as a manual for a variety of users of
surface-wave and skywave HF narrow-beam radars, the document is self
contained. All equations necessary for application to sea echo are
given and explained and references to earlier sources and derivations
are cited as further background for the reader. Several mathematical
results and techniques presented here have not appeared elsewhere. All
essential computer programs (coded in FORTRAN) required to implement
these methods are provided and explained; samples of input/output for
user verification are included.

* Codar Research, Woodside, California; work performed under NOAA Con-
tract No. NAS2ZRAC00010,



1. INTRODUCTION

Over the past ten years, several groups have demonstrated the unique
capability of HF radar for the remote sensing of ocean-surface waves, winds,
and currents. The strength of this method lies in the exact theoretical
formulation developed by Barrick (1972a,b), which gives the power spectrum of
HF radar sea echo in terms of the directional ocean-wave spectrum and the
surface-current velocity. Ocean-surface parameters can therefore be derived

by interpretation of these relationships without resort to empirical means.

On the basis of the width of the antenna beam, two types of HF radar
systems may be identified. One class includes narrow-beam systems, which
were the first radar systems that evolved; the radars first used to observe
sea echo were built for military target detection, and hence had narrow beam
widths. BSea echo observed by such systems is also easy to interpret mathe-
matically, as we shall demonstrate. Today, narrow-beam radar systems are
employed both in surface and skywave modes. The amount of ocean-surface
directional information available from a single beam is quite limited; for
this reason two beams inclined at a finite angle are sometimes used when sea-
surface conditions can be considered statistically the same in both areas
observed. A disadvantage of narrow-beam radars is their large physical size;
it i1s mainly for this reason that a second class of radar systems is under
development: small transportable systems that rely on novel antenna design

concepts to provide additional directional information.

In the future, most of our efforts will be in the development of broad-
beam systems of the second class; therefore, it seems appropriate at this
point to document here details of analytical and computational techniques we

have developed for use with narrow-beam systems.

At high frequency (HF), the dominant scatter mechanism is Bragg reflec-
tion from the ocean surface; the resulting Doppler spectrum consists of prom-
inent peaks caused by first-order scatter, surrounded by a structured higher-
order continuum. In sec. 2, we give a theoretical description of narrow-beam
radar sea-echo Poppler spectra using Barrick's equations for the first— and

second-order radar cross sections. In sec, 3, we show how to reduce the



integral equation for the second-order radar cross section to a convenient
nondimensional form. Computer programs are included to calculate the radar
spectrum for a model ocean-wave spectrum. Examples of computed spectra are
used to illustrate the sensitivity of the radar spectrum to changing ocean-
wave conditions. Section 4 describes techniques for the estimation of ocean-
wave parameters from narrow-beam radar Doppler spectra. (We have already
given general inversion methods in the literature; see, for example, Lipa and
Barrick [1980] and Lipa et al, [1981].) We also discuss least-squares esti-
mation methods for use with both single and double radar beams. Parameters of
the directional waveheight spectrum are obtained by fitting cardioid ocean-
wave spectral models to the radar data. First, we consider a single, domi-
nant ocean wavelength and derive ocean waveheight and the dominant wave peri-
od, direction, and beamwidth using as input data the energies and centroid
frequencies of the first and second-order radar spectral peaks. Second, we
consider a range of long ocean wavelengths and solve for the nondirectional
spectrum, and the wave direction and beamwidth also as functions of ocean-wave
frequency. Simple grid-search techniques are used to derive the optimum model
parameters; computer programs for the generation of grid-search elements are

supplied.

The calculation of parameter uncertainties is an important but often
neglected aspect of any data analysis program. We describe statistical tests
to determine whether or not the ocean-wave spectral model adequately fits the
radar data and to place confidence limits on the derived parameters. Although
standard, these techniques do not appear to be used at present by either the
remote-sensing or the oceanographic communities. The methods are illustrated

by application to simulated data for both one-beam and two-beam radars.

2. THE RADAR SPECTRUM

Figure 1 shows a typical, measured HF Doppler spectrum of radar echo
backscattered near grazing incidence from the sea at 15 MHz. The dominant
contribution is produced by first-order scatter from specific spectral com—
ponents of the ocean wavefield. These surface-height spectral components are
termed 'Bragg waves'; their wavelength is exactly one-half the radar wave-

length, and they move directly toward or away from the radar station. These



_ N Figure 1.--An 84-sample sea-echo

Aw/h'{ %’ _+ }‘A” 2n power spectrum recorded by the
SRI skywave radar on 17 May 1978,

1628 UT at 15 MHz. The first-order
(Bragg) peaks occur at *0.395 Hz.
The dashed lines indicate the posi-
tions of the four second-order peaks
produced by 12-s swell. The dis-
placements Aw® and Aw~ are used in
the text to calculate swell param-
eters. The theoretical expressions
employ definitions of the four swell
peaks in terms of m,m' = +1.

|
-
=)

]
N
(=]

|
[~ ]
Q

I
S
=]

POWER SPECTRAL DENSITY (dB}

!
1]
o

-0.5 0 0.5 1.0
DOPPLER FREQUENCY (Hz)

-1.0

peaks are evident in fig. 1; their amplitude is two orders of magnitude higher
than the surrounding continuum, from which they are separated by well-defined
nulls. In the absence of ocean current, the first-order peaks occur at fre-
quencies that depend only on the radar transmitter frequency. The presence of
a current or ionospheric layer motion (in the case of skywave radar) causes
the whole spectrum to be biased in frequency. The surrounding continuum is
due to higher-order Scatter, the greater part of which arises from second-
order interaction between pairs of ocean waves constituting the total ocean
wavefield. It is from the interpretation of this portion of the spectrum
(normalized by the first-order energy) that we derive the directional ocean
waveheight spectrum. The random appearance of the radar spectrum is due to
the random height of the wavetrains composing the surface of the sea. The
scatter of the resulting spectral points is described by a x2 (chi-squared)
distribution with 2N degrees of freedom, where N is the number of spectra
averaged (Barrick and Snider, 1977).

2.1 First-Order Radar Cross Section

Barrick's equation (1972a) for the first-order radar spectral cross

section in the absence of ocean surface current is given by



oDy =54 7 sem'E) s@an'w) , @)
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where m' = t1 denotes the sign of the Doppler shift, Eo is the radar wave
vector {of magnitude k0 pointing toward the scattering patch), and S(*) is
the directional waveheight spectrum. The Bragg resonance condition is imposed
by the delta-function constraint. Thus, ideally the first-order peaks are

impulse functions at the Bragg frequencies *w_, defined in terms of the Bragg

B’
wavenumber ko by the dispersion equation

wp = JEEE; s (2)

where g 1s the gravitational acceleration.

In practice, these peaks are broadened somewhat by current turbulence,
ionospheric motions (in a skywave radar), and systems effects. In the pres-
ence of a surface current (and/or uniform ionospheric motion) the whole spec-
trum is shifted in frequency by an amount 6w that is proportional to the total
radial velocity, vCr

Sw = 2vCr ko . (3)
Hence such shifts are readily identified and removed from the data as shown in
sec. 4.1, The amplitudes of the first-order peaks are proportional to the
directional ocean-wave spectrum at the Bragg wave vectors iZEo. At normal HF

frequencies, these correspond to short, saturated waves (e.g., 2-s period for

a radar frequency of 25 MHz).

2.2 Second-Order Radar Cross Section

Barrick's equation (1972b) for the second-order radar spectral cross

section at a Doppler shift w is given by

oD@y =25 % T [ |r|%smk) SR (-n/Ek - m'/ERT) dpdg - (4)

m,m' =] - -

Here, the spatial wavenumber p is defined to lie along the radar beam, with g

perpendicular. The scattering wave vectors k and k', illustrated in fig. 2,
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.,/,//”///’ Figure 2.--Illustration of two scat—
tering wave vectors, k and k', pro-

o k00 ducing second-order sea-echo corre-
’ sponding to integration point (p,q).
The perpendicular from (p,q) to the
T p axis is useful for proving many
of the formulae in the text.

are defined by

E=(-%,0, ¥ = (- + k) -aq), (5)
and hence they obey the constraint

k+ k' = -2K . (6)
The lengths of the scattering wave vectors are denoted by k and k'. The
values of m and m' in (4) take the values +1 and -1, defining the four pos-

sible combinations of direction of the two scattering waves. The coupling
coefficient T is given by

I'=|ry, + L (7)

where PH and FEM are the hydrodynamic and electromagnetic components defined
by

e § -
Tg =35 |k+k

H

i (kk' - E-E')(mz + sz)
], (8)

| mm' /kk" Guz - sz)

9)

_ ~ s 2 _ WD
(E-ko)(ﬁ k) /k 2Rk ]
R }E-E' + Kk A

o

Here A refers to the normalized surface impedance derived by Barrick (1971).
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The second-order radar cross section is related to the directional ocean
waveheight spectrum through the nonlinear integral equation given in (4).
This relationship is not as straightforward as the first-order result, and
its study comprises most of the material in this report. We begin by dis-
cussing the properties of frequency contours resulting from the second-order

Bragg resonance condition for the pairs of ocean waves producing the scatter.

2.3 Frequency Contours

Frequency contours are defined by the delta function constraint in (4).
They are the loci of the points (p,q) in fig. 2 giving the lengths and direc-
tions of the two interacting wave vectors, K and k', that contribute to sec-
ond-order scatter at a given, constant Doppler frequency. We will now prove
that the different combinations of m and m' define disjoint ranges of Doppler

frequency.

2.3.1 The casem = m’

Squaring the argument of the delta function in (4) gives the relation

Wl = gk + k' + 2/KKD) (10)

where k and k' are the lengths of the scattering wave vectors. It follows
from fig. 2 that because the sum of two sides of a triangle is always greater

than the third we have
k+ k' > 2ko . (11)
Since vkk' is positive, it follows from (10) and (11) that

w? > 28k . (12)

This therefore defines the regions of Doppler frequency outside the Bragg

lines; i.e.,

\/2gk0 for m=m' = +1 (13}
v2gk form=mo' = -1 (14)



Figure 3.--Normalized constant Doppler frequency contours, N, Vvs. wave-
numbers, k and k', for the two ocean wave vectors k and k' producing
second-order backscatter, for |w| > wp (i.e., m = m'). Shown is the
mathematically singular situation at n| = /2, where the two closed con-
tours break apart. The dashed circle shows the electromagnetic 'corner
reflector' condition, where k and k' are at right angles (k-k = 0);

this circle is tangent to the Doppler frequency contour |n| = 23/4,
producing a mathematical stationarity or peak at this frequency. The
contours are symmetric about the q axis.

The frequency contours are plotted in Fig. 3., The Bragg frequencies in
define the points (p,q) = (¢ ko, 0) where one of the two interacting ocean
wavenumbers is zero (i.e., infinite wavelength). Obvicusly such ocean waves
do not exist, and the corresponding directional spectral value in (4) will be
zero, together with the value of the second-order radar cross section. This
is the reason for the nulls between the first and second-order spectra that
can be seen in fig. 1. Close to the Bragg frequency, the frequency contours
re almost circular in shape, and have a radius much smaller than the radar

venumber ko' Therefore both of the scattering wave vectors k and k' are

8



almost constant in length around the frequency contour with the longer ap-
proximately equal in length to 2ko. This provides the basis of a method for
the linearization and normalization of equation (4) that will b described in
sec. 4. The eccentricity of the contours increases with departure from the

Bragg frequency until a caustic occurs when Iw] = /2 This gives rise to

B
singularities in the radar spectrum at these frequencies.

2.3.2 Thecasem # m’

Squaring the argument of the delta function now gives

w? = gk + k' - 2/EE") . (15)

If we consider first the half plane of (p,q) space for which k k', then (15)
leads to the inequality

W< gk - X . (16)

It can be seen from fig. 2 that the maximum value of (k' - k) equals 2k0 and
occurs when the vectors lie in opposite directions along the p axis. There-
fore from (16)

o < 2k, (a7

which defines the reglon between the Bragg lines:

0 < wy for m=1, m' = -1
(18)
wp < W <0 for m=-}, m" =1,
A similar proof applies to the left-half plane with the results
0<uw< wy for m=-1l, m" =1
(19)
—Wg <w<o0 for m=1, m' = -1

Frequency contours are shown in fig. 4. As for the case m = m', they are
almost circular close to the Bragg frequency but in this case change shape in

a regular fashion with increasing frequency displacement from the Bragg line.

9
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Figure 4.--Normalized constant Doppler frequency contours, n, vs. wave—
numbers k and k', for the two ocean wave vectors k and &' producing
second-order backscatter, for |m| <wg (i.e., m = -m"). The dashed
circle representing the electromagnetic 'corner-reflector' condition is
not tangent to any Doppler frequency contour; therefore there are no
peaks due to this phenomenon between the Bragg lines. The contours are
symmetric about the q axis.

3. CALCULATION OF THE SECOND-ORDER RADAR
CROSS SECTION

In this section, we describe how to calculate values for the second-order
radar cross section for a model of the ocean directiomal waveheight spectrum.
It is convenient to transform (4) to a dimensionless form, which is achieved
by expressing the product BO(Z)( ) as a function of the normalized variables
k/2ko and /wB. Results f r any calculation then apply to a family of ocean
spectral models and radar frequencies having the same values of the normalized
parameters. The delta-function constraint is used to perform one of the

integrations in (4); the other must generally be performed numerically.



3.1 Ocean-Wave Spectral Model

Any model for the ocean-wave spectrum may be used; we choose as an ex-
ample the product of a Phillips nondirectional equilibrium spectrum and a
cardioid directional factor

s(k) = £(k) g(®) (20)

where the directional factor is given by

 cos®((8-6")/2)
g(0) = -

(21)
| cos®(8/2) do
-7
Here s is the so-called ocean-wave spreading factor, and B* is the dominant
direction; in certain cases that follow, s and 6* will be allowed to vary with
wavenumber, k, although in this section we consider them constants, inde-
pendent of k. The nondirectional spectrum (Phillips, 1977) describes the

characteristic falloff of saturated waves above a cutoff wavenumber kc:

£ (k)

.005/k4 . k >k
(22)
£ (k)

[}
[=]
=
A
t

The wave spectrum is normalized so that the integral over k is equal to the

mean square waveheight, hz; i.e.,

o3

2 W
= S(K) kdkds . (23)
0 -u

3.2 Expression of the Integral in Dimensionless Form

We define the following dimensionless variables:

Wave vector: K = E/Zko, K' = E'/Zko (24)

Wavenumber: K [Rl, K' = |R'| (25)

Frequency: N = w/w (26)

B



RMS waveheight: H = 2k0h 27)

FH FEM

Coupling coefficient: YH = P YEM = 5K ¢ YL = YH + YEM (28)
o o

Nondirectional spectrum: F(K) = (2ko)£I f (k) (29)

Ocean-wave directional spectrum: Z(R) = (2k0)4 S(k), with KC = kc/2kO . (30)

Note that with these definitions, the integral over Z(ﬁ) is equal to the
normalized mean—-square waveheight H2. It is also convenient to define through
the following equations two new parameters: a dimensionless variable u, which

is the magnitude of the normalized frequency shift from the Bragg line,

u=mnn-mn'), (31)

and a parameter L, which is +1 outside the Bragg lines (where m = m') and -1
within (where m # m'):

L=mn', {32)

Using the symmetry condition to be discussed below, the indices m,m' define
the four second-order regions of the Doppler spectrum: (i) m = m' = +1 cor-
responds ton > 1l or w > wy; (ii) m= -1, m' = +1 corresponds to 0 <1 < 1 or

O<w<uw

B;
B} (iii) m = +¥1, m' = -1 corresponds to -1 < n < 0 or —wp < w < 0;
(iv) m = m' = -1 corresponds to N < -1 or W < -wgp. From the definitions (8)

and (9) for FH and FEM the normalized coupling coefficients can be written as

t Towt 2
L/RK"(n“ - 1)

®ek )(K'ok ) - 2RK"
1[ = & ] (34)

Yo = 9 S
B2 VKK' + Af2

where ﬁo is the unit vector pointing from the radar to the scattering patch.

In terms of the dimensionless variables, the delta-function constraint becomes

8 (wm'vVgk" - m/gk) = S(n-m"VK' - m/K)/mB . (35)



By symmetry, the values of the integral in (4) taken over the right and
left half planes are identical; we will therefore take the integral only over
the right half plane (where K < K') and double the result, We use as inte-
gration variables the polar coordinates K,0 of the shorter scattering wave
vector; it can be shown from fig, 2 that in terms of these variables the

coordinates of the longer wave vector are

K' = tiz + 2KcosH + 1 (36)

8" = sin ! (Ksin/K') . (37)

We can now redefine the first- and second-order radar cross sections (1)

and (4) in the following dimensionless form, using equations (24) to (37).

dl(n) = wg 0(1)(w) = 47 Z Z(—m'ﬁo) 8(n - m'vVK") (38)
m'=%1
oy = wy 0@ W)
«© T - -
=8t ) [ [ |YL|2 §(n-m/K - m'vK") Z(mK) Z(m'K')KdKd®. (39)

m,m'=1 0 -7

3.3 Reduction to a Single Integral

One of the integrations in (39) is easily performed using the delta
function constraint on the variables. The form of (39) suggests the defini-

tion of new variables as follows:

v = V& (40)
h{y,8) = my + m'/K' (41)
1(y,0) = 2*nly, |? 2k) zmkny? . (42)

Substituting these definitions in (39) gives the following simple form:

o, = [[ 1(y,8) 8(n - h(y,0)) dydd

(43)

[ 1,8) 6(n - h(y,8)) |%§ dhd®

1
5



where the factor |%§| can be obtained by differentiating (41).
8

I3 - 7 - 2 &3k (44)
] ]1 + Ly(y® + cosB8)/(1L + 2y cosb + y ) |

This factor has an integrable singularity at the origin where 8 = T and
y = 1/V2, and at |n] = ¥2 (see fig. 3).

In the next section, we show how to sclve the delta-function constraint
%
to give y as a function of 1 and 6. Writing this solution as y , (43) reduces

to a single-~dimensional integral over angle

- (16t e |2
a,(n) = {ﬁ Ity , @) |ah . de . (45)

*
y=y

The integral in (45) cannot in general be solved in closed form. We describe

its numerical solution in the remainder of this section.
3.4 Solution of the Delta-Function Constraint
We require the solution of the equation
*
n-nhiy,08)=0. (46)

Equation (46) may be solved numerically using a Newton-Raphson method. De-
fining a function f(y) at fixed n and 6 such that

£(y) =n - h(y, 8) = n - my - m' (L + 2y2cosd + yH1/4 | %7)
we may write (46) as
*
, fGr=0. (48)
*
Expanding (47) about y gives
*
By) = Gy - y) (%) . - 49)
Y Jy=
=Y

14



*
According to the Newton-Raphson method, one makes an initial guess at ¥y and

obtains a better approximation yi+1 from (49):
# * £(y)
= - |2\
Yiel T Y4 [(Bflay)] * (50)
y=y
This process is repeated until the required degree of convergence is attained.

To obtain an initial guess for the iteration, we use the following pro-
cedure. Equation (48) may be solved exactly for all frequencies at 6 = 0,7
for L = +1,-1 respectively. The two solutions are given by

. ] U+
y

( + 2u)}/ for L=1, 86=0;

(51)

* 5.
v (u-1+V1 + 2u - uz)/2 for L=-1, 68 =mw ;

where u is defined in (31). We therefore start the numerical integration of
(45) over angle at these values. The initial guess at successive values of
6 around the frequency contour is taken to be the solution of (48) at the

preceding quadrature point.

Close to the Bragg lines, a simpler method is available. When y << 1,
the solution to (48) can be written to first order in a form that is inde-

pendent of angle (corresponding to almost circular frequency contours):
%
y =a(n-m') =u . (52)

This result may be used as an initial guess throughout the numerical inte-

gration.

3.5 Calculation of the Coupling Coefficient

Program 1 (Appendix B) calculates the normalized coupling coefficient
from eqs. (33) and (34) for input values of K and 8. The quantity calculated
is the total coupling coefficient |YL|2, where Yo is defined in (28). The
calculation is performed in terms of the variable y defined in (40) and uses
the following substitutions

15



KeK' = K » (—ko—K)=—Kcos -K2

+1=(/K+L/1T")2+1
n? - /K + L/END? - 1

The surface impedance A is slightly dependent on the directional ocean-wave
spectrum; however the value of the coupling coefficient is insensitive to the
value of A except when the scalar product K*K' in the denominator of (34)
approaches zero. This produces a singularity in the electromagnetic cou-
pling coefficient and marks the transition between propagating and evanes-
cent intermediate radio waves scattered between the two ocean wavetrains.

The condition K*K' = 0 defines a circle in the {p,q) plane, which is shown in
figs. 3 and 4. The effect of the singularity on the value of the radar cross
section is small except for normalized frequencies close to 23/4. At this
point, the frequency contour becomes tangential to the circle of singularity.
In our work to date with long ocean waves, frequencies in this region have
not been of importance, since the contributing ocean waves at the 23/4
singularity have short periods approximately 21/4 times the period of the
first-order Bragg waves. We have therefore found it adequate to use the

following constant value for A over the HF region:
A= .011 - i(.012) . (55)

This assumption must be reevaluated if one is interested in shorter-period

waves (i.e., less than twice the period of the Bragg waves).

We include a sample output from Program 1 (Appendix B), for inmput values
of K = 0.05 and values of & in steps of 10° from 0° to 180°.

3.6 Integration Limits

It can be seen from figs. 3 and 4 that for integration over the right-
half plane, the value of 8 defined by a frequency contour usually ranges

from -7 to m. However for n2 > 2, the contour intersects the q axis, and the



limits on 0 must be obtained by solving for the points of intersection. It
follows from fig. 2 that at the q axis, where K and K' are equal, the limiting

values BL are given by

BL =* [ - cos-l(zlnz)] for n2 > 2. (56)

3.7 Numerical Computation of the Sea-Echo Doppler Spectrum

Program 2 (Appendix C) calculates the normalized second-order radar cross
section for the ocean-wave spectral model described in sec. 3.1. We have
found that it is normally adequate to use 36 quadrature points for the inte-
gration over angle (that is, at least one point every 10°). There is pro-
vision in the program to increase the number of quadrature points in the
neighborhood of the 23/4 singularity. Spectral points near zero Doppler are
not calculated; they have been of little interest to us because they are
produced by short ocean waves (with periods less than v2 times the Bragg-wave
period), and the calculation must be modified as the frequency contour becomes
infinitely long. Numerical output from Program 2 is included for the follow-
ing input parameters: K, = .03, 6* = 45°, s = 4, and for normalized frequen-

c
cies in the range -2 to +2.

Figures 5 and 6 give examples of simulated spectra calculated from (38)
and (39). To simulate the finite frequency resolution of a practical system,
we have smeared the theoretical Doppler spectrum in normalized frequency using
a Gaussian window of width 0.1. Figure 5 illustrates the effect of changing
waveheight; the Doppler spectrum is shown for three different values of wave-
height at the same dominant ocean-wave direction (135° with respect to the
radar beam). TFor the ocean-wave spectral model used, increasing waveheight is
equivalent to increasing the peak waveperiod. The resulting amplitude of the
second-order spectrum increases relative to the first, and the spectral peak
moves closer to the Bragg line. Figure 6 illustrates the effect of changing
the dominant wave direction at constant waveheight; the Doppler spectrum is
shown for three values of dominant wave direction, 8*, relative to the radar
beam (180°, 135°, 90°). The degree of symmetry about zero Doppler increases

as the wave direction tends to perpendicular.
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Figure 5.--Simulated spectra show-
ing the effect of increasing wave-
height on the normalized radar
Doppler spectrum defined by (38)
and (39). We have used the cardi-
oid model defined by (20) for the
directional ocean wave-height spec-
trum with ocean-wave direction
equal to 135° with respect to the
radar beam and normalized wave-
heights of 1.0 (continuous line),
0.5 (dashed), and 0.2 {(dotted).
The whole spectrum is smeared in
normalized frequency using a
Gaussian window of width O0.1.
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Figure 6.—-Simulated spectra show-
ing the effect of changing ocean-
wave direction (relative to the
radar beam) on the normalized radar
Doppler spectrum. The ocean-wave
spectral model and the frequency
smearing are the same as for fig. 5;
the normalized waveheight is equal
to 0.5, and the ocean-wave direc-
tions are 180° (continuous line,
135° (dashed), and 90° (dotted).

4, INVERSION FOR LONG-PERIOD OCEAN-WAVE

PARAMETERS

From the theoretical radar spectra shown in figs. 5 and 6, it is clear

that the spectral shape is sensitive to changing ocean-wave conditions. In

this section, we will show how to estimate long—p d1od ocean-wave parameters

from the radar data.

These methods require a lin arization of the integral

equation (4) for the second-order radar cross section; we restrict considera-

tion to the long-period region because our linearization method (to be de-

scribed in sec. 4.2) applies there.

Estimation of short-periocd wave param-

eters requires solution of the nonlinear problem and will not be discussed

here.



4.1 Inidal Data Treatment

To reduce the statistical variance, we must average spectra from dif-
ferent range cells and time periods and produce a composite spectrum to be
analyzed. Barrick and Snider (1977) have shown that the sea-echo power spec-
trum after N-sample averaging is x2 distributed with 2N degrees of freedom.
They also show that Doppler spectra (both first and second order) become
uncorrelated for time intervals greater than approximately 25 s for radar
frequencies greater than 10 MHz, and that Doppler spectra from different range
cells are statistically independent. These experimental results may be used
to optimize the amount of incoherent averaging. Statistical accuracy may also
be increased by averaging adjacent frequency points, at the expense of spec-
tral frequency resolution. In practice, about 100 spectra should be inco-
herently averaged, i1f possible, before analysis. Before averaging, individual
power spectra should be normalized in amplitude to increase the number of
degrees of freedom in the composite spectrum if different unknown path losses
are suspected of multiplying the individual spectra (e.g., as with skywave
radar data, or groundwave data from different ranges). The simplest method is
to divide the total spectrum by the energy contained in the dominant Bragg
line. Barrick (1980) analyzes the error propagation in this process.

Before analyzing the composite spectrum for ocean-wave parameters, we
must remove the frequency bias produced by ocean surface currents and/or
ionospheric motion. We first find the centroid frequencies, wci, of the first
order regions that are bounded by the frequency nulls (see fig. 1), using the

formula

o = I o™ ) wi/i M) . (57)

The average bias estimate to be subtracted from all frequencies is given by

(mc+ + mc_)
Aw = — s - (58)



4.2 Linearization of the Integral Equation

To simplify the integral equation, we use a linearization scheme proposed
by Barrick {(1977). We have already noted in sec. 2.3, with reference to the
frequency contours shown in figs. 3 and 4, that for frequencies close to the
Bragg line, the wave vector of the shorter scattering ocean wave is approxi-

mately equal to the Bragg wave vector, i.e.,
K' =~ - 2k_ . (59)

The directional spectral factor in the integrand at this wave vector is there-
fore approximately equal to that for the Bragg wave, which can be obtained
from the neighboring first-order line. These waves normally lie in the sat-
urated region of the ocean-wave spectrum. However, a better approximation is
obtained by including the wavenumber variation along the constant-Doppler

contour, assuming the Phillips equilibrium spectrum:
Zm'K') = —— (60)

Substituting this expression into (39) and normalizing by the energy in the
neighboring first-order line gives the following expression for the energy

ratios:
2(n)
Rm,m'(u) =T ol(n)dn
9
-] L 2 K
=2 [ |yI° 8@ -o/Ka'/K) Z@K) — dKde (61)
0 -6 K'
L

where u is the normalized frequency displacement from the Bragg positions at
m' = %1, defined in terms of n by (31) for any given sideband. (The limits

BL were defined and discussed in see. 3.6.)

We define the following notation convention for use throughout this
section: Uppercase R's denote theoretical quantities, whereas lower-case r's
are measured quantities; script R's denote the total energy in the peak, where-

as block R's denote the actual peak function.



The above, (61), actually represents four equations, one corresponding to
each of the four second-order sidebands surrounding the two first-order Bragg
lines. These four, as before, are defined by m,m' = *1; i.e., m' = +1 de-
fines the positive/negative Doppler spectral lines, and m = +1 locates the
second-order peak as being either to the right/left of the surrounded Bragg
line (see fig. 1). This expression (61) is a linear integral equation for the
waveheight directional spectrum. In addition, unknown calibration factors and
path losses have been removed from the data by normalization of one portion of

the spectrum by another.

This linearization method applies for long ocean waves such that the nor-
malized wavenumber K is less than 0.06; the corresponding value of the fre-
quency shift u is less than 0.25. For example, for a 25-MHz radar transmitter

frequency, it is valid for ocean-wave periods longer than about 8 s.

4.3 The ‘Bands’ Approximation

As we have shown in seec. 2.3, the frequency contours in figs. 3 and 4 are
approximately circular close to the Bragg frequency. Thus a given Doppler
shift corresponds to a narrow band of ocean wavenumbers, the approximate

relationship between wavenumber K and wave direction 6 being given by
L
u= /K (1 +~E VK cos8) . (62)

In a2 single Doppler spectrum there are therefore four independent pieces of
information (corresponding to the four sidebands) on the ocean—wave spectrum
at any wavenumber. This results in considerable simplification of the inverse

problem.

The width of the wavenumber band vs. 6 corresponding to a given Doppler
shift is least when very close to the Bragg frequency. Further removed, the
width increases, resulting in a frequency smearing of the derived ocean-wave
spectrum. To derive the width of the band, note from fig. 3 that for m = m',
the maximum and minimum values of wavenumber (Ku and KL) on a frequency con-
tour occur at § = 180°,0°, respectively. They can therefore be obtained from

the exact equations



V’IT;+/TT'K_u—l=/I?;+/I+—KL'—1. (63)

or small values of u and K the solutions to these equations are
K = o+ ; K o= W - u3 . (64)

For m # m', the maximum and minimum values of normalized wavenumber occur at

6 = 0°,180°, respectively, and can be obtained from the equations
@-/1‘-1(1'+1=/R:-/1‘_+Ku+1, (65)

which have exactly the same solutions (64) as the case m = m', for small
values of K and u. The maximum wavenumber excursion corresponding to a given

frequency shift u is therefore approximately given by

MK = 2u3 . (66)

4.4 Limitations of the Information From Narrow-Beam Radars

4.4.1 Single narrow beam

Here we show that the amount of waveheight directional spectral informa-
tion obtainable from a single narrow-beam look at a patch of ocean is quite
limited, This is most easily illustrated by expanding the normalized direc-

tional spectrum in a Fourier series vs. angle:

N
_ 1 n
Z(mK) = o= Z_N c ) n" tf (0) , (67)

where the coefficients c are functions of normalized wavenumber and the

trigonometric functions tfn are defined by

cos (nB) n>0
tfn(B) = (68)
sin(|n}8) n<0.



As in sec. 3, we use the delta function constraint to perform one of the

integrations in (61), giving

)
_ 2 3|3y ~. d@
Ry @ =4[ Iy |y ‘ah Z2(nk) ==, (69)
-7 0 K
where %% is given by (44). At this point, we plan to expand everything ex-
0

cept Z(mi) in the integrand of (69) in terms of u, retaining only terms up to

first order, using
VK=y=u- %‘UB cosf . (70)

To first order in u, we note that a good approximation to |YL|2 (Lipa and
Barrick, 1980) is:

%— coszﬁ(l - 2u) for - %_r'i 8 i%
v, |? = (71)
1 2 T 3w
% ©os :] for 2 <8 _<_—2—
Likewise, to the same order inm u, we find
yBI%%- = u3(l - %-L u cosf) . (72)
]
If we now substitute these into (69) we obtain
N
Ry (W) = Z“N ¢, K a_, (73)
where
3¢ w/2
a =5=1{[ [1-u@+2cosb)] cos® n® t£ (8) d
n 2m 2 n
=T/2
In/2 5 5 n
+ [ [1 - 5 cosB] cos™® m™ tf (B) dO} . (74)
/2 "

For values of u less than 0.25, we therefore obtain the following solu-~

tions for the four sidebands



a = u3(1—u)/2; a, = -u4(5/4+4/3); a, = ua(l-u)lé; a_1=a_2=...=a_n=0 .
m=-1,m' =1

a = u3(1-u)/2° a, = —u4(5/4-4/3ﬂ)' a, = u3(l—u)/4' a .=a ,=,..=a =0

o ’ 1 ’ 2 ? =1 =2 """ Ten

a = ua(l—u)/2; a = +u4(5/4—4/3ﬁ); a u3(l—u)/4; a.=a  =...=a =0.

2

w@-u)/2; a, = +l(s/aa/3m); a

u
I

3 e = ma =
g = u (Q-u)/4; a_y=a_,=...=a =0 ,

We can draw the following conclusions from these results:

(1) Since a, = 0, none of the odd Fourier coefficients multiplying the
sine functions are determinable from a single narrow-beam look. The meaning
of this, which is obvious physically, is that there is a right/left ambiguity
about the radar beam; it is therefore impossible to tell from which side the
waves are coming. Independent information must be used if this ambiguity is

to be resolved.

(2) TFor all four sidebands, we note that a, = 30/2; this is true only to
the order in u to which we have carried our approximation. If we define the
directional spectrum by five Fourier coefficients (i.e., N = 2 in (67)), the
four sideband amplitudes at a given value of u are therefore functions of two

factors only:

cl(K), co(K) + e, (K)/2 (75)

where, from (62}, K is approximately equal to u2. It follows that it will be
impossible to separate co(K) and cz(K) from the data, to order u in our ser-
ies. To order u2 they are separable, but since u is a small number, statis-—
tical fluctuations in the data will cause large uncertainties in co(K) and

cz(K) if one forces their separation. Sometimes accuracy can be increased by



using other information derived from the frequency centroids of the four

sidebands, as described in sec. 4.5.

(3) Large statlstical uncertainties can also be expected in parameters
derived by fitting cardioid models of the ocean-wave spectrum to the radar
data. Rewriting (20) for the cardioid model in normalized form gives

*
F(K) coss(é;e )

Z(K) =

(76)
f cos®(8/2) d8
~T
The Fourier coefficients ) have the following relationship to the parameters
of (76) (Barrick and Lipa, 1979)

¢, () = F(K)
e, (K) = (iiz) cosd F(K) a7
¢, ®) = 'G%E% c0s26” F(K) .

These equations show that, since it is difficult to separate co(K) and cz(K)
from the data, the three parameters F(K), s, and B* will also have large
statistical uncertainties; examples illustrating these large uncertainties
will be examined later.

4.4.2 Two narrow beams

To study the quality of information obtainable from two radar beams
inclined at an angle £, we define two sets of Fourier coefficients ci(K) and
ciz)(K) with reference to the first and second beams. From the definition
(67), we can write the following equations for the directional ocean-wave
spectrum at an arbitrary angle € with respect to the second beam:

1 N N

Ty oo L (2) _ 1 n
Z(uk) = 5~ nZ_N e, (K) ef (8) =3 nZ-N c (K) m" tef (6+€) , (78)

leading to the following identities:



@

o

) = c_ ()

e )

c_l(K) sine + cl(K) cos (79
céz)(K) = c_2(K) sinZe + cz(K) cos?

To first order in u, therefore, the following pieces of independent informa-

tion are avallable from two narrow beams:

e, (K)
cl(K), co(K) + g , c_l(K) sine + cl(K) cos , and
e (K) e (K) (80)
CO(K) + > sin2e + 7 cos2E .

By substitution of the relations (77) for the cardioid model parameters,
{80) becomes

*
2s cos © co(K)

{st2)

*
s cO(K) (1 + ng;gg%giig ) . cD(K) (%j—'_-i- cos (8*—5)) , and

(81)

*
s5(s-2) cos2(B8 -g)
€0 () ( (s+2) (s+) )

Although one cannot hope to derive five Fourier coefficients using (80) from
the four pieces of information, it is apparent from (81) that a stable de-

*
termination of the three parameters s,6 , and cD(K) (the first two also being

functions of wavenumber, K) should be possible.

These approximate conclusions will be verified in sec. 4.5, where we
estimate the statistical uncertainties in least-squares fitting procedures for

both single and double narrow-beam observations.

4.5 Interpretation Yielding Ocean-Wave Parameters at a
Single Dominant Wavenumber

When the widths of the first- and second-order spectral peaks are com-
parable (as in fig. 1), we can interpret the Doppler spectrum in terms of an
ocean-wave spectral model with a single dominant wavenumber and a cardioid

directional distribution



h2 cos® (ﬁ%ﬁ_) G(k-k*)

S(k) = - (82)
k f cosS(G/Z) 46
-7
* *
where h is the RMS waveheight, k and & are the dominant wavenumber and
direction, and s is the spreading factor.
In the normalized form described in sec. 3.2, (82) becomes
2 8 6* *
- H® cos® (—%—— § (K=K )
Z(K) = - (83)
K [ cos®(8/2) a6
=T

4.5.1 Single narrow beam

Second-order peak frequencies

For such ocean-wave spectra, the Doppler spectrum has four reasonably
sharp distinguishable sidebands. We may define the second-order sideband
frequencies by setting the argument of the delta-function constraint in (39)
equal to zero, giving for a single radar beam
*2)1/2

* * *
n y =m K +m'(l + 2mK cosf + K (84)

This definition is exact only when the wave spectrum becomes infinitesimally
narrovw in angle (i.e., s - =), Lipa and Barrick (1980) and Lipa et al., (1981)
find, however, that this definition gives a quite adequate description of the

sideband frequency centroids even for s as low as 2,

* *
The optimum choice for the parameters K and 6 can be obtained from (84)
by employing the least-squares fitting methods described in Appendix A. How-

ever, it is often more comvenient to use closed-form solutions that follow
from (84):

* -
& = ant + an)2/16
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+ -
9* = cosﬂl(s(a_?_ - Ail ;) (86)
(4n + &n )

+ -
where An and An are the frequency displacements between the sidebands sur-

rounding the positive and negative Bragg lines (see fig. 1).

The values of nm,m' are calculated by finding the centroid frequency of
the spectral peak between the half-power points. Barrick (1980) has calcu-
lated a general expression for the standard deviation of a centroid frequency
for a power spectrum that obeys x2 statistics. This expression is insensitive
to the exact shape of the peak; therefore Barrick shows that if we assume a
Gaussian form for convenience, the standard deviation of the frequency esti-

mate is
Sd (w) =% /)72 (87)

where M is the number of samples contained within the half-power width, N is
the number of independent spectra used in the sample average, but here A is
the angular frequency spacing between adjacent spectral points. The cor-
responding uncertainties in the estimates (85) and (86) for K* and B* follow
from linear error propagation theory (Brandt, 1970)

£ \1/2
SAK) = % (EN—M) (88)

1/2
1/2 |1san5)? = ean’ An™ + 5@n7)2]

*
T =3 for sin6 # 0 . (89)
sin® (An + An )

Sd(8°) = 8AM/N)

The uncertainty in the estimate of wavenumber is gemnerally small; that in
angle can be large because of the differencing of small frequency shifts in
(86).

Second-order peak energy ratios

Substitution of the spectral model (83) into the linearized equation (61)
gives the following model for the ratio between the second-order peak energy

and the energy in the neighboring first-order line:

28



Rm’m, = H ¢ ’m.(e y A )
where
* 2 T 2 sf - %+ @1)n\d
o (0, 88) = — f Yo'«  cos ( 5 )7 (91)
s z K
f cosS(GIZ)dB T K0
—Tr

*
The factor (91) is calculated at the value of K obtained from the sideband
frequencies, through (85). The spreading factor s in the above equation is
*
related to the half-power beamwidth A8 by the equation (Barrick and Lipa,
1979)

__ n(0.5)
fn[cos (48" /4) ]

(92)

We use the least-squares method to fit the theoretical expression to the
data. In this method, described in Appendix A, we minimize the sum of weight-
ed squared deviations of the data from the ideal functional forms to give the

optimal parameters. The quantity to be minimized is

I = z m,m' m,m i (93)

where &m o' 2re the normalized energies of the measured second-order peaks
]

defined in (61). We note that nm,m, is the ratio of sums of xz power spectral
samples and is therefore itself a random variable that follows an F distri-
bution (Barrick, 1980). If the numerator and denominator are sums of Nl and
N2 independent power samples, respectively, in the limit of large N (i.e.,
N2 > 5), the F distribution becomes x with an effective number of spectral

averages Ne given by

1/N_ = /N, + 1/N, . (94)

The variance in the denominator of (93) is therefore given by:

A =, (95)



To calculate Ne’ we require the equivalent number of spectral samples (Nl, N2)
in the calculation of the first- and second-order peak energies. According to

Barrick (1980) these are approximately given by

N, = 1.3 M, (96)

where N and M are defined following (87).

* *
Program 3 (Appendix D) calculates the elements ¢m o (&, AB ) for a

range of parameter values; a sample output is included. Using these elements,
we can simply perform a grid search over parameter space to find the minimum

value of I (Imin)' I and Im are x2 distributedf with 4 and 4-n degrees of

in
freedom, where n is the number of parameters fit to the data. The parameters
defining Imin

set confidence limits on the derived parameters, we calculate the following

are then the optimum choice. As described in Appendix A, to

statistic throughout parameter space:

Z=(I-1 on

in)/Imin '
Z is distributed as TZ%ET'F(n, 4-n), and tables of the F distribution may be
used to define confidence contours. This process is illustrated later in this

section by application to simulated data.

We leave as an open question for now how many parameters, n, are to be
fitted to the data in the least-squares manner described in this subsection.
For example, if both K# and B* can be determined accurately using the peak
frequencies method described after (84), then only AG* and H2 are unknown, and
n = 2, On the other hand, it is often possible to determine only K* accu-
rately from the peak frequencies; then B*, AB*, and HZ are unknown, and n = 3.

This qQuestion will be discussed using examples in sec. 4.5.3 below.

¥ We note that both I and the radar power spectrum are x2 distributed; the
number of degrees of freedom in the two cases is given by the number of equa-
tions fitted and the number of spectral averages, respectively.



4.5.2 Two narrow beams

We use all the equations in sec. 4.5.1 with reference to Beam 1. There
is now a similar set for Beam 2; the angle 0 is replaced by (8-g), where £ is

the angle between radar beams. Thus the following equation gives the sideband

frequencies nézi for Beam 2, corresponding to (84) for Beam 1.
1/4
* * * *
n@DCaVE + e+ K cos(B-g) + KD . (98)

m,m

% *
Estimates of K and 8 can be now obtained from (84) and (98) by minimizing
the sum of the squared deviations from the eight observed centroid frequen-

cies.

Similarly, in addition to (90) for the energy ratios of Beam 1, we have

the following expression for Beam 2

* ¥*
::(1231' = B2 I CIE (99)

*
Estimates of H and 8 can be obtained by least-squares fitting to the eight
*
energy ratios at the value of K obtained from the peak frequencies. The sum

of squared deviations to be minimized is given by

2
(n(i) @ )

1 T
I = z m,m ht, | (100)

m,m'5i=1,2 w2  HW
m,m

where the superscript (i) refers to the beam number. Since we are fit-
ting to elght equations, the statistic Z defined in (97) is distributed as
Tg%;y F{n, 8-n); tabulated values of the F distribution are used to define
confidence intervals in parameter space. Again, the question of how many
parameters are to be determined using least-squares fitting on (98) vs.
least-squares on (99) is left open here; it is considered in the next sec-

tion.



4.5.3 Application to simulated data

To illustrate these statistical techniques, we apply them to simulated
data calculated for both single and double narrow-beam systems. To generate
the simulated data, energy ratios are calculated from eqs. (90) and (99) with
the following parameters: € = 30°, s = 4, K? = .05, 6* = 45°, RMS waveheight =
0.6 m, radar transmitter frequency - 15 MHz (therefore the corresponding value
of H, the normalized waveheight, is 0.38). Thus, the dominant wave direction
was taken to be 45° with respect to the first radar beam and 15° with respect
to the second. Noise is added randomly to the calculated values consistent
with the signal variance defined in (94); 100 effective sample averages are

assumed.

Three-parameter fit

We first attempt to estimate the parameters h, 8*, and AB* by calculating
the sum of squared residuals, I, at each point of a three-dimensional grid in
parameter space, using the*elements ¢m’m,(8*, AS*) calculated by Program 3
(Appendix D). We assume K was calculated from (85). We chose the following
increment sizes: 15° for both direction and beamwidth, 2.5 cm for RMS wave-

height.

For a single beam (i.e., the first beam as defined above), the minimum
value of I was found to be 3.8l. Since we are fitting four equations with
three parameters, there is a single degree of freedom. We choose a signifi-

cance level of 5% and note that xg 95 = 3.84. 1 n is less than this wvalue;

mi
we therefore conclude by the X%  test that the model fit is satisfactory. 1In

the process of generating Imin’ values for nm ot vere generated with random

noise added to the model in the numerator of 293) such that the numerator
variance is close to the variance Ani,m' in the denominator. This is neces-
sary 1f the simulation is to be reasonable and typical of actual data. Then
the value of each term of the least-squares sum will be of the order of unity,

as it should.
The statistic Z defined in (97) is distributed as 3F(3,1); the 50% and

75% confidence contours are therefore defined by Z = 5.13 and 24.6, respec-

* *
tively. Figure 7 shows the projection of these contours on the h-8 and h-A8
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Figure 7.--Confidence contours from
the three-parameter maximum-likeli-
hood fit to the energy ratios for

a single-beam radar. The x indi-
cates the optimum £it; the outer
and inner curves represent the 75%
and 50% confidence limits, The
upper diagram is the projection of
the contours on the h - A6* plane;
the lower, on the h - 8* plane.
Note that 8% represents the angle
away from the radar, whereas the
horizontal axils represents the
angle toward the radar (i.e.,

180 -~ 8%).

planes.

not provide accurate estimates.

For two beams, Imin

was found to be 8.2.

Figure 8.--Confidence contours from
the three-parameter maximum—1likeli-
hood fit to the energy ratios, as
in fig. 7, but for a double-beam
system.

It is apparent that fitting three parameters to the power ratios does

There are now eight equations

fitted by the three parameters and therefore five degrees of freedom. The

value of XO 95 is 11.05; since I min

considered acceptable.

is less than this value, the model fit is
The statistic Z is distributed as —-F(3 5); fig 8

shows the projection of the 50% and 75% contours on the h-B and h- AB planes.
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Clearly, the confidence intervals are far tighter than for the single-beam
case, as might have been expected from the discussion of sec. 4.4. At the 75%
confidence limit, h, 9*, and AB* are determined to 7 cm, 45°% and 60°, re-
spectively. Note that this corresponds to 2.4 standard deviations for each of

these parameters.

Two-parameter fit

In an alternative treatment, we assume that the dominant wave direction,
B*, as well as K#, has been determined from the sideband frequencies, and use
least-squares methods to estimate only the beamwidth and RMS waveheight. For
a two-parameter fit there are two and six degrees of freedom for single and
double beams, respectively, with corresponding values for Xg.95 of 6.0 and
12,6. The values of Imin for the simulated data were 4.1 and 8.2; because
these values are less than X0.95’ the model fit is considered satisfactory.
The statistic Z is distributed as F(2,2) and-% F(2,6) for single and double
beams; the 50% and 75% confidence contours are shown in fig. 9. It can be

seen that the two-parameter fit gives results that are far more stable than
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*
the three-parameter fit: h and A® are determined to 10 cm, 65° and 7 cm, 20°
at the 75% confidence level (i.e., 2.4 standard deviations)} for single and

double beams, respectively.

We recommend using both the three-parameter and t -parameter fits to the
sideband peak energy ratios--in conjunction with the d termination of angle
and period from the sideband centroid frequencies——and using the most accurate
results. It turns out (for a single-beam radar) that when th dominant wave
direction is almost perpendicular to the radar beam (8* 90 ), the determi-
nation of angle from the centroid frequencies is extremely inaccurate, as can
be seen from (89), whereas that obtained from the amplitude ratios is rela-
tively well defined. When the dominant wave direction is along the radar

beam, the opposite conclusion applies.

4.6 Interpretation Yielding Ocean-Wave Parameters as a
Function of Wavenumber

With HF surface-wave radars, and occasionally with skywave radars when
ionospheric contamination is very low, the resulting echo Doppler spectra are
sufficiently crisp in frequency resolution to allow a determination of wave
spectral information as a function of wave frequency (or wavenumber). In this
case, we use least—-squares methods to obtain the parameters of the cardioid
model described in sec. 3.1 and written in normalized form in (76). In this
sub-section it is therefore understood that the spreading factor s (and hence
the half-power beamwidth AB*) and the dominant wave direction 6* are functions
of wavenumber. In the long-ocean wave region, we can also use the 'bands'
approximation discussed in sec. 4.3: each frequency contour defines a narrow
band of ocean wavenumbers, with the central wavenumber given in terms of the

frequency displacement by
K=xu . (101)

Thus, to obtain ocean-wave model parameters at a particular value of K, one
must fit the model to radar spectral values at the corresponding normalized
Doppler frequency values from each Bragg line of u. For a single radar beam
there are four such values corresponding to the four sidebands; for a double-

beam system, eight. Substituting (76) into the linearized integral equation
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(61) gives

B 2 * *

Rm,m. (v) = F(u") ‘Pm’m, (u, 6, AG ) (102)

where
0
Kok 2 = L

Y (u, 8, 88) = [ T v % 8(mu + o' - /K - n'/K")
m,m m L

/ coss('g)de 0 -8

T 2 (103)

*
x cos®(8-6") % dKde
K
*
and the spreading factor s is given in terms of A8 by (92). BL is defined
and discussed in sec. 3.6. Program 4 (Appendix E) calculates the elements
*
Tm m,(u, @ , AB ) for a range of parameter values and an input value of u.
3

For each value of u in the range 0 < u < 0.25, estimates of the param

eters are obtained by minimizing the sum of squares of deviations given by

(T @) = Ry ()

Ju) = § (104)

m,m' Ari m,(u)

The data values ro m,(u) are the second-order spectral values of the data

2
normalized by the first-order energy as defined in (61). The variance in the
denominator is given very simply by

rtzn m' (u)

2
Bry o (W) = T (105)

where the effective number of spectral averages Ne is given by
1N, = /N + /N, . (106)

Here Nl is the effective number of spectral samples in the first-order peak
energy, defined in (96), and N2 is the number of spectral averages in the
second-order energy band at u of width Au given by (66). Methods described in
Appendix A can be used to test the quality of the model fit and to place

confidence limits on the derived parameters.
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This procedure will give estimates of the normalized spectrum F (K},
* *
and also A® and © as a function of normalized wavevector K in the range

0 < K< .06. The ocean-wave nondirectional spatial spectrum is then
£ = k) FWO (107)

and the deep-water temporal spectrum at ocean—wave frequency v (in Hz) is

given by

T(v) = 4m Jgii F(k) (108)
where Vv is given in terms of wavenumber k through the dispersion equation
v = Jgkf2m . (109)
For two beams, there is another set of equations for the power ratios:
Réfi,(u) R IOR Y 0" — e, 28%) . (110)
The sum of squared deviations now contains eight terms:

(r(i)!(u) - R(i)|(u))2
Ju) = z m, m m,m
m,m';i=1,2 (Ari’m,(u))(i)

(111)

where the superscript i refers to the beam number.

Although we have not determined confidence intervals for simulated data,
we can draw the following conclusions from the discussion of sec. 4.4 and the
simulations described in sec. 4.5. For a single beam, the statistical un-
certainties in ocean-wave parameters derived as a function of wavenumber will
be large, unless the dominant wave direction is close to cross beam. Ac-
ceptable accuracies will result, however, if an estimate of ocean-wave di-
rection can be made from the radar spectral peak frequencies or by some other
means. Use of the peak frequency centroids for direction, of course, requires
the assumption that this direction does not change significantly as a function
of wave frequency in the long-wave region, and this may not be acceptable for
some situations. For two radar beams it is not necessary to have an estimate

of wave direction prior to using least-squares estimation. In this case, one
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should be able to derive the nondirectional spectrum, the dominant ocean-
wave direction, and beamwidth (the latter two vs. wave frequency) with good

statistical accuracy.

3. CONCLUSIONS

In summary, we give in this report a detailed description of the com-
putational and analytical techniques that have been developed for use with
narrow-beam HF radar sea echo. We describe a method to calculate theoretical
radar spectra for ocean waveheight directional spectral models, including the
computer program that performs the calculation; these computations show that
resulting theoretical radar spectra are sensitive to changes in the ocean-

wave spectrum,

We then describe methods to give long-period ocean-wave parameters based
on the interpretation of Barrick's equations for the first- and second-order
radar cross section. The starting point in the data analysis is the combi-
nation of radar spectra from different ranges and times to produce minimum
statistical variance in the composite spectrum. Least-squares methods are
then used to estimate ocean-wave parameters by fitting cardioid models of the
ocean-wave spectrum to the radar data. Computer programs are provided for the
generation of grid-search elements. We discuss standard statistical methods
for testing the quality of the model fit and for placing confidence limits on
the derived parameters. These methods are easy to apply and should allow the
routine derivation of long-period ocean-wave parameters—-—as well as their

accuracy egtimates——-from narrow-beam radar sea echo.

A general conclusion is that the amount of accurate waveheight direc-
tional spectral information obtainable from a single, narrow-beam look at a
patch of sea is limited. Not only is one constrained by the obvious left/
right directional ambiguity about the look direction, but accurate measurement
and separation of the waveheight nondirectional spectrum from wave beamwidth
and wave mean direction becomes more difficult (except when mean wave direc-
tion is within 45° of the perpendicular to the radar beam). The example con-
sidered in this report shows an angular uncertainty of 70° and half-power

beamwidth between 60° and 180° at the 50% confidence level for a 100-sample
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spectral average. Furthermore, neglect of the latter two directional param-
eters in any inversion analysis does not mean one can then extract waveheight
alone more accurately; such neglect will generally produce greater error or

bias in waveheight.

Use of two radar beams to look at the sea from different directions not
only eliminates the left/right ambiguity, but allows for accurate extraction
of waveheight, mean wave direction, and wave beamwidth. If the sea—echo
Doppler spectra are sufficiently crisp in frequency resolution (as with sur-
face-wave radars), the latter two directional parameters can be derived as a
function of wave frequency, as well as the nondirectional waveheight spectrum.
However, two-beam radars have their own inherent disadvantages. For a single
radar system that looks in two different directions, it must be assumed that
the sea is statistically homogeneous within the two different patches; at best
this can only be true with a short-range surface-wave radar where the patches
are separated by no more than 30 km, and often it will not even then be true.
On the other hand, two spatially separated (surface-wave or skywave) radars
locking at the same patch of sea from different directions will certainly
circumvent the homogeneity assumption, but at the cost and inconvenience of

two radar systems.
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Appendix A: Nonlinear Least-Squares Estimation

Here we briefly describe nonlinear least-squares methods for the esti-
mation of model parameters, In our problem, we wish to estimate n parameters

(xj,j =1,...,n) from N data values Yi through the equations

y; = Yi(xl, Xyp eees xn), i=1,2,...,N. (A1)

Thus Yi(-) defines a2 model for the value of the ith data point in terms of the
parameters, The optimum solution is obtained by minimizing the weighted sum

of squared deviations of the model values from the data

2
(Y--Y(x, ey X))
i (8y; ™)

where the weight (Ay 2) is the variance of y,. The parameters defining the
i i

minimum value of I (which we term 1 n) then have the minimum variance and are

md
known as the least-squares estimates.

Bevington (1969) discusses statistical tests for the evaluation of least-
squares estimation. Both I and Imin are xz distributed; ¥ has N degrees of

freedom corresponding to the number of equations, I has N-n degrees of

min
freedom left after fitting n parameters to the N equations. If the fitting

function (Al) is a good approximation to the data, the value of Imin/(N—n)
should be reasonably close to unity. If it is considerably larger, the de-
viations are too great, indicating that the fitting function is inappropriate.

An objective limit to the value of I is set by the xz test. A significance

min

level, o, (usually small) is chosen and the value of I compared with the

min
fractile X%l—a) for (N-n) degrees of freedom. x%l—a) is defined as follows:

for a given number of degrees of freedom there is a probability 100(1-a)%
that any random sample of data points will have a value of I at least as large

as x2 . Tables of xz are available in most statistical texts. If
(1-a) (-

o)

Imin f-xz(l-a)’ we conclude that the model fit is satisfactory. If
2

I >
in > X (1-a)° the deviations are toc great and we must conclude that the

model fit is unsatisfactory at this significance level.
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Jenkins and Watts (1968) show that probability regions in parameter space
are defined by contours of the parameter

= (I-1 (A3)

min)/Imin

Because of the additive property of the xz distribution, the quantity (I -
) varies independently of I min and is x distributed with n degrees of

freedom. From the definition of the F-distribution, the 100(1-0)% confidence

region in parameter space is defined by the contour

Z= N_-_ F(n,N-n;1-a) (a4)

where F(n,N-n;1-0) is the fractile of the F-distribution at significance level

o and with degrees of freedom n and N-n.
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Appendix B: Program 1 and Sample Output

CALCULATES NORHMALIZED COUFLING COEFFICIENT
INFUT! NORMALIZED WAVENO. K/{(ZxKO)

IMFLICIT REAL(K)

TYFE $7 mmmmrceeeeee mecmee—- ———————— -
TYFE ¥¢' commmceaeea SAMPLE GUTFUT FROM FROGRAM 1.
TYPE %9 em e e e e e = e
TYFE %+’ NORMALIZED WAVENOD.'
ACCEFT %\

Y=SQART(h)

D0 10 J=1,19
TH=(J-1)%10%3,14159/180.
G1=6G{YsyTH+1)

62=6(YrTH»2)

THA=(J=-1}%10

WRITE(S+20 THA(G1,G2

FORMAT(’ ANGLE’rE11.3»’ IEG. COUF.COEFF:! Wxx2>WEXX2‘,E11.3

v’ WRXD WEXX27,E11,3)
COHTINUE
ENL

G IS THE COUFLING COEFFICIENT

FUNCTION G(Ys»THrHM)
IMFLIEIT REAL (K}
COMPLEX CH»CE
==2%nn+3
CT=COS(TH)
Y2=YxY
Y4=Y2%¥Y2
YFP2=sSART(1.,+2.%Y2XCT+Y4)
YP=SGRTU(YF2)}
X=C(MEYAYPOXR2+1 ) /7 C(HRYHYFIRXD-14)
CH: CE ARE THE HYDRODYNAMIC,ELECTROMAGNETIC COMFOHNENTS
CH=(0 ., r=1 ) R(Y2+YP2-(YRYF2+YXCTHYRY2IERX/(MXYF))

CE=(Y2%CT+Yax(2,-CT**2) ) /(CSART(CHFLX(-Y2XCT-Y4,0.))4(.,011,~-,012)/2.)

CH=CH/ 2.
CE=CE/2.
G=CABS(CH+CE)xx2
RETURN

ENI

End Program 1



NORMALIZED WAVEND.

.05
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
AMGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE
ANGLE

0.000E+00
¢.100E+02
0.200E402
0.300E4+02
0.,400E+02
0.500E+02
0.600E4+02
0.700E+02
0.800E+02
0.900E+02
0.100E+03
0.,110E+03
0.120E+03
0.130E+03
0.140E+03
0,150E+03
0.1560E403
0,170E+03
0.180E+03

DEG.
DEG.
DEG.
DEG.,
nEG.
DEG.
DEG.,
DEG.,
DEG.,
DEG .
DEG.,
DEG.
DEG.
DEG.
LEG.
LEG.
DEG.
DEG.
IEG.

COUF.COEFF:
COUF.COEFF:
COUF .CDEFF ¢
COUP.COEFF
COUF.COEFF:
COUP.COEFF?
COUF.COEFF ¢
COUP.COEFF:
COUP,COEFF:
COUP.COEFF:
COUF.COEFF:
COUP.COEFF ¢
CouP,COEFF:
COUP.COEFF
COUF.COEFF:
COUP.COEFF:
COUF.COEFF:
COUP.COEFF:
COUF.COEFF:

WAK2WEKKD
WAK2TWEKKD
WER2 -WEKKD
WER2SWE XD
WEKD WEHEK2
WEK2UBKRD
WEX2-WEEERD
WEK2WEKK2
UKD WEXK2
WAX2WBXED
WEk2 WHKXD
WER2UBER2
WEK2D WEKED
WRKD FWEBKRD
WEE2 WEKR2
WEE2WERKD
UKD WEFKD
WAKD>WERRD
W2 WEXKD

0.1446E400
0,142E+00
0.131E+400
0.112E+00
0.898E-01
0.4650E-01
0.408E-01
0.203E-01
0.613E-02
0.?47E-04
0.115E-02
0.156E-01
0.,450E-01
0.B6SE-QL
0.133E+00
0.184E+00
0.,226E400
0.254E400
0.264E400

Wkk2 WEXX2
WEkXD WBRR2
WER2<WEKXD
WEk2-WBAX2
WEkK2- WEBRXD
WeE2-WEBXX3
WEx2- WBXX2
Wax2 WEREX2
WERk2<WEX%2
WkXx2< WB¥X2
WERZ- WEX%2
Wxk2 WEA¥2
Wek2 WEKX2
Wxx2 WEKx2
WER2: WBEX2
Wxx2 WBEXD
WkX2 WEX%2
Wix2 WBXX2
Whk2- WEXX2

0.144E+00
0.140E+00
0.122E+00
0.949E-01L
0.647E-01
0.342E-01
0.142E-01
0.194E-02
0.948E-03
0,113E-01
0.191E-01
0.493E-01
0.87BE-01
0.130E+00
0.172E+00
0.210E+00
0.239E4+00
0.,238E+00
0.264E400
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Appendix C: Program 2 and Sample Output

AND THE BRAGG FREQ

FOR A PHILLIPS SFECTRUMr CARDIOID DIRECTIGNAL DIST.

INFUT ¢ KC= CUTOFF WAVEND./(2xRADAR WAVEND.)

TO=DUMINANT DIRECTION (DEG.
S=SFREADING FACTOR
N@=N0O. GUADRATURE POINTS

REL. TO RaDAR BEAM)

OUTFUT : NORMALIZED 2CND ORDER SPECTRUM DEFINED IN EGR.39

FOR NORMALIZED FREQUEN IES BETWEEN -

IMFLICIT REAL(K)

COMHON SsKkC,AS

PI=3,14159

TYPE X+’ e eeeee mmmm—memaa
TYPE X¢v' oo SAMPLE OUTPUT FROM
TYPE X¢’ o e e e mmmm———————
TYPE %¢’ KC»TQ+S¢NQ

ACCEFT XsKCrTOsS»NQ

NRO=NO

TO=T0%3.14159/180,

2 AND +2

FROGRAM 2 ______________ ’

CALCULATION DF INTEGRAL COS{THETA/2)X%X%S ER THETA

AS=0

DD 20 J=1,NQ

TH=(JS-1)%2%PI/NQ

SP=ABS(COS(TH/2))

IF(SP.EQ.0.,)GO TO 111
IF(ALOG10(SF)%S.6T.-10.)H=SF%%S
IF(ALOGL0O(SP)%S.LE.-10.)H=0

SF=H

AS=ASHSP

CONTINUE

CONTINUE

AS=ASX2XFI/ND

WRITE{S:123)AS

FORMAT(’ INTEGRAL’,E11.3)

START Of DOFPLER LOGOF

DO 2000 NF=1.:460

E==2+(NF-1)%4/560, 'NOR
IF(ABS(E).EQ.1.,)G0 TO 11
IF(ABS(E).LT,.25)G0 TOQ 11

NO=NQQ
IF(ABRS(ABS(E)-2.%%.75),LT.0.15)NQ=4%
IF(E.GT.0,)NFREQ=1
IF(E.LE.O.)NFREQ=2

U=ABS(E) -1

IF(U.LT.0.)H=2 |FPARAMETER | DEFINED
IF{(U.GE.O.)N=1

U=ARS(U)

HALIZED DOFFLER

NQQD

IN EQ.{(32) IS (-2%xH+

ur=pPI 'SETS UFFER LIMIT ON THETA INTEGRATIOHN
IF(ABS(E) .GE.SART(2.)})UFP=FI-ACOS(2/E%%2)

F=0
IF(H.EQ,LIEST=(UXX2+2xU) /(2% (U+1))
IF(H,EQ.2)EST=(U-1+SORT(1+2%U-Uk%2))

'EXACT SOLUTION FOR Y AT THETA=Q
/2. VEXACT AT THETA=FI



00 30 II=1.,N0 ISTART THETA LOOP
IF(HM.EQ.1)TH=(1I-1 XUP/(NQA-1.)

IF(M.EQ.2)TH=FI-(I1 1)¥PI NQ 1.

Y=TY(M:UrTH:EST?

EST=Y

IF(Y.GT.4.)F2=0,

IF(Y.GT.4.)60 TO 21 {F’A-(.T—-‘ @,(Y,??;‘M NFR 5 )

IF(I1.EQ.1)FL=FACT
IF(I1.EQ.NRIF2=FACT

CONTINUE

CONTINUE
F=(F=F1/2.-F2/2,)%UF (NQ-1.)
F=FX2%X3XF 1

WRITE(S+70)INF+ErF

70 FORMAT(1X,I4,7E11.3)

11 CONTINUE

2000 CONTINUE TEND DOFFLER LOOP
END

SFEC IS THE OCEAN WAVE SFECTRUM

OO0

FUNCTION SFEC(TH+TOsK)
IMPFLICIT REAL(K)

COMMON S»KCsAS
IF(N.LE.KC)YSFEC=0
IF{(K.LE.KC)GD 70O 20
G=ARS(COS((TH-TOQ) 27)
IF{G.END.0.)GO 7O 10
IF(ALOGLO(G)XS.GT. 10.)H G¥%5
IF(ALOGL1O{(G}Y%5.LE,-10.}H=0
G=H

CONTINUE
SFEC=.005%G/ (ASkF %xx4)
CONTIHUE

RETURN

END



G IS THE FRODUCT OF THE E€OUFPLING COEFFICIENT » THE JACOEIANS
AND THE OCEAN SFECTRAL FACTORS

FUNCTION G(YrTHrHH+NFREG+TO)

IHPLICIT REAL (K)

COMPLEX CH.CE

COMMON S+KC»AS

F1=3,14159

M=-2%HH+3

CT=COS(TH)

Yya=yxy

Y4=Y2%Y2

YF2=SQRT(1.42,xY2¥CT+Y4)

YF=SQRT{YF2)

FACT=(1+Y2%CT)/YP2
IF(ABS(FACT),LE.1.)THIO=ACOS(FACT)
IF(FACT.GT.1.,)THD=0

IF(FACT.LT.=1.)THDI=FI

THD=THD+PI

X=((YHMAYPIRE2+L ) /CCYHHEYF ) X %21, )

CH=(0 ., r—1 ) R(Y2HYF2=(YRYF2H+YRCTHYRY2DRX/ (HXYF))
CE=(Y2XCTH+YAR(2,-CTR*2) ) /(CSART(CHPLX{~=V2KkCT=~Y4+0.))4(.011+=-,012)/2,)
CH=CH/2.

CE=CE/2.

G1=CABS(CH+CE) %*2 'COUFLING COEFF
XJ=YRRIRI/ABS(L . +MXCY2RY+YRCTI/(YF2XYP)) 1JACORIANS
IF(NFREQ.EQ.1)SP2=SFPEC(THD,TOsYF2} 'SFECTRAL FACTORS

IF(NFREQ.EQ.2)SP2=SFEC{THD TO+FPL,YF2)
IF(NFREQ.EQ.MH}SP1=SFEC(TH»TO,Y2)
IF(NFREQ,NE.MH)SP1=SPEC(TH:sTO+FI,Y2)
IF(NFREQ.EQ.1)SF3=SPEC(~THO:TO»YF2)
IF(NFREQ.EQ.2)SPI=SFEC(-THO»TO+FI+YF)
IF(NFREQ.EQ.HM)SFA4=SFEC(-THsTOY¥2)
IF(NFREQ.NE.MH)SF4=SPEC(-TH,TO+PI,Y2)
G=GIkXJX({SF1XS5F2+5F3%X5F4)

RETURN

END

TY IS THE SOLUTION OF THE DELTA FN. CONSTRAINT TO GIVE Y=SART(K/2)
FOR A GIVEN ANGLE, DOPFLER. EST 1S AN ESTIMATE OF Y.
FUNCTION TY(M>UsTH:EST)

Ml=-2%M+3

CT=COS(TH)

YO=EST

FYD=YO+H1¥(1,+2 . XYORYOXCT+YOKX4) %%, 25-U-H1
FYOP=1.+M1X(YOXKI+YOXCT)/(1.42. kYDKYOKCTHYO X% X%, 75
Y1=YD-FYO/FYOP

T=ABS((YL-YQ) /YD)

YO=Y1

IF (T.GT.0.0001)G070 1

TY=Y1

RETURN

END

End Program 2



KCsTO+SsNQ

03945, l4-'19
INTEGRAL 0.,234E+01

-0.200E+01
-0.,193E+01
-0.187£+01
-0.180E+01
-0.173E+01
-0.,167E+01
-0.150E+01
-0.153E+01
-0.147E4+01
-0.,140E+01
-0.,133E401
-0,127E+01
-0.120E+01
~0.113E+01
-0.107E401
-0.933E+4+00
-0.,B&67E+00
-0.800E+00
-0.733E400
~0.667E400
-0.500E400
-0,533E4+00
-0.,447E400
=0.,400E+00
-0.,333E+00
-0.267E4100
0.267E100
0.333E+00
0.400E+00
0.4467E400
0.533E400
0.600E+00
0.667E+00
0.733E+00
0.800E+00
0.867E100
0.933E+00
0.107E+Q1
0.113E+01
0.120E+01
0.127E+01
0.133E401
0.140E+01
0.147E401
0.153E+01
0.1560E+01
0.147E+01
0.173E+01
0.180E+01
0.,187E401
0.193E+01

0.BBBE-05
0.135E-04
0.221E-04
0.358E-04
0.830E-04
0.593E-03
0.349E-03
0.245E-03
0.1582E-02
0.,101E-01¢
0,135e-01
0.355E-01
0.144E4+00
0.,000E+00
0.000E4+00
0,000E+00
0.,000E+00
0,752E-01
0.140E-01
0.412E-02
0.187E-02
0.130E-02
0.86BE-03
0.728E-03
0.411E-03
0.440E-03
0.1564E-03
0.178BE-03
0.192E-03
0,224E-03
0.317E-03
0.483E-03
0.914E-03
0.220E-02
0.732E-02
0.000E+00
0.000E+00
0.000E+00
0.000E+00
0,3560E-02
0.717E-03
0,191E-03
0.651E-04
0.192E-04
0.457E-05
0.266E-0S
0.967E-04
0.3B9E-06
0.186E-064
0.,123E-06
0.,102E-04



Appendix D: Program 3 and Sample Qutput

CALCULATION OF GRID SEARCH ELEMENTS FUR SINGLE DOMIMNANT
0CEAN WAVELENGTH

INFUT ¢ K = OCEAN WAVENOD. /(2¥RADAR WAVENO.) (MUST ERE »064)
OUTPUT ¢ GRID SEARCH ELEMENTS LDEFINED IN EQ., 91 FOR THE FOUR SIDEEANDS:

FOR A RANGE OF OCEAMN WAVE DIRECTIONS AND HEAMWIDTHS
(STORETD' IN ARRAY H)

OOODaOMOO0O0Eo

IMFLICIT REAL(K)

DIMENSION F{4)sH(7+7+4)

FI=3,141359

TYPE Xr' o e e e e ccm e ————— ’
TYPE Xp' cmmme e SAMFLE OUTFPUT FROHM PROGRAM 3 oo !
TYPE ¥r' e crrmrcmmcc e — e ———— !

ACCEFT %rK

Y=SQRT(K) 'DEFINITIUN OF FARAMETER Y

D0 1000 NTO=1.7 ! DEFINES OCEAM WAVE DIR.
TO=FPI+{(NTO-1)%XFI/12

DO 2000 NS=1+4 ! DEFINES OCEAN WAYVE HEAHWIDTH
B=180-(NS-1)%30 i HALF POUWER HEAMWIDTH
NQ=30%I50/F ! NO. QUADRATURE FTS.

BB=B

B=EXFI/180.

S=ALOGLIO(.5)/ALOG10(COS(R/4.)) ! SFREADING FACTOR

CALCULATION OF INTEGRAL COS(THETA/2)%x5 OVER THETA

AS=0

Do 20 J=1,NQ
TH=(J-1)*2%XFI/NQ
AS=AS5+SFEC(TH:S)
CONTINUE
AS=ASX2%FI/NQ

F
[=]

CALCULATION OF FACTOR IN EQ. 91 FOR 4 SIDEBANDS, CARDIDID HODEL
DEFINED BY IND=M+(NFREQG-1)%2

H=(1:2) FOR (OUTER!INNER) SIDE OF BRAGG LINE

NFREQ=(1,2) FOR (POSITIVE.NEG.) DOFPLER

oDOoo0Oo0O0

g S0 J=1:4 | INITIALIZATION
F(J)=0
20 CONTINUE
DO 30 II=1.HQ ISTART THETA LOOF
TH=(II-1)%2%F1/NG
G1=SFEC{TH-T0:5)
G2=SPEC(TH-TO-PI:S)
0 40 M=1.2
DO 40 NFREQ=1.2
IND=MNFREQ+(HM-1)%2
OCEAN SPECTRAL FACTORS
IF(NFRER.EQ.M)SF=G1/AS
IF(NFREQ.NE.M)SF=G2/AS
FOINDI=FCINDYEG(Y» THy M) XSFX2
CONTINUE
CONTINUE



1000

o0

DO 40 J=1+14

F(=F(*2%PI/N0O

H{NTO'NS»JI=F(J) ! H ARE GRID SEARCH ELEMENTS
CONTINUE

ATO=TOXx180/FI

WRITE(Ss70)S+ATO(F{J)rJ=1,4)

WURITE(L»70)K»BE+ATOr(F(J)rJ=1:4)

FORHAT(1X+7E11.3)

CONTINUE VEND BEAHWIDTH LOOF

CALCULATION OF FACTOR IN EQG. 91 FOR AN IHFULSE FUNCTION IN DIRECTIOH

B0 21 H=1.2

0O 21 NFREQ=1.2

S=1.E+4

EB=0

IND=NFREQ+(M-1) %2

IF(NFREQ.EQ HIF(INDY=G(Y »TO»H) %2
IF(NFREQ.NE H)IF(IND)=G(Y>»TO+FI+H)%2
HI(NTOs 7+ IND)=F{IND?}

CONTINUE
WRITE(D»70)S,AT0s(F(J)rt=1+4)
CONTIMNUE 'END DIRECTION LQCP
END

SPEC IS THE DIRECTIOMNAL DISTRIBUTION COS(TH/2)%%S

FUNCTION SFPEC(TH:S)
G=ABS(COS(TH/2))
IF(G,EQ.0.)60 TO 10
IF(ALOG10(G)»*S5.6T.-10,)H=6%%S
IF(ALDGLO(GIXS.LE.~-10.)H=0
G=H

CONTINUE

SPEC=0

RETURN

END

G IS5 THE FROIUCT OF THE COUFLING COEFFICIENT AND THE RESIDUAL
WAVENUMBER FACTOR

FUNCTION G(Yr»THsHMH)

IMPLICIT REAL {(K)

COHMPLEX CH:CE

H=-2%xHMMN+3

CT=COS(TH}

Y2=YxY

Ya=Y2XY2

YFP2=SORT(1.+2,.XY2%CT+Y4)

YP=SQRT(YF2)

YPA=YFP2%XYF2

RR=1/YF4XxX2 ! RESIDUAL WAVENUMEER FACTOR
X=((Y+MEYPIEX24+1 ) /LY +MXYP Y R%2-1,)

CH=(0,r=1. )X (Y2+YP2=(YXYP2+YRCTH+YRY2) XX/ (HXYF))
CE=(Y2XCTH2+Y4% (2, -CTx%2) )/ (CSORT(CHMPLX(-Y24%CT-Y4,0.1)+(.011,-.012)/2.)
CH=CH/2.

CE=CE/2.

G=CABS(CH+CE)%xx2 {COUPLING COEFF
G=G¥RR

RETURN

END

End Program 3



+ 05
0.200E401
0.299E+01
0,482E+01
0.875E+01
0.200E+02
0.807E+02
0,100E+03
0.200E+01
0.299E+01
0.482E4+01
0.B875E+401
0.200E+02
0.BO7E+02
0.100E+05
0.200E+01
0.299E+01
0.482E+01
0.870E+01
0.200E+02
0.807E+402
0.100E405
0.200E+01
0,299E+401
0.482E+01
0.875E+01
0.200E4+02
0.807E+402
0.100E+05
0.200E+401
0.299E+01
0.482E+01
0.875E+401
0.200E4+02
0.B07€+02
0.100E4+05
0.200E+01
0.297E+01
0.482E+01
0.875E+01
0.,200E402
0.807E+02
0.100E+05
0.200E+01
0.299E+01
0,482E+01
0.875E+01
0.200E+02
0.807e4+02
0.100E+05

0.,1BOE+03
0.180E+03
0.1BOE+03
0.,180E+03
0.180E+4+03
0.180E+03
0,180E+403
0.195E403
0.195E4+03
0.195E+03
0,1925E+4+03
0.195E4+03
0.195E+03
0.195E+03
0.210E4+03
0.210E+03
0.210E4+03
0,210E+03
0.210E4+03
0.,210E403
0.210E+03
0.325E+03
0.225E+03
0.225E+03
0.225E+4+03
0.225E+03
0,225E4+03
0,225E+03
0.240E+03
0.240E+03
0.240E+03
0.240E+03
0.240E4+03
0.240E+03
0.,240E+03
0.,255E+03
0.255E+02
0.255E4+03
0.255E+03
0.2355E+03
0,255E+03
0.255E403
0,270E+03
0.270E+03
0.270E+03
0.270E+03
0.270E+03
0.270E+03
0.270E+03

0,324E+400
0.347E+00
0.426E400
0.502E+00
0.405E+00
0.702E+00
0.745E+00
0.320E+00
0.380E+00
0.413E+00
0.483E+00
0.56BE+00
0.647E+00
0.4682E400
0.30BE+00
0.338E+00
0.377E400
0.422E+00
0.468E+00
0.505E+00
0.51BE+00
0.28BE+00
0.304E+00
0.324E400
0.3346E+00
0.337E1+00
0.324E+00
0.314E+00
0.243E+00
0.2565E4+00
0.262E+00
0.245E+00
0.209E+00
0.1563E+00
0.140E+00
0.233E+00
0.224E+00
0.203E+00
0.1465E4+00
0.112E+00
0.573E-01
0.313E-01
0,201E+00
0.,183E4+00
0.,152E+00
0.10BE+00
0.556E-01
0.13%E-01
0.193E-03

0.782€-01
0.730E-01
0.755E-01
0.860E-01
0.101E+00
0.115E+00
0.120E+00
0.824E-01
0.733E-01
0.751E-01
0.82BE-01
0.955E-01
0.10BE+00
0.112E+400
0.247E-01
0.828E-01
0.753E-01
0.746E-01
0.803E-01
0.872E-01
0.9203E-01
0.114E400
0.,965E-01
0.791E-01
0.657E-01
0.397E-01
0.592E-01
0.593E-01
0.140E+00
0.118E+00
0.,?08E-01
0.,633E-01
0.419E-01
0.312E-01
0.278E-01
0.169E+00D
0.147E+00
0.114E400
0.,748E-01
0.,362E-01
0.,123E-01
0.605E-02
0.,201E400
0.183E+00
0.152E4+00
0.10BE+00
0.556E-01
0.139E-01
0.192E-03

0.788€E-01
0.4678E-01
0.651E-01
0.727E-01
0,903E-01
0.111E+00
0.120E4+00
0.837E-01
0.713€-01
0.4659E-01
0.702E-01
0.B32E-01
0.988E-01
0.105E+00
0.982ZE-01
0.B20E-01
0.697E-01
0.,638E-01
0.,631E-01
0.,685E-01
0.702E-01
0.,121E+00
0.101E+400
0.792E-01
0.S95E-01
0.448E-01
0.,343E-01
0.293E-01
0.151E+00
0.128E+00
0.784E-01
0.450E-01
0.335E-01
0.122E-01
0.30BE-02
0.1856E4+00
0.1463E4+00
0.130E+00
0.881E-01
0.42%E-01
0.114E-01
0.443E-02
0.223E+00
0.206E+00
0.177E400
0.,134E400
0.831E-01
0.376E-01
0.223E-01

0.3468E+00
0,414E+00
0.475E+00
0.052E+400
0.639E+00
0.714E+00
0.745E+00
0.,363E+00
0.,404E+00
0.462E+00
0.531E+00
0.40BE+00
0.874E+00
0.701E400
0.34%E+00
0.3B3E+00
0.424E+00
0.472E+00
0.322E+00
0.564E+00
0.580E+00
0.3248E+00
0.345E+00
0.368E+00
0.3B7E+00
0.401E+00
0.409E+00
0.412E+00
0.294E4+00
0.302E+00
0.,302E+00
0.293E+00
0.272E400
0.2448E1+00
0.235E+00
0,261E+00
0.253E}Y00
0,234E+00
0.204E+00
0.161E+00
0.113E+00
0.8B4E-01
0.223E4+00
0.206E+00
0.177E+00
0.134E+00
0.831E~01
0.376E~01
0.225E-01
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Appendix E: Program 4 and Sample Output

CALCULATION OF GRID SEARCH ELEHMENTS FOR RANGE OF OCEAN WAVELENGTHS

INFUT ¢ U=NORMALIZED SHIFT FROM ERAGG FREQENCY
=ABS(ABS(W)/WE-1) » (MUST BE 0..5

OUTPUT ! GRID SEARCH ELEMENTS (EQ.103) F R THE FOUR SIHERANDS:
AND A RANGE OF OCEAN WAVE DIR CTI NS AND EEAHWILTHS
(STORED IN ARRAY H)

INFLICIT REAL(K)
DIMENSION F(4)2H(72714)
FI=3.,1415°9

TYFE %0 ceeeeee SAMPLE OUTFP T FROM FR GRAM 4 ____
TYPE Xy e e i
TYFE %+ U’
ACCEFT *,U

CALCULATES OCEAN WAVEND. EBAND
KU=(UXx22+U%%3)
KL=(U¥%x2-Ux%3)

WRITE(S,&B2)KL KU

FORMAT(’ NORMALIZED WAVEND. RAND’».E11.3)

DO 1000 NTO=1,7 ! DEFINES OCEAN WAVE DIR.
TO=FI+(NTO-1)%PI/12

DO 2000 NS=1:46 ! DEFINES GCEAN WAVE BEAHWIDTH
B=180-(NS5-1)%30 ! HALF POWER BEAMWIDTH
NO=30%x3560/FE ! HNO. BUADRATURE PTS.
B=BxPI/180.

S=ALOG10(.5)/AL0GL10(COS(R/4.,)) ! SFREADING FACTOR

CALCULATION OF INTEGRAL COS{(THETA/2)%%S OVER THETA

AS=0

DO 20 J=1sNQ
TH=(J=-1)%2XPI/NQ
AS=AS+SPEC(TH,S)
CONTINUE
AS=ASX2XFI/NQ

CALCULATION OF FACTOR DEFINED IN EQ(103) . CARDIOID HMODEL
FOR 4 SIADEBANDS DEFIMED BY IND=M+(NFREQ-1)%2

H=(1»2) FOR (ODUTER:INNER) SIDE OF BRAGG LINE

NFREQ=(1+2) FOR (POSITIVE/NEG.) DOFPLER

D0 S0 J=1+4 ! INITIALIZATION
FeJr=0
CONTINUE



Do 30 II=1+NQ ISTART THETA LODF

TH=(EI-1)%2%PL/NQ

G1=SPEC(TH-T0:5}

G2=SFEC{(TH-TO-FI:8)

09 40 M=1.2

Y=TY(M:U:TH)

[0 40 NFREG=1+2

IND=HFREQ+(H-1) %2

OCEAN SPECTRAL FACTODRS

IF(NFREQ.EQ.H)SF=0G1/AS

IF(NFREQ.NE.M)ISF=G2/AS

FOIND)=FCINDY+HG{Y s TH)H)XSP X2

CONTINUE

CONTINUE

00 &0 J=1.:4

FOJ)=F(IIR2IXFI/NQ

H{NTQr NS 2)=F (D) ! H ARE GRID SEARCH ELEMENTS
40 CONTINUE

ATO=TO%*1BO/FI

WRITE(S:70)S5rATOr (F(J)rJ=1:3)

70 FORMAT(1X»7E11.3)

2000 CONTINUE TEND' BEAMWIDTH LOOF
C

c CALCULATION OF FACTOR DEFINED IN EQ.,(103)

c FOR AN IMPULSE FUNCTION IN DIRECTION

c

Lo 21 H=1,2

D0 21 MFREQ=1,2

S=1.E+4

BB=0

INN=NFRER+ (H-11%2
IF(NFREQ.EQ.M)FCIND)=GC(Y,TO M) %2
IF(NFREQ.NE.MIFCINI=G(Y ) TO+PI»HI X2
H(NTO 7 INDY=F (INID

21 CONTINUE
WRITE(S»70)8+ATOr(F{J) s I=1+4)

1600 CONTIMNUE {END DIRECTION LOOF
END

c

c SPEC IS5 THE DIRECTIONAL DISTRIBUTIOH COS(TH/2)%%xS

c

FUNCTIDN SPEC(TH»S)
G=ARS(COS{(TH/2))
IF(G.EQ.0.)G0 TO 10
IF(ALOG1O(G)*S.,GT.-10,)H=6G%X5
IF(ALOG10(GI%XS.LE+~10.)H=0
G=H

CONTINUE

SPEC=G

RETURN

END



G IS THE PRODUCT OF THE COUPLING COEFFICIENT » THE RESIDUAL
WAVENUMBER FACTOR AND THE JACOBRIANS

FUNETIDN G{YsTH:HH)

IMPLICIT REAL (K?

COMFLEX CH»CE

M==-2%kHH+3

CT=COS(TH)

Y2=YxY

Ya=Y2%Y2

YF2=SQRT(1.+2.XY2XCT+Y4)

YP=SQRT(YF2)

YFA=YP2XYF2

RR=1/YF4Xxx2 ! RESIDUAL WAVENUMEBER FACTOR
X=COYHEMRYPIXR241 03 /7 COYEMEYPI R%2-1,)

EH=(0. v =1 0R(Y2HYF2=(YRYP2H+YXCTHYRY2) XX/ (HRYP) )
CE={Y2RCTH+YAX(2, ~CTRk2)) /(CSART(CHPLX(-Y2%CT-Y4:0,))+(,011,-,0123/2,)
CH=CH/2

CE=CE/2.

G=CABS(CH+CE) %x%2 'COUFLING COEFF
AJ=YRRIXD/ABS (L. +HR(Y2RY+YXCTI/ (YF2XYF)) ' JACOBIANS
G=GXRR%(XJ

RETURN

END

TY SOLVES EQUATION 43 BY A NEWTON-RAFHSON METHOD
TO GIVE Y=SORT{(K/2.) FOR A GIVEN ANGLEs DOFFLER
FUNCTION TY(H:U,TH)

Ml=-2%M+3

CT=COS{(TH)}

Yo=U

FYO=YO+M1%(1. 42, XYDXYOXCT+YOXK4) %%, 25-U-M1
FYOP=1 ., +M1¥(YOXEI+YORCT)I/ (L. +2. XYORYCKCT+YORX4) €%, 75
Y1=Y0-FYO/FYOF

T=ABS((Y1-YO)/ /YD)

¥0=Y1

IF (T.6T7,0.0001)G0TO 1

TY=Y1

RETURN

END

End Program 4



U

o1

NORMALIZED WAVENO. EAND
0.200E+01 0.1B0E+03
0.,299E+01 0.1BOE+03
0.482E+01 0,180E+403
0.875E401 0.,180E+03
0,200E4+02 0,180E+03
0.807E402 0.,1B0E+03
0.,100E4+05 0.1BOE+03
0,200E401 0.,195E+03
0,299E+01 0.,195E403
0.482E+01 0.195E+03
0.875E+01 0,1%SE+02
0.200E4+02 0©.195E403
0,807E+02 0.1%95E+03
0,100E405 0.,195E+03
0,200E401 ©0.210E403
0,299E401 0.210E+403
0.482E401 0.210E+03
0.875E+4+01 0.210E403
0,200E402 0.210E403
0.807E4+02 0.210E+03
0.100E4+05 0.210E+03
0,200E401 0,2235E+03
0.299E401 0,225E+03
0.482E401 0.225E+03
0.875E401 0.225E+03
0.200E402 0,225E+03
0.B07E+02 0,225E+03
0.100E4+05 0.225E403
0,200E+01 0,240E+403
0.299E4+01 0.240E+03
0.482E+01 0.240E+403
0.,875E+01 0.240E403
0.200E402 0.240E+03
0.807E+02 0.240E+03
0,100E405 0.240E403
0.200E401 0.,255E+03
0.299E+01 0.255E+403
0.482€401 0.255E403
0.875E401 0.255E+03
0,200E+02 0.255E403
0.807E402 0©.255E+03
0.100E405 O0.255E+03
0.,200E401 0.270E403
0.299E401 ©0.270E+03
0,482E4+01 0.270E+4+03
0.875E+01 0.270E+03
0.200E4+02 0,270E+03
0.B07E+02 0.27CE+03
0.,100E+05 0.270E+03

0.627E~03 0.342E-03
0.69BE-03 0.35BE-02
0.8B03E-03 0,3%946E-03
0.951E-03 0.457E-03
0.114E-02 0.,531E-03
0.,132E-02 0.593E-03
0.140E-02 0.B03E-03
0.,4622E-03 0.347E-03
0.56B4E-03 0.3058E-03
0.780E-03 0,38BE-03
0.909E-03 0,440E-03
0.,107E-02 0.,505E-03
0.122E-02 0,560E-03
0.129E-02 0,75%E-03
0.60BE-03 0.,342E-03
0.,654E-03 0.,3I59E-03
0.716E-03 0.34BE-03
0.795E-03 0.3%3E-03
0.BBO0E-03 0.432E-03
0.749E-03 0.,469E~03
0.999E-03 0.621E-03
0.585E-03 ©0.384E-03
0.608E-03 0.,343E-03
0.626E-03 0.344E-03
0.4638E-03 0,331E-03
0.631E-03 0,330E-03
0.606E-03 0.334E-03
0.4621E-03 0.,431E-03
0.556E-03 0.414E-03
0.550E-03 0.,377E-03
0.526E~03 0.,329E-03
0.476E-03 0.274E-03
0.3%4E-03 0.226E-03
0.29%E-03 0.195E-03
0,276E-03 0.229E-03
0.522E-03 0.448E-03
0.492E-03 0.402E-03
0.4346E-03 0,335E-03
0.345E-03 0,246E-03
0.222E-03 0.,152E-03
0.103E-03 0.B21E-04
0.567E~-04 0.689E-04
0.4B5E-03 0.4B5E-03
0.442E-03 0.442E-03
0.370E-03 0.370E-03
0.266E-03 0.24656E-03
0.,143E-03 0.143E~-03
0.388E~04 0©.38BE-04
0.198E-05 0.19BE-05
55
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0.454E-03
0.,495E-02
0.363E-03
0.665E-03
0.800E-03
0.932E-02
0.991E-02
0.455E-03
0.470E-03
0.348BE-03
0.636E-03
0.747E-03
0.B58E-03
0.910E-03
0.455E-03
0.,475E~-03
0.509E-03
0.557E~03
0.614E-03
0.663E-03
0.6946E-03
0.454E-03
0.455E-03
0.435E-03
0.451E-03
0.43BE-03
0+416E-03
0.422E-03
0.452E-03
0.434E-03
0.401E-03
0.34BE-03
0.274E-03
0.19BE-03
0.174E~03
0.450E-03
0.41BE-02
0.381E-03
0.276E-03
0.164E-03
0.440E-04
0.264E-04
0,449E-03
0.410E-03
0.3456E-03
0.252E-03
0.140E-03
0,420E-04
0.690E-035

0.442E-03
0.480E-03
0.541E-03
0.626E-03
0.724E-03
0.BOSE-03
0.113E-02
0.442E-03
0.473E-03
0.528E-03
0.4602E-03
0.48%9E-03
0.763E-03
0.107E-02
0.443E~-03
0.481E-03
0.492E-03
0.537E-03
0.592E-03
0.642E-03
0.BB4E-03
0.444E-03
0.442E-03
0.442E-03
0.4446E-03
0.455E-03
0.,44BE-03
0.,621E-03
0.445E-03
0.424E-03
0.373E-03
0.353E-03
0.310E-03
0.278E-03
0.341E-03
0.447E-03
0.412E-03
0.357E-03
0.2B1E-03
0.194E-03
0.121E-03
0,114E-03
0.449E-03
0.410E-03
0.3446E~03
0.252E-03
0.140E-03
0.420E-04
0.490E-05



ronment, and the Earth. The following participata in the ERL missions:

AL

GFDL

GLERL

NSSL

OWRM

Chnioneit Do

The mission of the Environmental Research Laboratories (ERL) is to conduct an integrated program of fundamental
rasearch, related technology development, and services {o improve understanding and prediction of the geo-
physical environment comprising the oceans and inland waters, the lower and upper atmosphere, the space envi-

Aeronomy Laboratory. Studies the physics,
dynamics, and chemistry of the stratosphere and
the surrounding upper and lower atmosphers

Atlantic Oceanographic and Meleorological
Laboratories. Study the physical, chemical,
hiological, and geotogical characteristics and
processes of the ocean waters, the sea floor,
and the atmosphere above the ocean, including
tropical meteorology such as hurricanes and
tropical weather systems.

Atr Resources Laboratories. Study the diffusion,
transport, dissipation, and chemistry of
atmospheric poliutants; develop methods of
predicting and controlling atmosphenc poliu-
tion; monitor the global physical environment
to detect climatic change.

Geophysical Fluid Dynamics Laboratory. Studies
the dynamics of geophysical fluid systems (the
atmosphere, the hydrosphere, and the cryo-
sphere} through theoretical analysts and numer-
ical simulation using powerful, high-speed digital
caomputers.

Great Lakes Environmental Research Laboratory,
Studies hydrology. waves, currenls, lake jevels,
biclcgical and chemical processes, and lake-air
interaction in the Great Lakes and their water-
sheds. forecasts lake ice conditions

National Severe Storms Laboratory. Studies
severe-storm circulation and dynamics, and
develops techniques to delect and predict tor-
nadoes, thunderstorms, and squall tines

Olfice of Weather Research and Modification.
Conducts a program of basic and apphed
research to advance the understanding and
define the structure of mesoscale phenomena,
to improve shart-range weather predictions and
warnings, and to wentify and test hypotheses
for beneficially modifying weather processes.

PMEL

PROFS

RFC

SEL

WiM

WPL

Pacific Marine Environmental Laboratory. Moni-
tors and predicts the physical and biochemical
efiects of natural events and human activities on
the deep-ocean and cnastal marine environments
of the Pacific region

Prototyps Regional Obsarving and Forecasting
Service. Evaluates and integrates advanced
meteorological measurement, forecasting, and
communication/dissemination technologies in-
to functional mesoscale weather forecast
system designs for transfer to operational
agencies such as NWS, NESS, and FAA,

Research Facifities Center. Operates instru-
mented aircralt for environmental research
programs, provides scientific measurement
tools, logged data, and associated information
for metecrological and oceanographic research
programs.

Space Environment Laboratory, Studies solar-
terrestrial physics {(interplanetary, magneto-
spheric, and ionospheric); develops technigues
for torecasting solar disturbances, provides real
time monitoring and Jorecasling of the space
environment.

Weather Modification Program Office. Plans and
coordinates ERL weather modification projects
for precipitation enhancement and severe storms
mitigation

Wave Propagation Laboratory. Develops, and
applies to research and services, new methods
for remote sensing of the geophysical envi
ronment
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