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Accuracy of Parameter  Extraction from Sample-Averaged 
Sea-Echo  Doppler  Spectra 

Abstract-The mean, standard deviation, and  confidence limits are 
obtained for quotients of random-variable sums. Such  quotients are 
formed in the extraction of sea-state parameters  from  high-frequency (HF) 
radar Doppler spectra. An equivalent  chi-squared  process is shown to 
represent a spectral integration  having  a  varying  mean  based  on  central- 
limit theorem arguments. The error of estimating the  centroid  of  a  spectral 
peak is derived and shown to depend only on the  total  length  of  the  time 
series, not on how  it is segmented  into  coherent  spectra  and  incoherent 
averages. Finally, error in  estimation of waveheight using a power-law 
relationship is analyzed and is seen to depend on how one does the 
averaging. When  individual spectra contain  varying  path losses and/or 
system gains, averages of quotients for each  spectrum  remove  such 
unknown factors; in this case spectra  with  greater  frequency  resolution 
lead to lower waveheight estimation errors. 

INTRODUCTION 

T HE  EXTRACTION of seastate  parameters  from high- 
frequency  (HF)  radar sea-echo Doppler  spectra involves 

comparison of one  part of the  spectrum  with  another  (usually 
a division  process, e.g., [ 11 -[ 51 ). This  eliminates  the need to  
know  the  absolute signal  level, a  quantity  difficult  to ascertain 
because of varying path losses  and system gains.  Since the sea- 
surface  height is ( to first  order)  a Gaussian random  variable, 
thereceivedvoltage  echo is  also  Gaussian [ 61 . This  means  that 
the  power  output  at  each  spectral  point  by  the  fast  Fourier 
transform  (FFT) is a chi-squared (x2) random variable with 
two degrees of freedom.  (Each  spectral  point is  statistically 
independent  from every other in the  absence of extensive  over- 
lap due  to  time series windowing [ 71 . Windowing with  overlap 
can  result  in  some  correlation  between  adjacent  points 181 .) 
Division  of sums of x 2  power  spectral  samples  produces  another 
random  variable which follows an F distribution [9]. Most 
of the  results  in  this  paper  are derived from  F-distribution 
properties. 

Unfortunately,  the  utilization of Fdistributions  by  the  radar 
remote-sensing community is virtually  nonexistent,  primarily 
because  these distributions  are discussed in textbooks  as  applied 
to  statistical  testing of hypotheses, e.g., whether  the  accuracies 
of the  output of two  different  machines  are similar [ 91 . As a 
result  the  notations  developed in such  treatments  are ill-suited 
to  the  spectral  estimation  problems  dealt  with by radar  ana- 
lysts. Furthermore,  many  simple  useful  closed-form  expres- 
sions can be derived  (based on central-limit  theorem  arguments 
and binomial  expansions)  that are not usually found  in  treat- 
ments of F distributions. 

In  this  paper we first  present  the x 2  and F distributions in a 
natural  notation  for  spectral analysis and give several of their 
properties such as moments and confidence  limits.  Then we 

Manuscript  received  February 1, 1979; revised July 3,  1979. 
The author is  with  the  Sea State  Studies  Program  Area  in the Wave 

Propagation  Laboratory, Nationaloceanic and  Atmospheric  Administra- 
tion, U.S. Department of Commerce, Boulder, CO 80302. 

discuss the  problem of sums of x2 variables with  unequal 
means  and show that  such  sums  can be represented  by  a x2 
distribution  whose  equivalent  number of independent  samples 
is simply  determined  by  these  unequal  means.  This  allows  the 
immediate  use of the desirable  properties of x 2  and F distri- 
butions.  Then we apply  these  techniques  to  the  problem of 
estimating the positional  error of a  spectral  peak  resulting 
from  a  finite  number of samples.  Finally,  we  examine  various 
methods of sample averaging  applied to  the  problem of ex- 
tracting sea  waveheight  based on  a  power-law  relationship  for 
the  F-distributed  quotient of second-order  to  first-order 
spectral  energy. 

x2 AND F DISTRIBUTIONS  APPLIED  TO 
SPECTRAL  SAMPLES 

Consider  the  sample average of L independent  power  spec- 
tral  points Ul having the  same  mean, i.e., (U,) = P. Each  spec- 
tral  sample is x 2  with  two degrees of freedom, because the real 
and  imaginary  parts of the voltage  signal output  from  the  FFT, 
Le., R l  and I l ,  are  Gaussian  zero-mean  independent  random 
variables with Ul = R 1 2  + Z 1 2  where ( R 1 2 )  = 012) = 3 P. Let us 
normalize Ul dividing by P, Le., ul = U1/P.  Then  the  probability 
density  function  (pdf)  for  the  sample average u can be ex- 
pressed  as 

where 

1 L  
u = - U[. 

L 1 = 1  

The  pth  moment 0, need not be an integer) of u is given as 

From  this we immediately have the  mean  and  standard devia- 
tion of u as 

Now we  similarly  examine  the  statistics of q where q is  the 
quotient of normalized x 2  sample-averaged  variables, the  nu- 
merator x consisting of M samples,  and  the  denominator y ,  of 
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N samples, i.e., 

where x and y each  have pdf‘s of the  form of (1).  The  non- 
normalized  numerator and denominator  samples  would be de- 
fined  by X, = x m P ,  and Y, = Y n P d ,  where  the  numerator 
and denominator variables all have means Pn and P d ,  re- 
spectively.  Furthermore, we assume that  the  numerator and 
denominator  are  statistically  independent, i.e., that x, is not 
equal  to y n  for  any m, n (or  even correlated).  Then  the  fol- 
lowing transformation [ 101 is used to  find the pdf for q :  

This  yields 

Gaussian so long as the  number of denominator terms is 
large.  Whenever  Gaussian statistics can be used,  closed-form 
expressions  are  usually  obtainable because of  the  simplicity of 
manipulating  Gaussian  functions. 

Note  from (10) that  the  mean of q depends  on N ,  the  num- 
ber of denominator  samples, even though  the  separate  means 
of numerator  and  denominator  are  unity.  The  quotient  mean 
approaches  unity  only  for large N .  

Another  measure of the  fluctuation of a  random variable is 
discussed in  terms of “confidence limits.” For  example,  sym- 
metrical  confidence  limits Wc1) and W(2), representing  a 
probability P = 0.9 (i.e., 90 percent  confidence),  are  taken  to 
mean that  there is a  five-percent  probability  that  the  random 
variable w is either  smaller  than W ( l )  or larger than WC2); con- 
versely.  this  means that we can  be YO percent  certain  that w lies 
between W(l) and W c 2 ) .  Thus we formally  define  symmetrical 
confidence  limits W ( l )  and W C 2 )  for  a given probability  or 
confidence level P as 

p , ( w )  dw = + (1 - P )  

r -  

(8) For  a  probability  density  function  such as x2 or F there  is us- 
ually no simple  closed-form  expression for  confidence limits. 
Tables  are available  in the case  of  these two  particular  distribu- 
tions,  but  considerable  manipulation  must be done in  trans- 
forming to  the sample-averaged spectral  parameters we employ 

(9) here.  Hence,  with  computers  it is just as convenient to  calcu- 
late  them using integration  routines  with  (14). We plot  such 

The  pth  moment is given by 

m 

from  which we obtain  the  mean  and  standard  deviation of q 

N 

N- 1’  
M(q) = - (10) 

The  above  two  expressions  become  infinite  (and  hence  are 
meaningless measures of fluctuation)  for N = 1 and IY = 1, 
2, respectively. 

When N is large a  particularly  meaningful  expression  for 
the  standard  deviation is obtained: 

SD(q)  - d - i i s - i F .  
N large 

In the  Appendix we show that in  this  limit of large N the F 
distribution  becomes x2 with an  effective  number of indepen- 
dent  samples, I,,, given by 

1/L, = 1/M + l /N. (13)  

This  fact is quite useful  because the  central-hit  theorem of 
statistics [ 101 proves  that  the sum of random variables  always 
approaches  a Gaussian  variable  (regardless of the  statistical 
distributions of the individual  terms) so long  as  the  number of 
terms is large. The  above result shows  that  the  quotient of 
large numbers of random variables therefore also approaches 

results  for  four cases: a)  the x2 distribution given in (1)  for 
the  sample average of L power  spectra, Fig. 1;  b) the  quotient 
of x2 distributions  of M sample-averaged power  spectra  in  the 
numerator  to N sample-averaged power  spectra  in  the  denomi- 
nator,  defined  in (8), where we take III = N ,  Fig. 2; c)  same as 
b) except M = 3 N ,  plotted versus N in  Fig. 3; and d)  same as 
b)  except N = 311.1, plotted versus M in  Fig. 4. The  confidence 
in  all  cases is 90 percent  (symmetrical) and  are shown  as  the 
upper  and  lower  limits (i.e., W ( 2 )  and W(l))of  the  crosshatched 
region. These figures  also give the  mean of the  random variable 
and  lines  showing the  standard  deviation  on  both sides of the 
mean. 

Several points are worth  noting  from  these figures. First, 
the regions of fluctuation (i.e., confidence  limits  and  standard 
deviations)  are  always  greater  when both denominator and 
numerator  fluctuate  than  when  just  the  numerator  fluctuates: 
compare Fig. 2 with Fig. 1 .  In particular,  the  upper h i t  for 
a small number of samples in the  denominator  becomes  much 
larger,  because the  denominator is likely to  approach  zero 
causing the  quotient  to  become large. 

Second,  note  that  the  mean and standard  deviations  shown 
in  Figs. 2 and 3 go to  infinity when the  number of denominator 
samples  approaches 1 and 2,  respectively.  On  the other  hand, 
the  confidence  limits  for  this small number of samples  always 
remain finite.  It  may seem  surprising that  the mean and  stand- 
ard  and deviations, whch  always lie well inside  the 90 percent 
confidence  limits  for larger sample averages,  diverge for small 
samples whle  the  confidence limits do  not. This strange  situa- 
tion  is due to the  difference in the  nature of the two methods 
of  expressing  fluctuation, Le., moments versus confidence 
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Fig. 1. Chi-squared  fluctuation  statistics  versus  number of independent  spectral  power samples. Outer  boundaries of 
crosshatched  area  are 95 percent  (upper)  and 5 percent  (lower)  confidence  limits:  dashed  lines  are (1 6 )  as approsima- 
tions  to  confidence limits.  Heavy  dashed  line is mean,  and heavy  solid  lines are ? I  standard  deviation  about  mean. 

limits.  Hence,  when  there is only  one  sample  in  the  numerator 
and  denominator  we  cannot  even  define  a  mean value for  the 
quotient;  however,  we  can say that 90 percent  of  the  time  the 
quotient lies between  0.025  and 19. 

Although a closed-form  expression for  the  confidence  limits 
does  not  exist  for  arbitrary M and N, we  can  derive  a  simple 
relationship  when M and N become large. We have  shown  that 
when N is large q can be  represented by  a x2 distribution  with 
an  equivalent number  of samples L e ,  given by (1 3). This x2 
variable is in  turn  the sum of Le identical  but  independent 
variables. By the  central-limit  theorem  the  distribution of 
this  sum  tends  toward  Gaussian  in  the  limit  of large L e .  Thus 
the x2 distribution  of (1) and  also the F distribution  of (8) 
both begin to  take  on  the  expected bell-shaped appearance  of 
the Gaussian  function  for large ,VI and N .  Hence  we  can  write 
an equivalent  Gaussian  probability  density  function  for u in 
place  of (1)  and  for q in  place  of (8) for large L (or /M and A') 
whose  mean  tends  to  unity  and  whose  variance  tends  to ] / I ,  or 

l/Le.  Employing  this  density  function we can  define  confi- 
dence  limits  in  terms  of  the  well-tabulated  error  function 
erf (z); we  define an inverse error  function: e r r 1  (PI, which is 
obtained  from  the  tables  by  searching  the erf (2) column for 
the value P and  then  finding  the  corresponding z. Then  the 
confidence  limits  for large L e  are given  by 

where 

2 
A = -  e r r 1  (P), 

Le 
(16) 

where P is  the  symmetrical  fractional  confidence level  desired. 
For  the case  considered  here  where P = 0.9 we  find  that e r r 1  
(0.9) = 1.163,  and  hence A = 1.6447/&. 
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Fig. 2. Fdistributed  fluctuation  statistics  with  same  number of numerator  and  denominator  samples  versus  number of in- 
dependent  spectral  power  samples in numerator or denominator.  Curve  legends  same as Fig. 1. 

To see  how well this  approximation  holds  up  we have  plot- 
ted  it  on Figs. 1-4 as the dashed  line. For these four  figures, 
respectively, we have  a) L ,  = L ;  b) Le = MI2 = N / 2 ;  c)  L e  = 
3N/4; and  d) L e  = 3M/4. It  can be  seen that  this  approxima- 
tion to the  confidence  limits  is  quite valid even as  low as 
Le = 20. 

EQUIVALENT NUMBER OF SPECTRAL  SAMPLES 
In all of  the preceding  discussions  of x2 and F distributions 

i t  was  assumed  that  the  means  of  the  individual  spectral  sam- 
ples  are  the  same. In many cases, however,  it  happens  that  the 
quantity to be used as numerator  and/or  denominator is actu- 
ally the  sum  of  random variables with  unequal  means.  This is 
illustrated  in Fig. 5 ,  a  sketch  of  a single HF  Doppler  spectrum. 
A frequently  employed  method  of  extracting  waveheight  takes 
the ratio  of  areas  under  different  portions  of  the  spectrum. 
This is realized  by  merely adding  the  spectral  power  samples  at 
consecutive  points.  The  dashed  curve  shows  the  (infinite- 

ensemble)  mean  of  this  spectral  process, varying from  point to 
point.  One  intuitively  suspects  that  adding  samples  with dif- 
ferent  means is a  smoothing  process,  and  the  resulting  sum 
should  be  representable by an  equivalent x2 sum  with  a  deter- 
minable single  variance  and  effective  number  of  degrees of 
freedom. 

An  expression  for  the  equivalent  number  of  spectral  sam- 
ples  is  derived in  the  Appendix.  Define L as  the  total  number 
of  spectral  points having different  variances to  be  summed in 
computing  the  area  and K as  the  number of  separate  spectra 
to  be  sample  averaged.  Then  the  expression  for  the  equivalent 
number  of  spectral  samples L e  becomes increasingly accurate 
when K L ,  is large (ix., greater  than  ten), so that  central- 
limit  theorem  arguments  can be invoked.  The  result  is 

where p 1  E P,/P,w, P,  being the  power  mean  at  the Zth spectral 
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~ i ~ .  3. F-distributed  fluctuation  statistics  with  three  times as many  numerator  Samples  as  denominator  samples  Versus 
number of independent  spectral  power samples  in denominator. Curve  legends  same  as Fig. 1. 

point  and P,M being  the  maximum  spectral  power  mean  within 
the  spectral region to be used.  The  expression in braces  above 
has  a  simple  physical  interpretation:  it is the  number of spec- 
tral  points  included  within  the  “half-power  width” of the 
spectral  regions of interest.  (“Half-power  width” is defined 
as Af = (JP(f) df)/P,vl.) Thus if the means were  all equal; 
Le., Pl = PA$,, we would  merely  have L e  = L (with 

The  quantity f is  a  shape  factor  that is  close to  unity.  It is 
f = 1) .  

To obtain  a range  of typical values for  the  shape  factor we ap- 
proximate  the  summations in  this  ratio by  integrals.  Such  a 
step is valid when  the  increment spacing is small in terms of 
the  function  half-power  width.  (In  the  other  extreme  where 
the  increment  spacing is much larger than  the  function  width 

one readily  sees that fZ 1 .) Then we derive f for  the  following 
five functions: 1 )  triangular  function, f = 1 ‘/2 ; 2) Gaussian 
function, f = 4, 3)  cosinesquared  function, f = 11/3;4) 
parabolic function, f = l l h ;  and 5 )  rectangular  function, f = 
1. We see that  the  more  flattened  the  top of the  function,  the 
closer is f’ to unity. As a  compromise  estimate  for  the  usual 
rounded-top  spectral  peak we suggest a v a l u e f z  1.3. 

Thus  a  quick  estimate of the  equivalent  number of spectral 
samples  under  a region of a single spectrum  (adequate  for  ac- 
curacy  estimation  purposes) is obtained  by  counting  the  num- 
ber  of points  within  the  half-power  width1 of this  spectral 
region and  multiplying by  1.3.  For  example,  for  the  sketch of 

1 The “half-power  width”  as  we  have  defined  it  in  integral  form  is 
technically  different  from  the  width  of the function  between  points at 
P1~/2, which  we wiU call  the 3dB width.  In  practice  this  difference is 
small  enough to be  negligible. For example,  for  the  five  models  given 
above  (in  that  order),  the  ratios  of  the  3-dB  width to the  half-power 
width  are 1) 1; 2) 0.94; 3) 1;4) 1.06;and 5) 1. 
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Fdistniuted  f luctuation statistics  with three times  as  many  demonhator  samples  as  numerator 
number of  independent  spectral  power  samples in numerator. Curve legends  same  as  Fig. 1. 

Fig. 5 ,  the equivalent  number of  first-order  spectral  samples is 
Ne Z 1.3 X 5 7 .  There  are  two sides  comprising the  second- 
order region  whose maximum  for  the  entire region P Z M  
occurs on  the right  side; the equivalent  number of samples  as 
s h o w n i n M e r 1 . 3 X ( 1 0 + 7 ) ~ 2 2 .  

CENTROID  FREQUENCY  ERROR  FROM 
RANDOM SPECTRA 

Many applications of HF radars to ocean remote sensing 
involve the estimation of the  “mean”  or  center  frequency  of  a 
spectral  peak  having  narrow  but  finite  width.  Because  each 
FFT power  point  within  the  spectral  peak is x2 distributed 
with two degrees of freedom  and  there  are K independent 
spectra to be averaged, any  estimate of center  frequency will 

samples versus 

D 
8 2M 
a z 

Doppler Frequency 
f B  

contain error- There are many methods Of defining the “mean” 
Fig. 5. Sketch  of  unaveraged FFT output (solid line) seaecho  Dop- 

Of a peak; we for here the pler  spectral  power  versus  discrete  frequency  points;  each FFT point 
used “centroid”  definition. However, the “split-gate tracker” is chi-sauared  with two degrees of freedom  whose  (infiniteensemble) 
method of defining  the  mean  frequency (in which  the mean mean  is-indicated  by  dashed  line. 
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frequency divides two  equal  areas to  its  left  and  right  within 
the  spectral  peak  region) can be shown  to yield the same  final 
approximation as the  centroid  result derived  here. 

One  example of the use of the  peak  frequency involves the 
estimation of the surface  current  with  a  narrow-beam  radar 
from  the  position of the first-order  spectral peak [ 111 , [ 121. 
In  another  example,  the  positions of four  fairly  narrow  second- 
order  peaks can be used to  estimate  the  parameters of swell, 
such as its  period,  direction, and  height [ 131 . 

The  centroid  definition of peak  position is 

where Af is the  spectral  frequency  resolution  (or spacing  be- 
tween  adjacent  points), and hence lAf is the  frequency posi- 
tion of the  lth  point, as shown in  Fig. 5 ,  within  the desired 
spectral  region  (with  respect to some  convenient  zero  refer- 
ence).  Also, it is assumed that  the spectral  points U f  are al- 
ready  sample averaged from K separate  spectra, i.e., 

In analyzing  errors  we assume for  convenience  symmetrical 
models  for  the  means of U, about  the  peak and define  the  true 
position of  this  peak  as ft. Hence we have (Ul)  = (U-1) = PI, 
and  take Z = 0 as the  position f t  of the  true  mean.  Then  in  the 
Appendix we derive  an  expression for  the  standard  deviation 
or rms  error of f- f t .  This  expression is valid for K L ,  3 1,  
where L ,  is the equivalent  number of spectral  samples  in  the 
desired spectral region  as defined in the previous  section.  The 
result is 

I .  

where  the  summations  are  taken over the regions of interest 
(e.g., the first-order  region of Fig. 5). As before,Pl  represents 
the (infinite-sample)  power  average at  the Zth spectral  point. 

Although  (21) is a general  expression  for  the  frequency 
estimation  error,  a  simpler  form can be obtained  from  this 
equation if one  employs  a  model  for  the  shape,  a result that 
illustrates  more clearly the  parameter  dependencies involved. 
We examine  two  models  here  to  ascertain  sensitivity  to  the 
form of the  model. 

1) Rectangular Peak Shape: 

SOU- f t )  = 0.58 A f m .  

2) Gaussian Peak Shape: 

SDC-  f t )  = 0.50 A j m .  (23) 

In each of  these  expressions N h  is the  number of samples 
contained  within  the  half-power  width  of  the respective  pulse 
(as defined by the  factor in  square  brackets of (17)),  and K is 
the  number of Doppler  spectra used  in the average.  It  is obvious 
that  there is only  a very  weak dependence  on  pulse  shape. 

An  interesting  but  not  unexpected  conclusion can be  de- 
duced  from  (22) and (23).  For  a given length  time series it 
makes  no  difference  how  one divides the  series  up  into  con- 
secutive  FFT’s to be  incoherently averaged. For  example, 
suppose  we  double  the  number of time  series,  each  time series 
now  being  half  as  long. Then Af increases  by two, K increases 
by two,  but N h  decreases  by two.  The  net  standard  deviation 
in  frequency  position is therefore  unchanged. If one  wants  to 
decrease the rms frequency  error by a  factor of two,  he  must 
increase the time-series length used by  a  factor of four. 

ACCURACY OF VARIOUS  AVERAGES  FOR 
WAVEHEIGHT  EXTRACTION 

The  most  important single parameter  characterizing “sea 
state” is the  rms  waveheighL2  Therefore we illustrate  the  use 
of the  above  statistical  relationships  in assessing the  accuracy 
of various  possible  averaging schemes  one  might  consider  for 
waveheight extraction.  The  techniques  illustrated  here  can be 
applied analogously to other inversion  methods  for  extracting 
additional  sea-state  parameters. 

The general form of the  equation  for waveheight extraction 
is 

where k ,  is the  radar  wavenumber, h is the rms ocean wave- 
height, C and p are  constants, and R is a  ratio of second- 
order  Doppler  spectral  energy  to  the  first-order  energy. Barrick 
[ 11 originally  derived a  model  in  which  the  second-order  spec- 
tral  points of the  numerator of R were divided by  a  known 
weighting function;  in  that case he  showed  that p = 3. Maresca 
and Georges [5] have  suggested an  empirical  model  in  which 
the  numerator of R is the  simple  unweighted  second-order 
spectral  power. For their  model  they  found  that p 0.6 
provided a  best  fit over most of the region of interest.  Hence 
the range of p for waveheight extraction  considered  here lies 
between  zero  and  unity. 

Normally  with  a surface-wave  radar which  collects K se- 
quential  spectra in time  at  a given range  one would merely 
sample average  all K spectra.  Thus if the  numerator  (or  second- 
order  spectral  area)  consists of equivalent  samples  (as  de- 
fined  previously)  and the  denominator (or first-order  spectral 
area)  consists of N equivalent  samples,  then  the  total  numer- 
ator  and  denominator would  consist of KM and K N  samples, 
respectively.  It is shown below that this  method of averaging 
provides the best  possible accuracy.  However,  there are  cases 
(with  skywave radar,  for  example) when consecutive  Doppler 
spectra  in  range  or  time  may  be  multiplied  by  an  unknown  but 
varying path loss or  system  gain.  In  such  a case i t  would be 
desirable to  eliminate  the  unknown  constant before averaging. 
One  method is to  divide the  second-order area  by the  first- 
order  area  for each spectrum  before  sample averaging  similar 
quotients  from all K spectra.  There  are several  variations on 
this scheme  analyzed below.  In all the following K (the  num- 
ber of spectra) is  assumed to  be  large,  while M and N need  not 
be. We derive  in  the  Appendix and present below two  quanti- 
ties: s d ( h )  is the normalized standard  deviation of waveheight 
(or  its rms percent x 100  error),  and hb/h is the  waveheight 
bias due  to  sampling (i.e., kb is the recovered rms  waveheight 
while h is the  true  input rms waveheight).  After  presenting  the 

2 The  “significant  waveheight,” a term used traditionally by ocean- 
ographers, is four times the rms waveheight. 
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and  where formulas  for  these  errors  in  each  case,  we  show  an  example  for 
illustration. 

A.  Separate  Total  Averaging o f  Numerator and Denominator 
In this most  obvious  method  we  form  the waveheight  esti- 

mate  for (24) with  the  numerator  and  denominator  samples 
Xi and Y j  as  follows: 

The  error and  bias for  this case  are 

A Y k n  
KN k.n=l 

where  the  mean and  standard  deviation of q p  are  obtained 
from  the general moment expression (9). For 0 < p < 1,  the 
error  and bias for  this  method are  less than  for  the  preceding 
method. 

D.  Average of Reciprocated  Quotient  for Each 
Power Spectrum 

Our  previous  results  as  summarized  in  (1 1)  show  that  better 
stability is obtained  for  a larger number of denominator 
samples. In  the case of seaecho  spectra,  such as that  sketched 
in  Fig. 5 ,  the  number of denominator  samples N is always less 
than  the  number of numerator  samples M. This suggests the 
following: reciprocate  the  quotient, sample-average this 
quantity, raise it  to  the  pth  power,  and  then  reciprocate again. 
Thus, 

For  this case the  error  and bias  are 

Since KM and KN are large it  makes  no  difference  whether 
the  number of numerator  samples is larger or smaller  than  the 
number of denominator samples here. In what  follows  it does 
matter. 

B. Average of  Quotient  for Each  Power  Spectrum 
Here we form  the  quotient of secondader   to  first-order 

area for  each  power  spectrum, sample-average  this K times, 
and raise the result to  the  pth  power.  Hence, koh = CG-”, 

where 
koh = CQ”, 

where 

and 

and 

I M  
1 

- X k m  
M m = l  

Q k =  . N The  error and  bias  here  are 

The  error  and bias for  this  case  are 
where  the  mean and standard  deviation of g are  also given by 
(10) and (1  l),  but  with M and N now  interchanged.  It  can be 
seen that  for M > N ,  this  method  yields less error  than B. 

E. Average of  Reciprocated  Quotient to  pth  for 
Each Spectrum 

The  final  variation on  the  above  schemes is to  raise the 
reciprocated  quotient to the  pth before  sample  averaging, i.e., 

koh = C [  G ( p ) ]  -’, 

where  the  mean  and  standard  deviation of q required  in  these 
equations  are given in (1 0) and (1 1). 

C. Average of Quotient to pth Power for Each Spectrum 

In this  variation of the  preceding  technique we first  raise 
the  quotient  for  each  power  spectrum to the  pth  power  and 
then  take  the K sample average: where 

k = l  
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TABLE I 

Averaging 
Method A B C D E 

~ 

Waveheight standard 
deviation  (normalized 
percent) , 4.33% - 1.24%  4.84%  4.60% 

Waveheight bias factor 1.005 1.414  1.215  0.866 0.960 

and 

(33 )  

Here we obtain 

(34) 

where again the  mean  and  standard  deviation of gp are ob- 
tained  from (9) by  interchanging the roles of M and N .  For 
M > N  and 0 .< p < 1,  this  technique  yields less error  than  the 
preceding  three  methods. 

F. Example 
To  illustrate  the  magnitudes of the  errors expressed func- 

tionally  above  we  choose  an  example  with  the  following  pa- 
rameters: M = 4, N = 2, K = 100, and p = *. Table I sum- 
marizes  the  normalized  error  and bias for  this case. Thus  we 
see that  method E comes closest to  the ideal, i.e., A,  for al l  
those cases where  the  quotient  must be taken  before  sample 
averaging. Reciprocating  before averaging is always  best  when 
M > N .  (Note  that if we  had  wrongly neglected the  denomi- 
nator  fluctuation,  ending  up  with  a x 2  distribution of KM 
samples,  the  predicted  normalized  error would  have been 
p / f i M ,  or 2.5 percent  here,  considerably  underestimating 
the  true  error.) 

A  final  tradeaff is worth  noting.  In  method  A  it  makes  no 
difference  in  accuracy  into  how  many  consecutive  spectra  a 
time series  of given length  is  divided. For example, if the  time 
series is divided into  twice  as  many  spectra (so that  K increases 
by  two),  then  the  frequency  resolution  decreases by two (so 
that  both M and N  decrease by two);  hence  the  standard devia- 
tion given  in (26)  remains  the  same.  On  the  other  hand, if one 
uses  any of the  remaining  four averaging methods,  accuracy 
always  increases  by  having  more 11.1 and N samples. This is 
accomplished  by  increasing  the  frequency  resolution  (de- 
creasing A n  at  the  expense of fewer spectral averages K .  By 
increasing M and  N  sufficiently  (thereby  decreasing K )  one  can 
approach  the  ideal given  by (26). 

CONCLUSION 

This paper  derives  and  demonstrates  the use of x 2  and F 
distributions  for  HF  sea-echo  Doppler  spectra,  where  quotients 
of x2 variates  must  often be taken  in  extracting  seastate  pa- 
rameters.  It is shown  how  the  mathematics can very  often be 
reduced  to  simple  closed-form  expressions  exhibiting  the 
dependence of sampling  errors  upon  the  relevant  physical 
parameters. This reduction i s  effected, even  in the case  of the 

F-distribution  quotient, by  utilizing  binomial  expansions  of 
the  denominator  and  then invoking  central-limit  theorem 
arguments to show  that all  these  results  tend  toward  Gaussian. 

The x 2  quotients  considered  herein  employ scalar  division. 
At present  investigations  are  underway in which  the wave- 
height  directional  spectrum is obtained by  integral  inversion  of 
the  secondarder  Doppler  spectrum  after  normalization  by  the 
first-order  echo  spectrum [ 31 , [ 41 , [ 71 . This  normalization is 
essentially  a  division  process also but in some cases  involves 
tensors  or  matrices  rather  than  scalar  functions. 
Although  the  reworking of the  above  statistics  with  tensor 
rather  than scalar  algebra for  this  situation  seems  formidable, 
general  estimates of the  order of magnitudes of errors  and 
their  dependences  on  the  relevant  parameters  can  be based on 
the  above scalar  analyses.  More accurate  error  analyses  would 
probably  require  Monte  Carlo  techniques. 

Finally,  aithough  our analysis  has emphasized  application 
to  HF  seaecho  Doppler  spectra,  the  techniques  and  results are 
general and can be applied  equally  well to any  geophysical 
problem  where  the  radar  echo is a  random  variable.  Another 
application is wind measurement  from  microwave  radars  where 
echoes  are  obtained  from clear-air turbulence [ 141. 

APPENDIX 
Expansion of (1  1)  for large N leads directly  to ( 1  2);  there is 

another  physically  meaningful  way of obtaining  (12)  for large 
N:  however. We can represent  the  normalized  quotient ( 6 )  as 
follows: 

where (A,)  = (A ) = 0, and  it is easy to  show that S D ( x )  = 
S D ( A M )  = l / d a n d  Sob) = SD(AN)  = l / f i .  Hence it is 
obvious  that  the  fluctuation of AN becomes  small  compared 
to  unity as N becomes large. Thus expanding  the  denominator 
in  a  binomial series  we obtain 

q 1 + A,v - A N ,  (A21 

where  the  remainder  omitted  above is of order AAr2. We see 
therefore  that  the  fluctuating  part of q is larger than  either  the 
numerator  or  denominator  fluctuations  alone, especially  since 
the  numerator  and  denominator  are  independent.  Further- 
more,  we  can assign A, = AM - AN, and  we see by  compari- 
son  with x or 18 in (Al)  that  (A2) t o  lowest  order  has  the 
form of x2 with  total  fluctuation A,. Since (Ae2) = + 
(AN2) = l/M + 1/N, we  have  established  (12)  independently 
as an  equivalent x 2  process for  an F distribution  with large N .  

We establish the equivalent  number of independent sam- 
ples,  as given by (1 7) ,  by  invoking cen t r a l -h i t  theorem  argu- 
ments. If we  have K independent  power  spectra,  then  the K 
sample-averaged  area under  the  spectral region of interest is 
given by X U ,  E A ,  where U, is  given by Ul = ( 1/K) Cg=;c=, 
uik, with (Uzk)  = <U,> = P I ,  and PM as  discussed after  (17) is 
the  maximum of all the  means PI. Assuming that  the Uzh are 
statistically  independent, we argue that  for KL,  large  (i.e., 
Le being the equivalent  number of spectral  points  in  the A 
summation,  to be defined  subsequently),  the cen t r a l -h i t  
theorem  shows  that  the  distribution of A tends  toward  Gaus- 
sian. We define Le from  the mean and  variance of this  Gaus- 
sian distribution (viz., L,P,ll and L e P M 2 / K ,  respectively),  be- 
cause they  are  the  means  and variances of a x2 pdf  for A 
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having equal  means of P,M at all  spectral  points.  The x2 tends 
toward  Gaussian in the h i t  of  many samples. We set  these 
newly  defined  means  and  variances  equal to  the  actual  mean 
and variance  of A ,  i.e., P,vr[ 1 p 2  4- ... +]  and P M ~ [  1 + 
p z 2  + . - ] / K ,  respectively. Then solving for  the  total equiva- 
lent  degrees  of  freedom  in  the  new  distribution, we obtain 

L,K = f *  K [  1 + p p  + ...I,  (A3) 

with f as defined  in (1 8). 
In  order  to  obtain  (2  1)  we  reexpress  (1  9)  in  an  incremental 

manner similar to  [-41),  where I = 0 corresponds to the posi- 
tion  at  the  true peak  center f t .  Thus we have 

P, and P, are  the  numerator and denominator  power  mean 
maxima;  they  cancel in the normalizing  processes  leading to  
fractional  errors. Raising this to the  pth  power, using the 
binomial  expansion,  and  taking  the  standard  deviation  yields 
(28) .  

Derivation  of (30) from  (29)  is  very  straightforward.  Equa- 
tion  (32) is obtained  from  (31)  by  binomialexpansionmethods 
as in the  preceding  paragraph,  where  we  represent G as G 
( P d / P n )  (g) [ 1 + h K ] ,  and  then  take  the variance of 
expressing this  in  terms of averages of f j K 2 .  Use is made of the 
fact  that SD(g) = m). Finally, (34) proceeds  from (33) 
along identical lines. 

T-ft 1 * Pl(1 + A1K) + + ZPZ(1f 4ZK)  + 
-= Many helpful  and  encouraging suggestions from  Dr.  Belinda 
4f ...+P-I(l +A-~K)+* . .+PI (~  +A,,)+...  Lipa of SRI International  are  greatly  appreciated;  enlightening 
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Full-Wave  Solutions for the  Scattered  Radiation  Fields from Rough  Surfaces 
with  Arbitrary  Slope  and  Frequency 

Abstract-Full-wave solutions are  derived  for the scattered  radiation 
fields from rough surfaces with  arbitrary  slope  and  electromagnetic 
parameters. These solutions bridge  the  wide  gap  that  exists  between  the 
perturbational solutions for rough  surfaces  with small  slopes  and  the 
quasi-optics solutions. Thus it is shown,  for  example,  that  for  good  con- 
ducting boundaries the backscattered  fields,  which are dependent  on  the 
polarization of the  incident and scattereg  fields at low frequencies,  become 
independent of polarization  at  optical  frequencies.  These  solutions are 
consistent with reciprocity, energy  conservation,  and  duality  relations in 
electromagnetic theory. Since the  full-wave  solutions  account  for  upward 
and downward scattering, shadowing  and  multiple  scatter are considered. 
Applications to  periodic  structures  and  random  rough  surfaces are also 
presented. 

I. INTRODUCTION 

T HE PROBLEM of electromagnetic wave scattering  by  rough 
surfaces  has  been  studied  extensively  because  of  its  broad 

applications  in  science  and  technology.  However,  because  of  the 
complexity of the  problem, satisfactory  solutions  are avail- 
able  only  when very  stringent  restrictions  are  made on  the 
rough  surface  profile,  the  electromagnetic  parameters  of  the 
irregular boundary,  or  the  frequency  of  the  electromagnetic 
wave. Thus  different  solutions  are derived depending on the 
approximate  assumptions  made  to  facilitate  the analysis, and 
there  are  many  pertinent  scattering  problems  for  which valid 
solutions  are  not available. For  example, using  a perturba- 
tional  approach derived for surfaces  with small  gradients, the 
backscattered  fields  are  shown to  be  strongly  dependent  upon 
the polarization of the  incident  and  scattered waves [ 161 -[ 181 . 
Physical-optics  solutions  that  are  restricted t o  high  frequencies 
indicate that  for  perfectly  conducting  surfaces  the  backscat- 
tered  fields are  not  dependent  on  polarization [ 141. 

A full-wave approach  has  been developed t o  remove the re- 
strictions  imposed  on  the earlier solutions.  Thus  complete  ex- 
pansions  of the fields in terms of a basis consisting  of the ra- 
diation,  lateral,  and surface-wave terms  were  used,  and  exact 

Manuscript  received  November 21, 1978; revised June 29, 1979. 
This work W a s  supported by the U.S.  Army  Research  Office  and the 
Engineering  Research  Center at the  University of Nebraska,  Lincoln. 
This  paper  was  presented at the AGARD  conference on Terrain  Profiles 
and  Contours  in EM Propagation,  Norway,  September  1979. 

The author is  with  the  Department of Electrical  Engineering,  Uni- 
versity of Nebraska,  Lincoln,  NE 68588. 

boundary  conditions  were  imposed  at  the irregular boundary 
[4]  -[ 71. Using the  orthogonal  properties of the basis func- 
tions  and  employing Green’s theorems  to avoid differentiation 
of the field expansions  at  the irregular boundary, Maxwell’s 
equations  were  converted  into  rigorous  sets  of  ordinary  coupled 
first-order  differential  equations  for  the  forward  and  backward 
wave amplitudes. In order  to  cast  the full-wave solutions  in a 
form  that  could  be readily  used by  the engineer  and  compared 
with earlier results,  the  coupled  differential  equations  were 
converted  into  integral  equations  that  were solved using  a 
second-order  iterative  approach. Using these  solutions  some of 
the discrepancies  existing  in the earlier solutions  were  examined, 
such  as  reciprocity,  energy  conservation,  scattering  when  the 
incident wave  is near the Brewster  angle,  and  when  the inci- 
dent  or  scattered waves are  near grazing angles. Furthermore, 
coupling  between  the  radiation fields and  the surface  and 
lateral waves (disregarded  in  earlier  solutions) was  also  ex- 
amined  in  detail [ 81, [ 91. 

However, due  to  the  iterative  approach used to obtain  the 
simple  solutions  they  were  restricted to  moderately small 
slopes,  and  the  transition  between  the  perturbational  ap- 
proach  and  the  quasi-optics  approach was not clearly shown. 
In order  to remove the  restriction  and  to  retain  the relatively 
simple  form of the  final  solution,  in  this  work  the  rough sur- 
face is regarded as a continuum  of  elementary  strips  of  vary- 
ing  slope  and  height  rather  than a continuum  of  elementary 
horizontal  strips of varying  height.  It  has  been  shown that  the 
full-wave approach  is  most  amenable  to  an  iterative  solution 
when  it  is based on a  local modal analysis that  conforms  most 
closely to  the varying  parameters of the irreg-ular waveguide 
[ 21,   [3] ,  [ 1 11, [ 121.  Thus:  starting  with  the full-wave expres- 
sion for  the  scattered fields by  an  elementary  horizontal  strip 
and  performing  the necessary coordinate  transformations,  the 
desired  expressions  are  derived  for  scattering by a continuum 
of elementary  strips of varying  slope  and  height. 

The small-slope approximations of these full-wave solu- 
tions agree with  the earlier perturbational  solutions, while the 
high-frequency  approximations  of  the full-wave solutions 
agree with  the physical-optics solutions  for  perfectly  conduct- 
ing  boundaries. The  solutions  are  shown  to  satisfy  reciprocity, 
energy  conservation,  and  duality  relations  in  electromagnetic 
theory.  The full-wave solutions  account  for  both  upward  and 
downward  scattering;  thus,  multiple  scattering  and  shadowing 
effects  can  be  considered.  The  radiation  term is shown to  
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