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This paper describes inversion methods for HF radar sea echo Doppler spectra, giving parameters 
of the ocean wave spectrum in the important long-wavelength region. Radar spectra exhibiting 
very narrow spikes in the higher-order structure adjacent to the first-order lines are indicative 
of ocean wave components with a single dominant wavelength. In the simplest method of interpretation 
these components are assumed to be unidirectional; in this case we show how to extract wave 
period, direction, and rms wave height. If this simple model does not provide a good fit to the 
data or if the radar side bands have the form of broad peaks, we use a model for the wave 
spectrum with a cardioid distribution in direction and a Gaussian distribution in wave frequency. 
Parameters identifiable from this model include the rms wave height, dominant direction and period, 
and the angular spread in the direction and frequency distributions. In normal surface wave experiments 
the major source of error or noise is the random surface height of the sea; we describe the resulting 
statistics of the radar spectrum and trace the propagation of uncertainty to the derived ocean 
parameters. 

1. INTRODUCTION 

Crombie [1955] discovered the mechanism be- 
hind high-frequency (HF) radar sea scatter nearly 
25 years ago by spectrally analyzing the received 
time series. Using the gravity wave dispersion 
equation that relates the velocity to the square root 
of the ocean wavelength, he correctly deduced that 
the two sharp, symmetrically positioned Doppler 
peaks were produced by those ocean wave trains 
exactly half the radio wavelength, moving toward 
and away from the radar. We now call these 
prominent peaks the 'Bragg lines,' since the mecha- 
nism producing them is the first-order Bragg effect. 
When theories confirmed this mechanism [Wait, 
1966; Barrick, 1972] and showed that the strength 
of these echo peaks is proportional to the heights 
of the corresponding Bragg-scattering ocean wave 
trains, scientists became enthusiastic about the 
prospect of using HF radars to measure sea state 
parameters. In order to make direct observations 
of the long ocean waves that are the essence of 
'sea state' using this first-order Bragg effect, one 
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would have to operate the radar at lower MF; huge 
antenna size requirements, heavy spectrum utiliza- 
tion in this region, and ionospheric problems all 
dictate against such a system [Barrick, 1977b; 
Barrick and Lipa, 1979a]. At mid and upper HF 
the first-order Bragg peaks are produced by the 
less interesting shorter waves, and hence using these 
alone, radio oceanographers resigned themselves 
to extracting only wind direction information be- 
cause the short waves align themselves quickly with 
the wind [Long and Trizna, 1973; Stewart and 
Barnum, 1975]. 

The more sophisticated radar systems and digital 
signal processors of the mid-1960's showed a lower- 
level spectral continuum surrounding the first-order 
Bragg peaks that was definitely established as sea 
echo. Barrick [1971, 1972] derived a theoretical 
expression for this continuum, showing that it was 
produced by second-order ocean wave-wave in- 
teractions. He expressed the power spectral density 
at each frequency as an integral over a product 
of two wave height directional spectra, the argu- 
ments of which were the double Bragg-interacting 
wave vectors, and suggested the possibility that 
the integral equation could be inverted to give the 
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directional spectrum of the long ocean waves of 
greatest interest. This method would be both 
powerful and practical, involving measurements at 
a single HF frequency. Hasselrnann [1971], 
however, observed that if the kernal of the integral 
(referred to as the transfer function or coupling 
coefficient) were a constant, the second-order spec- 
tral continuum would nearly replicate the ocean 
nondirectional spectrum, thereby yielding no long- 
wave directional information. Barrick [1977a] 
developed and tested an approximate technique that 
yielded this nondirectional information for longer 
waves (i.e., wave height, dominant wave period, 
and the nondirectional spectrum) by combining the 
two second-order peaks surrounding each Bragg 
line; indeed, the results proved to be relatively 
insensitive to direction. Maresca and Georges 
[1980] developed an even simpler method to obtain 
wave height by combining the energy in both sec- 
ond-order spectral side bands; again, this process 
renders the results insensitive to direction. All of 

this suggested that extracting directional informa- 
tion on long waves from the second-order echo 
might prove elusive (even though wave height and 
period were obtainable). 

Lipa [1977, 1978] was the first to show that 
directional information can be derived from the 

second-order echo, even though she concentrated 
on the short-period wind wave region and used a 
model that separated the directional and frequency 
dependences as independent multiplicative factors. 
Often the directional dependence is dependent on 
wave number, as when swell components and wind 
waves with different wave numbers arrive from 

different directions; hence this model is not gen- 
erally valid. An example is illustrated in the sea 
echo Doppler spectrum of Figure 1, where second- 
order wind wave and swell peaks are both present 
and are from different directions. 

This paper shows that the direction of long-period 
ocean waves (as well as height and period) may 
indeed be derived from the second-order sea echo 

spectral peaks. This reversal in outlook restfits from 
closer examination of models of the radar Doppler 
spectrum produced by these waves, which shows 
that (1) the positions of the higher-order echo peaks 
vary slightly with wave direction and (2) the ampli- 
tudes of the echo peaks depend fairly strongly on 
the coupling coefficient, and this in turn is shown 
here to vary significantly with wave direction. 
Consequently, we have been able to develop ana- 
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Fig. 1. Narrow beam sea echo Doppler spectrum at 9.4 MHz 
measured at San Clemente Island on December 4, 1972, 1114- 
1156. Thirteen 204.8-s spectra were averaged to produce this 
result, illustrating the first-order Bragg peaks, second-order swell 
peaks, and second-order wind wave peaks. Independent buoy 
observation showed 14-s swell of 0.76-m significant height, along 
with wind waves having 1.83-m significant height. 

lytical techniques for extracting the directional 
ocean wave spectrum in the long-wavelength region. 

In this analysis we restrict consideration to ocean 
waves with periods greater than 10 s and to radar 
frequencies in the upper HF band. This allows 
considerable simplification of the integral equation 
describing the second-order Doppler spectrum, and 
as a result we can linearize the integral equation 
and in some cases employ simple models for the 
ocean wave spectrum. Severe storms or hurricanes 
will often arouse these long-period waves directly; 
the phase velocity of waves produced by this 
mechanism does not exceed the wind velocity. For 
example, the phase speed of waves directly excited 
by 20 m/s (•-40 kn) winds should not exceed 12.8 
s. Recent studies [Hasselrnann et al., 1976] show 
that long-period waves are also generated by energy 
transfer from higher-order nonlinear interactions 
among the shorter waves. 

Oceanographers technically define swell as waves 
produced in another area and/or at an earlier time 
[Kinsman, 1965]. In contrast to 'wind waves' that 
are constantly generated by local winds, swell waves 
appear more organized (their quasi-sinusoidal nature 
permits the identification of a direction and period) 
and generally have longer periods. Swells with 
periods between 10 and 18 s are nearly always 
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observed on the oceans even though local winds 
may be quite low. 

In section 2 we give the theoretical expressions 
for the first-order and second-order radar cross 

sections and describe how the second-order integral 
is linearized and how the data are averaged over 
frequency. Section 3 describes the interpretation 
of the radar spectra in terms of the directional ocean 
wave spectrum. When the higher-order spectral 
peaks are narrow, simple models of the ocean wave 
spectrum are applicable, allowing the derivation of 
closed-form solutions. The simplest model applies 
when the finite-sized storm-generating area recedes 
to infinity in distance and past time; in this limit 
the directional spectrum of the swell produced 
becomes an impulse function in wave frequency 
and direction. Such a model is usually applicable 
when the storm area was more than 2000 km distant 

from the observer and will be shown to produce 
a Doppler spectrum also consisting of impulse 
functions. When the storm-generating area is closer, 
the ocean waves may be spread over a narrow 
frequency band and also be spread in angle. In 
this case we use a model wave spectrum with a 
cardioid distribution in angle and a Gaussian dis- 
tribution in wave height. This model will be shown 
to produce narrow peaks in the Doppler spectrum, 
whose width is dependent mainly on the width of 
the ocean wave frequency band, with energies that 
differ from those produced by the simple impulse 
function. In the other extreme, waves are generated 
locally or in a storm area whose distance from the 
observer is not much different from the dimensions 

of the radar scattering patch; this is somewhat 
analogous to being in the near field of an antenna. 
We take as an example the situation existing at 
a recent coastal HF radar experiment at Pescadero, 
California [Lipa et al., 1980], where the dominant 
ocean waves were generated in a storm zone with 
the approximate dimensions 650 km x 740 km, with 
the storm center about 1250 km from the radar. 

These waves had an rms wave height of 113 cm 
and a frequency spread of about 0.02 Hz about 
a centroid frequency of 0.07 Hz. For this situation, 
finite width models are inadequate and full inversion 
of the integral equation is called for. 

2. THE RADAR CROSS SECTION 

We consider narrow beam radar systems with 
vertical polarization directed at or near grazing 

incidence. Vertical polarization is the only case of 
importance because (1) ground or surface wave 
radars require vertical polarization to attain reason- 
able propagation distances and (2) the horizontally 
polarized component of scatter from the sea is 
several orders of magnitude lower than the vertical 
component, so that even sky wave radars effectively 
discriminate only the vertical mode for sea echo. 
Barrick [1972] gives the following relation for the 
first-order average radar cross section per unit 
surface area at a Doppler shift •o from the carrier: 

where k o is the radar wave vector of magnitude 
k o, S is the directional ocean wave spectrum, and 
to B is the first-order Bragg frequency given by 

o,• = (2g•o) '/• (2) 

with g the gravitational acceleration. The first-order 
spectrum described by (1)consists of two impulse 
functions symmetrically placed about the carrier 
frequency at positions defined by the deep water 
dispersion equation and with amplitudes propor- 
tional to the directional ocean wave spectrum at 
the Bragg wave vectors +2k o, as is shown in Figure 
1. In practice, the first-order lines are displaced 
from their ideal positions because of underlying 
ocean currents and spread over a finite frequency 
band by current turbulence and system effects. 

The second-order radar cross section and the 

directional ocean wave spectrum are related by a 
nonlinear integral equation given by Barrick [1972]. 
We express this equation in the following form: 

0'(2'(0')) = 26'n'kø4 Z I - mtgk)'/2 
m,m'=ñ l 0 

- m'(gk')•/2)S(ml•)S(m' l•')kdkdO (3) 

where the vectors œ and œ' obey the relation 

k + k' = -2ko (4) 

The quantity F is a coupling coefficient that includes 
the effects of both hydrodynamic and electro- 
magnetic nonlinearities carried to second order in 
a perturbation theory: 

F rn,rn' -- (œ-ko)(œ'' œo)/ko 2- 2œ. œ' ] 
(5) 
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Barrick and Snider [1977] have shown that the 
sea echo voltage spectrum after N sample averaging 
is X square distributed with N degrees of freedom. 
They also show that Doppler spectra (both first 
and second order) become uncorr½lated for time 
intervals greater than approximately 25 s for radar 
frequencies greater than 10 MHz and that Doppler 
spectra from different range cells are statistically 
independent to spatial separations as small as 3 
km. These experimental results may be used to 
optimize the amount of incoherent averaging. In 
practice, at least 10 and normally more than 100 
spectra are incoherently averaged before analysis. 

The first-order echo is used to linearize the 

integral equation in an approximation valid at upper 
HF for higher sea states (e.g., at 25 MHz for rms 
ocean wave heights greater than 0.4 m). For small 
values of k/ko it follows from (4) that the vector 
œ' is approximately equal to the Bragg wave vector. 
The second ocean spectral factor in the integral 
equation (3) may therefore be removed by normal- 
izing the second-order spectrum by the power in 
the neighboring first-order peak. This normalization 
scheme, proposed and implemented by Barrick 
[1977a], linearizes the integral and removes un- 
known system gains and path losses from the data. 

Because of previously discussed frequency 
smearing we integrate the second-order spectrum 
over a finite frequency window 8. The energy in 
the first-order line is obtained by integrating over 
a frequency window of width 8n, which can con- 
vcniently be taken as the width between the half- 
power points. We then define the following experi- 
mental parameters: 

Lowercase R's are used throughout to denote mea- 
sured quantities, while uppercase are theoretical; 
script R's denote total energy in the peak, while 
block R's denote the actual peak function itself. 

When we employ models to describe the swell 
(as in the first two cases considered below), • is 
the width of the second-order swell peak. In this 
case we have integrated out the frequency and are 
concerned only with the energy in the Doppler 
peaks; for this case we redefine rm, m, (to) in (6) above 

as •'m,m'' When we do a complete inversion of the 
integral, however (as in the third case below), • 
= •n because the first-order peak width determines 
the ultimate frequency resolution attainable in the 
inversion process. Substituting expressions (1) and 
(3) for the first-order and second-order radar cross 
sections into (6) gives the approximate linear integral 
equation: 

Rm,m,(to ) • [I•m,m,[ 2•(• I - m(gk)1/2 
•o--8/2 0 --•r 

- m' (gk') 1/2)S (mœ)kdOdkd•l (7a) 

In the absence of frequency smearing, we define 
the quantity 

R'm.,n, (o0 = lim • 

= Ir..., I'-a(o,- m(•i) l/'- 
0 

- m' (•')l/'-)S(mœ)idOdi (7•) 

which is just the second-order radar cross section 
normalized by the first-order energy. 

The second-order sea echo appears as four side 
bands surrounding the two first-order Bragg lines 
(see Figure 1), representing the four combinations 
of m, m' = +_ 1. In contrast with previous impres- 
sions in the literature, the coupling coefficient 
IFm.m , 12 varies significantly with direction. If this 
were not so, it would be easy to show that the 
four side bands defined by (7) would all have the 
same amplitudes and shapes, making it difficult to 
extract many swell parameters. More relevant de- 
tails about the coupling coefficient are found in 
the appendix. 

In the next section we show how to invert (7) 
to give the ocean wave directional spectrum. The 
standard error in the derived parameters depends 
on the data covariance matrix. To derive this, we 

note that R,•.m, is defined in (6) as the ratio of 
sums of X 2 power spectral samples and is therefore 
itself a random variable that follows an F distri- 

bution [Barrick, 1980]. If the numerator and denom- 
inator are sums of M and N independent samples, 
respectively, in the limit of large N, the F distri- 
bution becomes X 2 with an effective number of 
degrees of freedom L e given by 

•/L, = •/M + •/•V (8) 
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Barrick and Lipa [1979b] show theoretically that 
power spectral values at different Doppler frequen- 
cies are statistically independent. The covariance 
matrix of a set of ratios Ri. i. is therefore diagonal 
with elements given by 

(9) 

3. INTERPRETATION FOR OCEAN WAVE 

PARAMETERS 

3.1. Swell of a single wavelength 
and direction 

We write the total wave height spectrum at a 
wave vector k as the sum of a continuous high- 
frequency wind wave spectrum Sw(k ) and a swell 
component generated at great distance that is an 
impulse function in wave vector space' 

$(œ) = $•(œ) + H.2a(œ - œ,) (10) 

where H. is the rms wave height of the swell and 
k s is the swell wave vector that has magnitude k s 
and propagation angle 0 s with respect to the radar 
beam (i.e., away from the radar). When this spec- 
trum is substituted into the integral equation (7a), 
the fight-hand side separates into a continuous wind 
wave spectrum, with cross-spectral terms due to 
the interaction of swell and wind waves given by 

Rm.m,(to ) = U, 2 Irm, m , - m(gk) •/2 
•o--•/2 0 0 

- m' (gk')'/2)a(ml•- l•,)kdkdOd• (11) 

and terms due to the swell interacting with swell. 
The latter terms can be seen to be a very resonant 
phenomenon that can only be observed at a single 
radar operating frequency that occurs at lower MF, 
well below our range of consideration here. The 
first set of terms representing wind wave/wind 
wave interactions involves only short-period waves 
and occurs at Doppler frequencies further removed 
from the Bragg lines than the swell peaks (see Figure 
1) and thus lies outside our range of consideration; 
their inversion is treated elsewhere [Barrick and 
Lipa, 1979a, b]. It is the cross-spectral terms 
represented by (11) that contain the information 
on the swell. In (11) the wind wave spectrum has 
been removed by the normalization defined in (6). 

The integration in (11) may be performed imme- 

diately by using the delta function constraints on 
the integration variables. Four sharp spikes occur 
in the Doppler spectrum with frequencies and 
powers given by 

2 2 (12) O-}m, m' • mtos + m' [to• + 2mtos to B cos O s + to, n] 1/4 

where 

to. -- (gk.) ,/2 toB -- (2gko),/2 

•m.m' = 2H2 IFm.m , 12 (13) s 

where I'm, m' is evaluated at k• and/•' obtained from 
(4). For typical HF radar frequencies, k s << k o, 
and the above equations show that the swell peak 
frequencies are close to the Bragg frequency, often 
occurring in the null between the first-order line 
and the peak of the wind wave spectrum (see Figure 
1). We define Am + as the radian frequency displace- 
ment between the two swell peaks surrounding the 
approaching Bragg line; likewise for Am- with 
respect to the two swell peaks surrounding the 
receding Bragg line. Estimates of swell spatial wave 
number and direction may be made from the peak 
frequencies (12) through the equations 

k. = (Ato + + Ato-) 2 (14) 

( (15) 0s = cos- • 8to B (Ato + + Ato-)' 
The values of O.)m, m , are calculated by finding 

the centroid frequency of the spectral peak between 
the half-power points. Barrick [1980] has calculated 
a general expression for the standard deviation of 
a centroid frequency for a spectrum that has x 2 
statistics. This expression is insensitive to the exact 
shape of the peak; if we therefore assume a Gaus- 
sian form for convenience, he shows that the stan- 
dard deviation of the frequency estimate is 

sa() = 
where N is the number of samples contained within 
the half-power width, K is the number of indepen- 
dent spectra used in the sample average, and A 
is the angular frequency spacing between adjacent 
spectral points. The corresponding errors in the 
estimates (14) and (15) for ks and 0s follow from 
linear error propagation theory [Brandt, 1970] 
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(17) 

and 

Sd(0s) = 8o•BA (•),/2 
[5(A0a+)2- 6A0a+Ao•- + 5(A0a-)2] ,/2 

ß sin 0s • 0 
sin 0s(Ao• + + Am-) 3 

(18) 

The uncertainty in the estimate of wave number 
is generally small; that in angle can be large because 
of the differencing of small frequency shifts in (15). 

In an independent analysis based on the ampli- 
tudes of the swell peaks, expressed theoretically 
in (13), we use the maximum likelihood method 
[Brandt, 1970] to give estimates of swell wave 
height and separate independent estimates of the 
angle. The following expression is minimized with 
respect to 0• and H•: 

(/•m.m,--•m.m,) 2 
I(0s, H•) = m• m ----•-'--- (19) , (a•m. m, ) 

where ,-,,,.,,,. are the measured values of the energy 
in the four Doppler peaks, defined by (6), and where 
the variance of •,•.m' is defined by (9). Thus we 
minimize the sum of the weighted squared devia- 
tions of the experimental values of •,•,,,, (including 
random fluctuations) from the ideal functional form 
to give the optimum values 0 s and H s . The residual 
I(õ s, •s) obeys an approximate X 2 distribution, and 
we use a X 2 test on the validity of the ocean wave 
spectral model, (10). If the value of I(0s, Hs) is 
too large, the assumption of this model must be 
reconsidered and more general models used. These 
models are considered later in this section. 

To obtain the standard deviations in the derived 

parameters, we expand (13) in a Taylor series about 
0,, H, to give the approximate expression for the 
variation in the residual with distance from the 

optimum in the absence of noise: 

o(Irm.m'l 2) 
A,.•m. m, = 4HslFm.m,12•Hs + 2H 2 80 (20) s s 

which may be expressed in the matrix form 

A•'= MA( (21) 

where 

4H•IF_,._, 12 2H2• 
o (Ir_,,_! I'-) 

OOs 

Brandt [1970] shows that when the elements of 
A( are determined by the maximum likelihood 
method of minimizing expression (19), the co- 
variance matrix Ce follows from the covariance 
matrix CR defined in (9) through the equation 

Ce = (M rc R M) (22) 

and the standard deviations of H s and 0 s are the 
square roots of the diagonal elements. 

3.2. Ocean waves with finite beam width 
and narrow frequency spread 

We now consider a model in which the long-period 
waves are assumed to have a finite but narrow 

Gaussian spread •k in wave number and to be spread 
in angle according to a cardioid function of power 
s about a mean direction. These ocean waves could 

be generated either at a distance, in which case 
they would be termed swell, or locally by the wind 
field or by nonlinear interactions. We retain the 
subscript s for convenience and define the rms 
height H s , the mean wave number k s, and the mean 
direction 0 s for the following model ocean wave 
spectrum: 

s(tc) = 

H2F(s/2 + 1) exp - cos s 
s 2t•2• 2 

+ 

23/2•rt•kkF(s/2 + 1/2) 
(23) 

where F (x) is the gamma function of argumem x. 
The second term is the swell spectral model used, 
and it is normalized so that its integral is equal 
to the mean square swell wave height; i.e., 

o 
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This model could be applicable when the Doppler 
peaks produced are spread considerably beyond the 
haft-power width of the first-order peak but are 
still relatively narrow with respect to their frequency 
shift from this first-order echo. This could also 

be discovered because the large residual given by 
(19) indicates that the double impulse function model 
is not providing a good fit to the data. 

The half-power wave number width k n and the 
half-power angular spread 0 n of this model are 
simply related to the parameters trk and s by 

k, = 2(2 In 2)!/20' k O H = 4 COS--' [(1/2)'/•] (24) 

Often the nondirectional wave height spectrum 
is measured with a buoy from a time series of the 
wave height. In this case a temporal spectrum is 
obtained rather than a spatial spectrum (i.e., versus 
o• rather than k). For a narrow band spectral peak 
the half-power widths of the two are related by 
means of the gravity wave dispersion equation as 

gkH (2 In 2) l/2go'k 
•oH - - (25) 

where % = (gks)1/2. 
Upon substituting (23) into (7b) we derive a 

closed-form solution for the swell echo Doppler 
peaks by eliminating the double integral as follows: 
(1) we employ the delta function constraint along 
with the relevant Jacobian to eliminate one of the 

integrals; (2) we employ asymptotic techniques (i.e., 
the saddle point approximation) to perform the 
remaining integration. The approximation involved 
in the second step produces the following result, 
which is no more than 5% in error under the 

following assumptions (for ocean waves of period 
greater than 10 s and radar frequencies greater than 
10 MHz): O•n/% < 0.3 and O n < 60 ø (s > 20); 

•,•, (•o) = • • •, , 

2 

ß exp {-(4 In 2)(•o - •o m,m' )• / •O OH} (26) 

where the peak positions to m,m' are identical to those 
of the impulse function model given by (12). The 
above expression is normalized so that the integral 
over to yields •'m,m'; this quantity is given by 

•m m' -- • (-• IFm,m, (0)1 • COS • dO (27a) ' 2 

where 

A (s) -- 
2(•r) '/'F (s/2 + 1 / 2) 

r(s/2 + •) = I• cøs•(q•/2)dq • 
(27b) 

The square of the Doppler peak half-power width 
o•on is comprised of two terms, one resulting from 
the finite frequency spread of the wave height 
spectrum and one produced by its f'mite angular 

2 2 2 

spread (i.e., o•on = o•on • + o•on0), where 

O.)DHF --- (O H m+m I 

3 2 

4 3/4 cos 0• + t%] 

(28a) 

O H 

{t) D H ø -- 2 
2 2 sin 0s {t) s (D B 

4 3/4 cos 0• + tos] 
(28b) 

where all to's are in radians per second and O n 
is in radians. All quantities in these equations have 
been defined previously. 

There are several interesting implications of (26)- 
(28) that should be noted: 

1. The peak centroids or maxima occur at the 
same positions, O•m,m,, as those for the impulse 
function model. Hence one can solve for the domi- 

nant period (i.e., k s or o•s) and direction 0 s by solving 
(14) and (15) for the spacings between the centroids 
of the Doppler peaks. 

2. The ocean wave frequency spread o• n does 
not appreciably affect the energy distributions in 
the Doppler peaks, as represented by •'m.m' in (27). 
The wave directional spread, however, does affect 
this quantity. In the limit of the impulse function 
in angle (s --• oo), (27a) is seen to reduce identically 
to (13). In practice, having determined 0 s, % (and 
knowing o•B), one would numerically solve the 
integral (27a) (see the appendix) and then employ 
maximum likelihood methods discussed in the pre- 
ceding section to fit equation (27a) to the data in 
order to determine the rms wave height H s, 
independent estimates of direction 0•, and estimates 
of the angle spreading parameter s. 

3. Of the two contributors to finite Doppler 
spectral peak width, the one produced by f'mite 
ocean wave frequency spread dominates for nearly 
all practical situations, as is seen by comparing 
(28a) with (28b). For example, for the wave field 
at Pescadcro described in the introduction, it can 
be seen that (O.)DnF/OJDnO) 2 > 16, implying that 
0•Dn = 0•Dn r. Hence the width of the echo Doppler 
peaks, 0•Dn, can be related directly to the frequency 
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width spread of the ocean wave spectrum, 
directly through (28a). 

3.3. General inversion for swell 

If the radar spectrum close to the first-order lines 
has a broad distribution, rather than displaying 
narrow peaks, we use a general inversion method 
that applies to both swell and wind-generated seas. 
The ocean wave spectrum is expanded as a f'mite 
Fourier series in angle with coefficients that are 
functions of wave number: 

where 

_ 1 E c,(k)tf•(O) S(k)= 2•r 

tf• = cos (i 0) i --> 0 

t f,. = sin (i0) i<0 

(29) 

We assume the ocean wave spectrum is constant 
within N wave number bands k i - •i/2 to k• + 
•/2 and substitute (29) into the integral equation 
(7a), which reduces to the following linear form: 

n N 

Rm.m'( 0'})= • • Kijmrn'(O'})ci(kj ) 
i-------n 

(30) 

where the coefficients are given by 

(31) 

= IFm. m, 12 rijrnrn'(ø•) • •-•/2 kj-•j/2 0 
ß 8(•1 - m(gk)1/2 __ m' (gk t) l/2)tfi(O)kdOdkd• I 

The integral in (31) is performed numerically by 
using a method developed by Lipa [1977]. The 
values of the coefficients Ki•mm, for negative values 
of i are very small because the coupling coefficient 
is an even function of angle, and the frequency 
contours defined by the delta function constraint 
are almost circular. For i < 0, tf•(0)is an odd 
function of angle, and it follows that the integral 
in (31) is nearly zero. It is therefore impossible 
to obtain the corresponding values of ci for i < 
0 by inverting (30). This constraint applies to a 
narrow beam radar with a single look direction; 
it can be circumvented by using two or more look 
angles or by use of the rotating broad beam antenna 
described by Barrick and Lipa [1979b]. Values 
of the even Fourier coefficients may be obtained 
by inverting the linear equations (30) using methods 

developed by Phillips [1962] and Twomey [1963] 
and previously applied to radar sea echo inversion 
by Lipa [ 1977] and Barrick and Lipa [ 1979b]. The 
number of Fourier coefficients that can be derived 

with adequate accuracy from a given data set 
depends on the random fluctuations of the data 
and the magnification of error that occurs during 
the inversion process. We have inverted measured 
data to give the first three even Fourier coefficients 
co(k ), c I (k), and c2(k ) with adequate accuracy [Lipa 
et al., 1980]. 

The nondirectional coefficient c o (k) is merely the 
ocean wave nondirectional spectrum, since it fol- 
lows from (29) that co(k ) is the integral of the 
directional wave spectrum over angle. The direc- 
tional coefficients Cl(k ) and c2(k) do not admit 
to a quick interpretation in terms of important 
directional parameters such as the dominant or mean 
wave direction. Barrick and Lipa [ 1979b] show 
how they may be interpreted in terms of the cardioid 
model for the angular distribution, which gives the 
dependence at a given wavelength as cos' [(0 - 
0,)/2], where 0 is the wave angle at a selected 
direction. This model requires that the following 
relations be obeyed: 

C 1 (k) 2s c2 (k) 2s(s - 2) 
- • cos 0 • - cos 

co(k) (s + 2) co(k) (s + 2)(s + 4) 

(32) 

Estimates of s and 0, at each wave number may 
be determined by fitting these eqmitions to the 
values of c•(k) obtained by inversion of the radar 
spectrum. The angle 0, can then be interpreted as 
the mean wave direction. Since only the even 
coefficients c o, Cl, and c 2 are derived from the 
above general inversion process, a unique deter- 
mination of 0, and s is not always possible without 
additional information. 

4. CONCLUSIONS 

Our analysis reverses the impressions given by 
prior works on the extraction of sea state parameters 
from HF radar echoes in that it shows that long-wave 
directions can be determined from the second-order 

echo. The reason for this is that the second-order 

Doppler structure is sensitive to the directional 
properties of long waves. Inclusion of this depen- 
dence in the analysis results in more accurate 
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estimates of height and period as well as giving 
the direction itself. A model suitable for narrow 

band/beam ocean waves allows the direct extrac- 
tion of the angular beamwidth and frequency band- 
width also. Expressions for the errors in these 
estimates are derived and presented. 

The three techniques presented here--including 
the two closed-form models we derive--have been 

successfully tested against measured data from 
three separate experiments; they have been 
compared with several alternate sources of 'surface 
truth' by Lipa et al. [1980], whose analysis of the 
considerable amount of data is extensive and draws 

heavily upon the models and methods presented 
here. Our purpose in this paper is to derive and 
present simple models and methods that have been 
proven against data, along with a discussion of how 
and when to use them. We derive error estimate 

expressions for our results and show specifically 
how to use maximum likelihood principles for the 
models employed here. Hence this paper should 
provide all the tools a user needs to extract long- 
period ocean wave parameters from narrow beam 
second-order HF sea echo Doppler spectra. 

A couple of limitations should be noted. First, 
although use of a single narrow beam allows the 
extraction of a surprising amount of directional 
information, one is restricted by the fight/left 
ambiguity with respect to the radar beam. Therefore 
unless one can scan the beam (or employ multiple 
beams), one is forced to guess or use additional 
information to remove this ambiguity. Second, for 
the two models derived, the ocean waves have been 
assumed to have a single dominant direction, al- 
though they may be spread in angle. If two Doppler 
peaks can be resolved in the data representing 
different swell frequencies and directions, then each 
can be handled separately using the models. If, 
however, wave trains from different directions are 
sufficiently close in wave frequency that they can- 
not be separately distinguished in the Doppler 
records, then these models are likely to give spurious 
results. Such a situation would be signalled by the 
x 2 test applied to the residual, (19), indicating a 
poor fit of the model. Also, internal inconsistencies 
would be observed. For example, the directions 
obtained from peak positions would disagree with 
those obtained from maximum likelihood analysis 
of the peak amplitudes. In this case, full inversion 
of the integral equation using the method described 
in section 3.3 must be performed. 

APPENDIX 

To illustrate the strong directional dependence 
of the coupling coefficient, we show plots of this 
quantity, IF,,, ,•, 12, versus 0 s in Figure 2 for a typical 
example: 13-s swell at both 10 and 20 MHz. These 
plots are normalized to ko 2, the radar wave number. 
Also shown is the cos 2 0 s function (dotted) for 
comparison. The amplitudes of the four spectral 
peaks for the impulse function model of swell are 
directly proportional to this coupling coefficient, 
from (13). Therefore one can clearly see that these 
amplitudes will vary greatly, even disappearing 
when the swell propagates perpendicular to the radar 
beam. 

The reason for the asymmetric front-to-back 

INTEGRAL COUPLING COEFFICIENT VS. PROPAGATION ANGLE 
FOR 13-SECOND SWELL 

Inner Side bands 1.0 I (l•l<•s) 

10MHz 

0'•• 26 ø 

Outer Side bands 1'0 • (l•i>•a) 

10MHz 

............ 0'--• 3.26 ø , ............ 
ß -.o...O.o •ooo. O-øø"ø 

Fig. 2. Polar plots of normalized coupling coefficient (divided 
by ko2), Irm.m, 12, for 13-s swell at two radar frequencies. Plots 
are versus 0 s, the angle between the radar look direction and 
the swell propagation direction. Dotted curves give cos 2 0 s 
function for comparison. For positive Doppler side bands, 0 s 
in the above plots is measured from the +x axis; for negative 
side bands, from the -x axis. 
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shape lies with the existence of the first term (the 
electromagnetic interaction effect) of the coupling 
coefficient, (5). Even though the hydrodynamic 
interaction term (the second term) is larger, one 
clearly cannot neglect the electromagnetic term. For 
if the first term were zero, the coupling coefficient 
would have the cos 2 0s form and there would be 
no front-back asymmetry. In that event the odd 
directional cosine coefficients c•, c 3 , etc., contained 
in the wave height spectrum (29) would be indeter- 
rainable. In other words, one would not be able 

to distinguish swell at 0 s from swell at 180 ø - 0 s. 
As it is, a single narrow beam can extract Co, c•, 
c 2, c 3 , and possibly higher odd coefficients if the 
data are not too noisy. 

The other distinct features of these plots are the 
spikes (shown only for the 10-MHz case); these 
occur when the two ocean wave trains are perpen- 
dicular, i.e., œ. œ' = 0. In this event the radical 
(œ . œ,)•/2 occurring in the denominator of the 
coupling coefficient vanishes, making the coeffi- 
cient itself very large. This condition of perpendicu- 
larity of the wave trains is referred to as the 'corner 
reflector' condition [Trizna et al., 1977], and it 
has been suggested that this effect can be a signifi- 
cant contribution to second-order scatter. For long 
waves the total energy contained in this spike is 
very small, less than the energy contained within 
a 1 o sector at the pattern maximum; this spike energy 
is even 4 times less at 20 MHz. Since narrow band 

swell on the open ocean always spans a sector 
exceeding 4 ø, these spikes could never contain 
enough energy to be seen. Further proof of this 
is evident from the many cases of long-wave propa- 
gation examined by Lipa et al. [1980], where four 
second-order Doppler peaks are always seen; the 
comer reflector condition would produce only two 
such peaks. (For example, for swell slightly ap- 
proaching the radar such that /• ß • < 0, these 
peaks would be positioned one on the positive side 
of each Bragg line.) 

The regions œ- œ' > 0 and œ. œ' < 0, on the 
other hand, explain the front-to-back asymmetry 
in the larger lobes of these patterns. The larger 
lobe of each pattern is produced when k ß k' > 
0, resulting in the square root of this quantity being 
real. This physically means that the intermediate 
electromagnetic wave interacting with the two ocean 
waves of wave vectors œ and œ' (one of which 
is the swell wave vector) is 'propagating,' and the 
electromagnetic and hydrodynamic terms are then 

seen to add in quadrature. With the smaller lobe, 
however, the argument of the radical is negative, 
and hence the radical is imaginary, i.e., (œ ß 
= (-I/7 ß /7' I)'/• = i(1œ ß /7' 1) '/5 In this case the 
intermediate electromagnetic wave is not propagat- 
ing but is 'evanescent'; then the electromagnetic 
and hydrodynamic terms are no longer in quadrature 
but are in phase and subtracting. In the former 
case an approximate factor for the coupling coeffi- 
cient at the larger lobe maximum is 1 + 
while in the latter case the appropriate factor at 
the smaller lobe maximum is [ 1 - (o•s / o• 

Looking at Figure 2, it is tempting to suggest 
that the upper and lower plots are identical if they 
are flipped around. One might go further and say 
that the coupling coefficient can be modeled ac- 
curately by a cos 2 0 s pattern whose amplitude factor 
in one direction is [ 1 + (o•s / o•) 2 ] and in the other 
is [ 1 - (o•s/o•)] 2; this would result in a closed-form 
solution to (27). However, this simplification would 
produce identical sets of Doppler peaks surrounding 
each of the two first-order Bragg peaks, and this 
has been observed in measured data not to be the 

case for Icos 0sl < 0.5 [Lipa et al., 1980]. Closer 
examination of the coupling coefficient, as plotted 
in Figure 2, shows that, for example, at Icos 
= 0.5 (i.e., 0 s = 60 ø and 120 ø) the values of the 
smaller lobes differ as much as 25% from each 

other. This is sufficient to produce significant error 
in the swell parameter extraction process. Therefore 
one should employ the exact expression for the 
coupling coefficient in (13) and (27) and in the full 
integral inversion process. The coupling coefficient 
can be calculated quickly on the computer, and 
this should be done rather than attempting to use 
any 'approximation' to the exact coupling coeffi- 
cient. 
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