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which contain information about wind  speed and wave 
height were often found to be degraded at these ranges. 
Nevertheless, the technique can be improved, and better 
measures of wind and waves are expected, particularly at 
shorter ranges near 2000 km. 
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The Statistics of HF Sea-Echo  Doppler  Spectra 
DONALD E. BARRICK, MEMBER, IEEE, AND JACK B. SNIDER, MEMBER, IEEE 

A6stractSeveral important statistical  properties of the HF sea 
echo and its Doppler  power spectnun, which are  useful  in  optimizing 
the  design of radar  oceanographic  experiments,  are  established.  First- 
and  second-order theories show  that the  echo signal (e.g.,  the  voltage) 
should be Gaussian; thii is confirmed  with  experimental  surface-wave 
data i) by  comparison of the normalized standard  deviation of the  power 
spectrmn at a given  frequency  with its predicted  value of  unity,  and ii) by 
cumulative  distribution  plots of measured spectral  amplitudes  on  Rayleigh 
probability  charts.  The  normalized standard deviation  of  the  dominant 
absolute peak amplitudes  of  the  power spectrum (which  wander slightly 
in  frequency)  are  shown  from  experimental data to be - 0.7 for  the 
first-order  peaks  and - 0.5 for  the second-order ‘peaks.  The  autocor- 
relation  coefficient of the power  spectra is derived from measured data 
and  interpreted  in  terms of  the spectral peak widths; from this information, 
the  correlation  time  (or  time  between  independent  power speetrum samples) 
is shown to be - 25-50 s for radar  frequencies  above 7 MHz. AH of these 
statistical  quantities are observed to be independent of sea  state,  scatter- 
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ing cell size, and  relatively  independent of radar operating  frequency. 
These quantities  are then used to establish the statistical error  (and 
coddence interval)  for  radar  remote  sensing  of sea state,  and it  is 
shown, for  example,  that 14 power  spectral  samples  result in a sample 
average  whose rms error about the true  mean is 1.0 dB. 

T 
I. INTRODUCTION 

WO DECADES AGO, Crombie [l] experimentally 
deduced the physical  mechanism  responsible for first- 

order HF sea echo. The unique characteristics of his  high- 
resolution Doppler records led to the conclusion that the 
dominant spectral peaks resulted from Bragg scatter; i.e., 
only those ocean  wavetrains will backscatter near grazing 
whose spatial period is exactly  one-half the radar wave- 
length and which  move  directly toward and/or away from 
the radar. In later deterministic analyses, Wait [2] con- 
firmed this deduction and showed further that the strength 
of this first-order echo is proportional to the height of the 
resonant “Bragg-scattering”  ocean waves. These  con- 
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clusions  suggested the exciting  possibility of employing 
HF  radars (both sky-wave  and  surface-wave) to measure the 
ocean  waveheight  directional  spectrum-or  “sea state.” 
Recently a number  of  groups  have  been  investigating the 
use  of  such HF radar techniques for remotely  sensing  ocean 
surface conditions via the sea-echo Doppler spectrum. 

One of the very, important properties of the HF sea 
echo, however, is its random nature. This point is  often 
overlooked  because resonant (or Bragg) scatter is  such a 
precisely  describable  physical phenomenon that many  have 
assumed that  a single  echo  record  describes the scattering 
surface  satisfactorily.  Since the heights of the Bragg- 
scattering waves  within the radar resolution  cell are random 
variables  (in fact, the entire sea-surface  height  is a  random 
variable  best  described  via the Fourier-Stieltges integral or 
the Fourier series  with random coefficients), the sea  echo 
must  also  be a  random variable. This fact was  employed  in 
the analyses of Barrick and Peake [3] and  Bamck [4], [SI, 
who  showed that  to first and second order, the auerage 
sea-echo Doppler spectrum  is  related to the average sea 
waveheight  directional  spectrum  evaluated at the required 
first and second-order  Bragg  wavenumbers. 

All  of the suggested  methods for extracting sea-state 
parameters from the sea-echo Doppler spectrum  involve the 
comparison  (i.e.,  division) of one  part of the echo  spectrum 
by another part [6], [7]. Failure to note that the sea  echo 
is a  random variable will  lead to  a statistical fluctuation in 
the desired  parameter.  Hence, appropriate averaging of each 
sea-echo feature is  necessary  before the deduction of the 
desired  mean  sea-state descriptor. Since  “averaging  time” 
in a practical  experiment  is not unlimited,‘ the number of 
independent  samples  used to approximate the average  may 
in fact be  small.  Therefore,  in order to calculate the accuracy 
of predicting the desired  sea parameter, one must  know 
something about the statistics of the echo, such as the 
power  spectrum  variance, correlation time,  etc.  While it 
is often  customary to assume Gaussian statistics for the 
scattered  electric  field,  this assumption in many  cases 
remains to be proven. In the microwave  region, for example, 
where the physical  mechanism  behind  near-grazing  sea 
backscatter  is  considerably  more  complex than at  HF, 
Trunk [SI has found  that the echo  voltage distribution in 
certain cases  can  be log-normal, while in others it follows 
the Gaussian (or normal) model. 

First, we provide a heuristic theoretical rationale ex- 
plaining why the complex components of the  first- and 
second-order  sea  echo are Gaussian random variables. 
Then we examine the properties of Gaussian processes, in 
particular, deriving the probability density and the normal- 
ized standard deviation of the power for each Doppler 
frequency  spectrum  taken as the random variable. Next, we 
calculate both the normalized-standard deviation and the 

tion  time multiplied by the  number of sequential beam scans times  the 
The  total  observation  time is proportional to the  coherent  integra- 

desired number of samples per  radar resolution cell. The  coherent 
integration time is the  reciprocal of the required Doppler resolution. 
The  total  observation  time  should not exceed  the  interval  over  which 
the sea is statistically  stationary; the latter  time  may  typically  vary 
between 1 and 12 h. 

temporal correlation function of the Doppler spectrum from 
HF suface-wave  sea-echo  measurements. We compare these 
experimental  results  with the theoretical  predictions for 
Gaussian  processes  (where the latter are available).  Finally, 
we  give an example of the use  of the derived statistical 
properties of the sea  echo in the analysis/design of  an HF 
radar experiment. 

11. SEA ECHO AND THE GAUSSIAN  PROCESS 
It is  often customary to assume that in general random 

signals (e&, voltages) are  Gaussian because i) the Gaussian 
model  has  desirable mathematical properties,  making 
manipulations with it easy,  ii)  if the signal  is  synthesized 
as the sum of  several independent events, the Central Limit 
Theorem states that  as the number of events  becomes  large, 
the sum  signal approaches  a  Gaussian  random variable, 
iii) wideband  spectrally  flat random signals after narrow- 
band filtering  (such as  at the output of a finite Fourier 
transform) tend to Gaussian  under most conditions [SI, 
and  conversely,  iv) a wideband  signal  synthesized by the 
summation of Gaussian  random  narrowband signals will 
be  Gaussian  because linear operations on Gaussian vari- 
ables produce  Gaussian variables [IO]. Since one  can 
always  find  mathematical  exceptions to these  generalizations, 
and  since the sea-echo spectrum is not flat, we  will establish 
separate, independent proofs from the scattering theory to 
justify the Gaussian assumption. 

The conventional method for analyzing HF sea  echo 
employs the classical statistical boundary perturbation 
approach first  set forth by Rice [I I]. This technique re- 
quires that the surface  waveheight  be  small in terms of the 
radar wavelength  and that the surface  slopes  be small; 
both of these conditions are satisfied (in the mean)  by the 
sea  surface at  HF. By ordering the terms in the scattered 
field solution according to the above  “smallness” param- 
eters,  expressions  have  been  derived for the first-order and 
second-order  sea  echo [4], [SI. These  expressions  show 
that Bragg  scatter-the  mechanism  originally  proposed  by 
Crombie [I]-does, in fact, account for the echo. 

In the formulation of this theory, the sea  surface  height is 
represented by an exponential spatial Fourier series  with 
random complex  coefficients P(m,n) (= X(m,n) + iY (mp)), 
where m and n are running indices corresponding to the 
x and y directions (the latter taken as lying in the mean 
surface  plane). The total sea  surface  height has been  shown 
by oceanographers [I21 to be  representable  as a  Gaussian 
random variable to first-order. The  requirement  that the 
sea  height  be a real quantity means that P*(m,n) = 
P ( - m y - n )  (or X ( - m y - n )  = X(m,n) and Y ( - m , - n )  = 
- Y (m,n)). The average  sea  waveheight directional spectrum 
S(K,,K,,), is  then  defined in terms of these  coefficients as 

<P(m,n)P*(m’,n‘)> 

’ S  am,an), for m’,n’ = m,n 
= {:, ( for m‘,n‘ # m,n (1) 

where a 24L,  L being  defined  as the fundamental spatial 
period of the Fourier series.  These  first-order height co- 
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efficients P(m,n) may  be taken to be uncorrelated random 
variables [13] ; inasmuch as the waveheight  can  be  con- 
sidered a spectrally  flat  process  over a nominally  wide  band 
of spatial wavenumbers, the  random  Fourier coefficients 
can also be taken to be Gaussian [SI. 

To first order, the  backscattered  electric  field at the 
receiver  is [4] 

E(’) = KP*(m*,n*) exp {-i[wo T J a g ( t ~ , ~  + n , 2 ) 1 / z ~ t }  
(2) 

where K is a complex constant which depends upon  the 
propagation loss to the scattering patch, incidence  angle, 
and other fixed factors of the geometry. The quantity w, 
is  the transmitted radian carrier frequency; the Doppler 
shift of the scattered  signal from the carrier, 

originates as a result of the first-order  dispersion relation 
between the spatial and temporal wavenumbers  of a gravity 
wave,  with g being the acceleration  of  gravity (- 9.81 m/s2). 
Hence, K* = a(me2 + n,’)’/’ is the spatial wavenumber 
of the particular Fourier-series  components  responsible for 
the scatter. The theory shows that only a very small  number 
of  Fourier-series  components  can contribute  to scatter. 
These  have  wavenumbers along  and perpendicular to the 
radar line  of  sight  (for backscatter at grazing  incidence) 
such that IC,* = am, w 2k,, and K,,* = an, w 0, where 
k, is the  radar spatial wavenumber (k ,  = wo/c = 2.n/i) ; 
these are precisely the required conditions for &st-order 
Bragg scatter, as originally  deduced  empirically by  Crombie. 

Equation (2) essentially  shows that if P(m,n) is a Gaussian 
random variable, as assumed in  our description  of the 
ocean, then the signal is itself a random  variable  which  is 
directly proportional to the waveheight  coefficient.  Since 
any linear operation on a Gaussian random  variable pro- 
duces another Gaussian random variable, the received 
signal is therefore  itself Gaussian. Hence one has a proof 
that  the first-order  sea echo is Gaussian so long as one  can 
assume  that the height of the sea can be represented by a 
Gaussian  random variable to first order. 

To second order, the signal  scattered from the sea is [SI 

r n n  

for each Doppler shift).  Each double set in  turn produces 
its own echo Doppler shift from  the carrier, as seen from 
the argument of the exponential; in the limit the sum- 
mations merge into a double integral, and the Doppler 
spectrum is seen to be a continuous function. The “transfer 
coefficient” rT has been  derived and presented  elsewhere 
[SI; it is a deterministic constant which  results from  the 
second-order terms from  both  the nonlinear boundary 
condition at the water-air  interface (the hydrodynamic 
contribution) and also from the second-order terms in the 
nonlinear perturbation expansion  of the scattered  fields 
(the electromagnetic contribution). 

Writing (3) in this manner  expresses the hypothesis that 
if each of the two  different P in each term of the summation 
is a Gaussian  random  variable, the second-order scattered 
field is  also a random  variable.  However, each term of the 
summation, consisting  of a product of two Gaussian random 
variables,  is no longer  Gaussian.’  Nevertheless,  many terms 
of  the  series  of (3) can be seen to  contribute to the signal at 
a given Doppler shift, hence, one can argue by the central 
limit theorem [I31 that the result for each Doppler shift, 
being the sum of many independent non-Gaussian terms, 
nonetheless will  tend toward Gaussian. 

The point of this section  was to show from the presently 
accepted  theoretical derivations that the real and imaginary 
parts of the instantaneous complex  signal at each Doppler 
shift are predicted to be Gaussian random variables.  Since 
the temporal Fourier  transform,  as obtained from a digital 
processor at the  output of an H F  receiver, is  nothing more 
than a weighted  sum  of the coefficients  of the Doppler time 
series  given  by (2) and (3), this complex transform at each 
spectral point should also be Gaussian (i.e., the real and 
imaginary parts of the Fourier transform have Gaussian 
probability distributions). Thus, for example,  if the  Fourier 
transform is obtained with 0.02 Hz resolution (requiring 
50 s of signal data), the complex parts of this transform 
should be Gaussian random variables. This will  be .true 
regardless of the integration  time. 

This latter fact is  often  erroneously  overlooked  by  some, 
who  feel that the  longer the sample  in time  (or the larger 
the basic scatter area in  space for a given scatter sample), 
the “smoother” the signal should be  because  of “temporal” 
or “spatial” a~eraging.~  I t  will  be  shown from experimental 
data  that  the components  of the complex  received  signal 
(in both  the first-order and second-order spectral  regions) 
appear  in fact to be Gaussian, regardless  of the coherent 
processing  time or the size of the scatter area. 
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Fig. 1. Typical 9-sample  average of 200-s surface-wave HF sea-echo 

respect to expected  position of  the first-order Bragg peaks (here 
power  spectra  at 9.4 MHz. Doppler frequency is normalized with 

0.313 Hz). A is the normalized shift  of the record  due to underlying 
current. 

111. STATISTICS OF TNE SPECTRUM FOR A GAUSSIAN 
VOLTAGE SIGNAL 

In the preceding  section we gave a theoretical  justification 
for  the hypothesis that the first- and second-order  sea-echo 
voltage signals  (and their complex Fourier transforms) are 
Gaussian  random variables. The quantity of interest for 
extraction of sea-state parameters, however,  is the power 
spectrum of this received  voltage signal; hence, our present 
radar processing equipment outputs this spectrum  versus 
Doppler frequency  automatically.  Fig. 1 shows an example 
of a measured  nine-sample-averaged  surface-wave Doppler 
spectrum of the sea  echo at 9.4 MHz.4 The specific param- 
eters of the system, and geometry  behind this record will 
be  discussed in the next  section. The  Doppler frequency 
units of the abscissa are normalized such that 0 corresponds 
to the carrier position, and f 1 refers to the predicted 
positions of the first-order  Bragg  echo  peaks  (i.e., m,/2n = 
d2gkO/2n = d z  N 0.313 Hz at  a 9.4 MHz carrier). The 
ordinate is proportional to received  power spectral density, 
and is obtained by taking the sum  of the squares of the real 
and imaginary parts of the digital fast Fourier transform 
(FFT)  output of the receiver. In this case, the  FFT was taken 
on a 200-s coherent echo  sample  (giving 0.005 Hz Doppler 
resolution, or 0.016 in the normalized  frequency units of 
Fig.  1).  Nine  consecutive  spectra  were  averaged  (i.e., added 
together) to produce Fig. 1 , the entire figure  therefore  re- 
presenting 0.5 h of sea-echo data. 

A practical  reason for wanting to know  whether the 
received  signal  is Gaussian has to do with the assessment 
of  error  bounds (or confidence)  in approximating the true 
average Doppler spectrum by the average of a finite number 
of  samples.  If the signal components  are (nearly) Gaussian, 

- 

such records  are  found in [A and [14]. 
hamples of the  extraction of sea-state  and  surface-wind  data f?om 

such coddences  and errors can  be  readily  established,  since 
the required  tables for Gaussian  statistics are widely  avail- 
able.  Hence, we shall establish the variance of the power 
spectrum for a  Gaussian signal in terms of its mean. We 
shall  use this test as an initial indicator of  whether the 
original  signal  is  sufEciently  close to Gaussian that further 
testing  is  desirable. The further testing will then consist of 
plotting (on Rayleigh probability paper) the cumulative 
distribution of the FFT amplitude samples  (i.e., the square 
root of the spectral power); if the original signal  were 
Gaussian, these points should  fall along a straight line 
with a 45" slope. 

The sea-echo  signal, as represented by (2) and (3) and 
exemplsed in Fig.  1,  is a  narrow-band zero-mean  signal 
which  can  be  represented in the time domain in the follow- 
ing ways  [13]. 

v ( t )  = A( t )  cos [mot + c$(t)] 

= COS [(Oo. + kmf)t  f #k] 
h 

or 

2 
T k  

v ( t )  = - [Xk cos ( 0 0  + km,)t 

- Yk sin (ao + kw,)t] (4) 

where coo here  represents the radian carrier frequency. The 
latter two forms of the above equation cast the signal in 
terms  of a Fourier series  with a  fundamental frequency 
(in the absence  of the carrier) of wf = 27c/T. Following the 
technique of  Rice  in Davenport  and  Root [13], one could 
allow the period T to become  infinite, in which  case the 
series  with constant, uncorrelated coefficients  could  be  used 
to represent a nonperiodic continuous process. Here, how- 
ever,  since  in  reality a digital FFT treats the process as a 
Fourier series  whose fundamental period T is the window 
over  which the signal is sampled, the last form of (4) is 
better suited to our purposes. 

Following Davenport  and  Root, we assume that x k  and 
Yk are uncorrelated coefficients  with zero mean and variance 
6 k 2 .  We shall now determine the variance of the Doppler 
power spectrum, assuming xk and Yk are Gaussian. The 
output of the FFT for the kth point will  be V (coo + kw,) = 

+ jYk, and we define the power spectrum to be 

Since X k  and Y k  are orthogonal by definition (and hence 
unconelated) we have (X,2> = (&'> = ok' and (X,&> = 
0; because  they are Gaussian,  all joint moments are the 
product of the individual  moment factors (i.e,, (XkmYt)  = 
(Xk")(Y{)) .  Using the properties  of the Gaussian prob- 
ability  density function, it can be shown that 
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and  that Pk is  chi-squared-distributed  with  two  degrees of 
suhlhlARy OF sAN cLEMENTE TABLE lsrAND I RADAR freedom such that CHARAcrERImCs 

The latter equation is the desired result, for  it gives the 
(normalized)  variance of the individual Doppler power 
spectral density  estimates (about their true mean  value) for 
a  Gaussian signal. Any Gaussian  signal  must  have this 
property, and therefore it  is a necessary condition for a 
Gaussian process (although possibly not sufficient).  Since 
Doppler spectra are the natural output of our existing radar 
system, we intend to use (7) as a test to determine  experi- 
mentally  whether the signal  is Gaussian. 

Likewise,  higher  normalized  moments'  can  be  established 
from the general  rule (Pt) = n!  (Pk)n. In this paper, we 
go no higher than the second-as  defined in (7)-for our 
initial testing. The reason for this is the fact that  our 
experimental  sample  bases are very  small, containing only 
nine samples  per  ensemble.  (The total number  of  such 
separate sample  ensemble  bases, on the other hand, is five 
hundred.) When  dealing  with  such a small number of 
samples per ensemble,  higher  moments  can be expected to 
become  increasingly  noisy and thus inaccurate for statistical 
testing. In general, one can  predict that inasmuch as the 
sea-echo probability density  must depart from Gaussian 
in its tails  (since the signal  can  never approach infinity), 
these  normalized  higher  empirical  moments  should  fall 
increasingly short of their predicted  values for a true 
Gaussian process. 

The power  spectral  sample Pk (being the sum of the 
squares of two uncorrelated Gaussian  variables) is predicted 
to be chi-squared with  two  degrees  of  freedom [lS] ; the 
probability density for Pk is therefore, the simple  exponen- 
tial function. Hence, the amplitude (i.e., A,  E 6) of the 
FFT  output is Rayleigh-distributed; this fact will  be also 
employed  subsequently for additional statistical testing. 

Iv. DESCRIPTION OF RADAR FACILITY 
Sea-state measurements  were  made  by an HF radar 

located on the west coast of  San  Clemente Island. The  radar 
system  was built by the Institute for Telecommunication 
Sciences  of the Department of  Commerce and was operated 
under contract for the Wave Propagation  Laboratory for 
this series  of  measurements.  Approximately 25 h of data 
were  recorded  between  December 1972 and April 1973. 

Surface-wave radar data were obtained simultaneously 
at 10 frequencies  extending  from about 2.4 to 25 MHz. 
Receiver  range  gates  were set to sample  cells  centered 22.5, 
30.0, and 37.5 km  from the radar. The receiving antenna 
consisted of an array of  13 monopoles  phased and switched 
to alternately produce two  beams each having a nominal 
beamwidth of 10" centered at azimuth angles of 240" and 
270". The  combination of 10 frequencies, 3 ranges, and 2 

The nth normalized moment is defined as 
((p& - (pk>)">/(pk)" .  

Operating Frequency Range 2 t o  25 W z  
~~ ~ ___ 

Range Gate Distances 
Available  Pulse Lengths 

Pulse  Repetition Frequency 
Transmitter Peak  Power 
Antenna Beamidths 

Receiving ( 2  beams) 
Transmitting 

Antenna Gain Product 

22.5,  3 0 . 0 ,  37.5 km 
20, 50. 100 us 
(3.0,  7 . 5 ,  15.0 km) 
20 Hz per  frequency 
40 kur 

10' a t  24O0 and 270- az 
60° a t  255" az 
18 dB at  center  of HF band 
decreasing  to 0 dB a t  band 
edges 

antenna beams  resulted in a total of 60 different data samples 
being  recorded. 

The transmitting antenna was a two-bay,  vertically 
polarized  log-periodic antenna having a  nominal half-power 
beamwidth of 60" over the HF band.  Since this beamwidth 
illuminated both sectors  covered  by the receiving  beams, no 
transmitter antenna steering was  used.  Power patterns of 
both receiving and transmitting antennas were measured 
from  a small boat to verify  gain and beamwidth  performance. 
Radar characteristics are summarized in Table I. 

An on-line computer processed the received  signals and 
computed the power  spectrum for each  of the 60 data 
channels. The power  spectra  which were  pIocessed  on-line 
were calculated from signals that  had been  coherently 
sampled  over a 200-s window.  Since a typical  measurement 
period  was 30 min, a total of 9 spectra  would  be  computed 
during this time.  These  power  spectra  and the unprocessed 
IF data were recorded on magnetic tape to permit sub- 
sequent  analysis  of the raw data. 

V. MEASURED  SEA ECHO PROPERTIES 
A .  Standard Deviation of Spectral Peaks 

The normalized standard deviation op of the power at the 
spectral  peaks  was  computed for power  spectra  having 
coherent integration times of 200 s. Thus, the quantity op 
for a 30-min sample  represents the standard deviation  of 
N = 9 spectral  peaks  divided by the average  maximum  of 
the 9 spectra in the sample.  Normalized standard deviations 
were calculated for both the absolute maxima  of the spectra 
in the vicinity  of the first-  and  second-order  Bragg  fre- 
quencies and for the spectral  power at constant Doppler 
frequencies  near fB and JZ f,. The Bragg  frequency fB 
is  defined as f B  = w&!&&i. 

The  data studied  consisted of approximately 7+ h of 
measurements for a wide  variety  of  sea states with  significant 
waveheights  ranging  from 1 to 4 m (wave characteristics 
were measured by a Waverider Data Buoy  moored 29.4 km 
from the radar site  on an  azimuth of 240"); 500 individual 
spectra  have  been  considered  in our analysis.  Mean  values 
of cP versus  range are listed in Table I1 for the different 
spectral  lines. We  see there is no systematic  tend of op with 
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TABLE II 
MEAN NORMALIZED STANDARD DEVIATIONS AT DIFFERENT RANGES FOR 

ABSOLUTE MAXIMA AND SPECTRUM AT FIXED DOPPLER FREQUENCY 

Doppler  Line Range All Data Cumbined 
22.5  km  30.0  km  37.5 km 

Fixed Doppler near blaxima 
1 +  0.912  0.917  0.918  0.916 

1 -  0.921  0.930  0.974  0.942 

2 +  0.948  0.954  0.954  0.952 

Absolute Maxima 
1 +  0,736  0.719  0.707  0.720 

1 -  0.740  0.712  0.675  0.709 

2 +  0.496  0.468  0.485  0.483 

h t e :  1 + and 1 - are f irs t -order  advancing and receding  l ines 
near fB; 2 + is  the  second  order  advancing  line n e a r 6 f B  

TABLE III 
NORMALIZED STANDARD DEVIATIONS FOR TWO PULSE LENGTHS 

-?iMlTEp DUFUNG ADJACENT 30-MIN PERIODS 

Uoppler  Line Range All Data Combined 
22.5 km 30.0 km 37.5 km 

Fixed Doppler - 20 us Pulse 
1 +  0.816  0.876  1.024  0.905 

1 -  0.927  0.990  0.947  0.955 

2 +  0.929  0.940  0.886  0.918 

Fixed Doppler - 100 us Pulse 
1 +  0,972 0.859 0.928 0.920 

1 -  0.951 0.901 0.891 0.914 

2 +  0.878 0.966 0.913 0.919 

Absolute Maxima - 20 us Pulse 
1 +  0.659 0.796 0.733 0.729 

1 -  0.719 0.861 0.646 0.742 

2 +  0.502 0.442 0.515 0.486 

Absolute Maxima - 100 us Pulse 
1 +  0.786 0.747 0.737 0.757 

1 -  0.735 0.772 0.732 0.746 

2 +  0.506 0.414 0.466 0.462 

range, and hence none with  cell  size.  Similarly, no depen- 
dence of oP with operating frequency  was  observed. The 
normalized standard deviation  is  slightly  less than unity 
for the spectra at a fixed Doppler frequency indicating that 
the Gaussian  model  is  approximately correct. The ratio is 
about 0.71 for the absolute power  maxima  of  first order 
peaks; no model has yet  been  pursued  which  explains this 
result. The second-order  average for the absolute maxima 
is about 0.5, indicating that  perhaps still a different  model 
applies to this spectral  line. 

As a further check  of  possible  dependence  of cp on 
range cell size,  two  pulse  widths (20 and 100 p )  were 
transmitted for consecutive  30-min periods, during which 
significant  waveheight and direction remained  fairly  con- 
stant. The normalized standard deviations obtained at each 
pulse  length are shown in Table 111. We  see that the results 

for different  pulse  lengths are  not significantly  different 
from the values obtained for all data combined.  Therefore, 
we conclude that there is  little,  if any, dependence  of op 
upon cell  size. 

The correlation coefficient  between  normalized standard 
deviation and significant  waveheight during the  sample 
period  was computed to determine  whether the quantity 
op can  be  used as a predictor of sea state. Since the observed 
correlation values  were not statistically  significant, we must 
conclude that cp is not a useful indicator of  sea state. 

3. Cumulative Distributions of Measured Data 
The measured standard deviations op for  the spectral 

power at fixed Doppler frequency are sufEciently  close to 
the predicted  values for a Gaussian process (i.e., 0.916, 
0.942, and 0.952 compared to unity) that further statistical 
testing is desirable. This is especially true since the theo- 
retical  analyses  of  Section I1 predict Gaussian processes. 
No further testing will be done, however, on the spectral 
data  at the absolute spectral  maxima,  since the normalized 
standard deviations are quite different from  Gaussian 
predictions (0.720, 0.709, and 0.483  compared to unity). 
Furthermore, no simple  model  (with a minimum of un- 
determined parameters) exists  which can shed light on this 
spectral statistic; hence, it will not be  examined further in 
this paper. 

As an additional check to establish the Gaussian nature 
of HF sea  echo, we examined the distribution of spectral 
power at a fixed Doppler frequency. From Section 111, the 
FFT amplitude  should be distributed according to the Ray- 
leigh distribution if the echo  signal is a Gaussian random 
variable.  Therefore, our second  test  consisted in deter- 
mining  whether the spectral amplitude recorded  over a 
period when the sea was statistically stationary was  Rayleigh- 
distributed. 

To obtain an  adequate sample  size, we calculated 72 
spectra  with  25-s integration time from  continuous I F  sea- 
echo  data recorded  over a 30-min period. First- and second- 
order ( kfB and -A fB) data points were sorted into 
0.5-dB intervals for computation of cumulative distributions 
of  spectral  amplitude. The distributions were  expressed in 
decibels and plotted  on  special “Rayleigh-distribution” 
graph paper. This paper  is constructed such that a Rayleigh- 
distributed variable will fall along a straight line  having a 
slope  of - 1. 

Fig.  2  shows the result for the first-order advancing and 
receding  Bragg  lines. The  data points are the cumulative 
distributions obtained at three operating frequencies; the 
solid  lines  indicate the slope  which a Rayleigh-distributed 
quantity would  have.  Except for some departures in the 
higher  percentage tails, the data points appear to fall 
along straight lines  having the slope  criterion  required for 
the Rayleigh distribution. 

Data for the second-order approaching lines at the same 
three frequencies are plotted in Fig. 3. Again, the solid line 
shows the slope characteristic of a Rayleigh-distributed 
quantity. Although there appears to be a somewhat  larger 
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Ag. 2. Cumulative  distribution of spectral  amplitudes at  fixed 
Doppler  frequency (+IB) for three sets of 72 spectra Solid lines 
indicate slope = - 1. 
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Fig. 3. Cumulative  distribution of spectral amplitudes at fixed 
Doppler frequency (Ah) for three sets of 72 spectra. Solid line 
indicates slope = - 1. 
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Fig. 4. Autocorrelation of first-order advancing maxima versus 
operating  frequency. 

departure from a straight line than was observed for  the 
first-order  lines, the data points have  nearly the required 
slope. 

We  consider the apparent Rayleigh-distribution of 
spectral amplitudes at fixed Doppler frequency as addi- 
tional confirmatory  evidence that HF sea echo is described 
reasonably well  by a Gaussian process. 

C. Autocorrelarion of Spectral Peaks 
To determine  the  time between independent samples and 

the associated implications as to optimum measurement 
periods, we computed the autocorrelation p(z) of first- and 
second-order portions of the power  spectrum. This quantity 
is the correlation between spectral peaks separated by 
integral multiples of the coherent integration time; thus 
the autocorrelation is computed  for lags z equal to aT, 
1 < n N - n, where Tis the coherent integration time 
and N is the total number of spectra in the record  length. 
We made calculations for coherent integration times of 
25, 50, 100, and 200 s; the total record length was 30 min. 
As in the case of the normalized standard deviation, cai- 
culations were  performed for  both absolute peaks  and 
power  near  these  peaks but occurring at a constant Doppler 
frequency.  Because of the fairly  large amount of computer 
time required,  only two sea states were  considered. The &st 
sample had a significant  waveheight of 1.5 rn while 
the second had €Ill3 = 4 m. 

In Fig. 4 we present p(z) observed on December 4, 1972 
(HI13 = 1.5 m) for the  hst-order advancing line. This 
result is very  similar to  that observed during the period  with 

= 4 m; thus, over the range of significant  waveheights 
used in this analysis,  waveheight does not appear to aEect 
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TABLE N 
”nm REQUIRED FOR CORRELATION COEF~CIENTS TO DECREASE TO 
1/e  (0.368). RANGE = 22.5 KM; PULSEWIDTH - 50 / I S .  DATA TAKEN 

DECEMBER 4 , 1 9 7 2 ,  1014-1042 PST 

Time(s) 
Frequency Absolute Haxima Fixed Doppler b l a x i m a  

( W Z )  + 1   - 1  + 2  + 1   - 1  + 2  
2.41 140 65 * 140 25 
4.54 85 40 * 80 55 
6.92 35  35 35 30 40 20 
9.40 20 30 20 20 20 20 

13.41 20 20 15  25 20 20 

* There i s  no  \cell  defined  second orrier component a t  this 
frequency 

the correlation between spectral peaks for the predominant 
line. In addition, for  the first-order advancing lines, the 
“Correlation function” is very similar for  both the absolute 
peaks and for the spectra at a fixed Doppler. However, the 
kst-order receding and second-order advancing lines  show 
a much more rapid decrease in correlation coefficient  with 
lag time; in fact, the spectral peaks are uncorrelated after a 
single lag period of  25 s. 

For the first-order advancing line, the correlation at the 
lower operating frequencies  decreases more slowly than at 
higher  frequencies. At frequencies greater than  about 
7 MHz, all these major spectral components are uncorrelated 
after a single lag interval. To show the behavior of the 
correlation coefficient  of the spectral lines  with  frequency, 
in Table 1V we tabulate the time required for the correlation 
coefficient to decrease to lle. These  values were obtained 
for  a coherent integration time of  25 s. Since the correlation 
does not change  significantly  with  range, data for only a 
single  range are given. 

When considering the correlation results for the longer 
coherent integration times, we find little difference in the 
general shape of the correlation function. Although some 
detail is  smoothed out  at the longer integration times, it is 
clear that there is no  important difference in p(z) for either 
a 25 or 50 s time interval. At 100 and 200 s integration times, 
sufficient detail is lost that comparison with the shorter 
times  is  difficult.  However, to generalize the results at these 
longer  times, we find that the peaks are uncorrelated after 
a single lag period at all frequencies. 

The fact that spectral peaks at higher frequencies are 
largely uncorrelated after 25 s has important implications 
for over-the-horizon (OTH) sensing  of sea state. Since 
higher  frequencies are likely to be  used in the OTH work, 
especially at the longer  ranges, independent samples  would 
be obtained with a 25 s coherent integration time. This is 
fortunate since the ionosphere is unlikely to remain stable 
for much  longer  periods. For sea-state sensing  using an 
HF surface-wave radar, independant samples are always 
obtained using coherent integration times of  200 s. 

A possible  physical interpretation of the observed time 
between independent spectral samples  can be deduced by 
noting that this time is  approximate_ly the reciprocal of the 
width of the respective spectral peak  (measured in hertz) at 

which the correlation time was  measured. Meteorologists 
have  established this relationship for radar spectra of rain 
echoes [16], [17]. The explanation for  the spectral peak 
widths in that case  relates to the differential raindrop fall 
velocities, and how long it takes for two typical raindrops 
with different  velocities to produce a scattered signal phase 
change of 180”. The corresponding explanation for first- 
order scatter from the sea, for example,  would  suggest that 
the reciprocal of the first-order spectral peak width is essen- 
tially the time it takes for two typical periodic Bragg- 
scattering ocean wavetrains (within the resolution cell)- 
but having  slightly  different velocities-to slide  one-half 
wavelength with respect to each other. 

VI. S m m  EXTRAPOLATION TO SYSTEM DESIGN 
The statistical analyses of the HF sea-echo signal under- 

taken in the previous sections have application to system 
design. The two results which are most immediately  useful 
are the facts that i) the narrowband time signal is (approx- 
imately) Gaussian, and ii) the time between independent 
spectral samples  is -25-50 s over  most of the HF  region. 

As an example, plans are underway to construct and 
operate a skywave research radar on San Clemente Island 
for sea-echo observations. Due to antenna scan time, a 
Doppler spectrum can be constructed for  a given  ocean 
patch only  every T, s (for the San Clemente Island skywave 
radar planned for the Gulf  of Alaska observations, one 
mode of operation has T,  N 500 s, with a coherent inte- 
gration time per spectrum of  25 s). Since T exceeds 50 s, 
each spectrum is uncorrelated and independent of all 
others, according to the results of the preceding  section. In 
order to extract average sea-state data from the echo, an 
“average” Doppler power spectrum must  be constructed. 
This “average”  is actually the sum of N independent spectral 
samples taken T, s apart. An  ensemble average-in  which 
the spectrum fluctuations vanish as the spectrum approaches 
its true mean-is obtained as N approaches infinity.  How- 
ever, one cannot generally afford to wait this long; l or 
2 h may  be the practical upper limits of desirable system 
operation, due both to operating costs and also to the fact 
that sea state can change after several hours, making the 
statistics “nonstationary.” During 1 h, for example,  where 
T, N 500 s, only about N = 7 independent samples  would 
be used to form the “average.” This therefore is not a true - 

“average” power spectrum, but is  itself a random sample 
fluctuating about the true mean. The greater N ,  the less the 
fluctuation of the “sample  average,” and hence the less 
error involved in estimating the desired sea-state param- 
eters. Thus one has the trade-off  between  reducing statistical 
errors in the desired output  data versus requiring too much . 
time to gather the data, with the resulting  question-what 
is the optimum or “break-even” point in terms of the  total 
number of independent samples, N (or the total  data collec- 
tion time NT,)? 

If one cannot assume Gaussian statistics, there is nothing 
one can do short of a massive program of gathering data 
and extracting empirical  results.  Since we can assume that 
the signal  here is Gaussian, we can readily  derive errors  and 
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or fractional RMS error 
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Fig. 5. Normalized  standard  deviation  and 90 percent confidence interval for  power  spectra of Gaussian  process versus 
number of independent samples. 

confidence  limits  of the power  spectrum  versus the number of 
independent samples.  Let us define P k , y  as  the sample 
average over N independent samples,  with (->, as before, 
signifying the  true average  over an infinite  ensemble.  We 
define  the  variance  of the sample  average as 

&N = ( P k N 2  - < p k N > 2 >  

= ([i f X k :  
n =  1 T + “ . ‘ I Y  - pk2 

1 2N 

T ~ N ~  n = l  
- - [ - 

2N 2 N  

+ ( x k m 2 > ( x k , 2 >  - (20,’)2] 
m=l n = l  

Noting  that X ,  and Ykn have the same (Gaussian) 
distribution, and  are uncorrelated, we arrive at the follow- 
ing answer for  the (normalized)  variance and  standard 
deviation (or fractional rms error) in  the spectral  average of 
N samples: 

c & x / ( P k ) 2  = 1/N or c P k n - / ( P k )  = 1 / f i .  (9) 

The latter normalized standard deviation  is  shown plotted 
in Fig. 5, both  on  an absolute scale and in decibels. By 
multiplying the abscissa  by T,  (the time  between  samples), 
one  has a measure  of the fractional rms  spectral error 
versus operating time. 

Another measure of the quality of an average of N 
independent samples  is  the  confidence  interval. This can  be 
found by noting that since x,, and Kn have the same 
statistics but  bare uncorrelated, one can write 

Now,  since X,, is Gaussian, it is true  that NPkN is  chi- 
squared with 2N degrees  of  freedom  (see for example Hogg 
and Craig [ 151). Thus one  can use the standard tables for 
this distribution to estimate the  confidence. A 90 percent 
confidence interval for P k N / < P k >  is shown  in Fig. 5 for  the 
power  spectral  average  consisting of N samples. The  upper 
and lower  limits are set  symmetrically so that 5 percent of 
the points will fall above the upper line and 5 percent 
below the lower  line.  Therefore, the shaded zone represents 
the region (for given N )  where 90 percent  of the “average” 
spectral  estimates P,, will  fall. 

From  both sets  of  curves, one can see for example that 
increasing the averaging time from 1 to 2 h  (where T, = 
500 s) will decrease the rms error  from 1.4 to 1.0 dB, and 
will decrease the total 90 percent  confidence spread from 
5.57 to 3.87 dB. This decrease in  the statistical error may  be 
considered  marginal  in terms of operating costs for  the 
additional hour  for certain applications. 

VII. CONCLUSIONS 

Our investigation into the statistics of H F  sea scatter 
observed at San Clemente Island has revealed the following 
facts. 

1) The fist- and second-order portions of the received 
echo signal  voltage are described  reasonably  well  by a 
Gaussian process.  This  empirically  implies that the sea  wave- 
height  is  nearly Gaussian, a fact which has been  ascertained 
and known to oceanographers for many  years.  Conse- 
quences  of this result are the facts that i) the normalized 
standard deviation  of the echo power at any  given spectral 
ffequency is unity and ii) the amplitude (square-root of 
power) at any given  spectral  frequency  is  Rayleigh- 
distributed. 
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2) The normalized standard deviation of the maximum 
of the first-order power spectral peak  (which  wanders 
slightly in frequency from record to record), on the other 
hand, is observed to be 0.7. The same quantity for the 
second-order  peak  is  observed as -0.5. While it is  physi- 
cally reasonable that these standard deviations should be 
less than unity, we presently  have no satisfactory model 
which  explains  these results quantitatively. 

3) The normalized standard deviations observed  above 
appear from the data  to be independent of range, radar 
resolution cell  size, radar operating frequency, and sea 
state (i.e.,  significant  waveheight). 

4) The autocorrelation function (versus  time) of the 
power spectra appears to be independent of sea state (i.e., 
waveheight) and cell  size, but is  slightly dependent upon 
radar operating frequency  below 7 MHz. Above 7 MHz, 
the power spectra are essentially uncorrelated after 25 s. 
The heretofore accepted explanation that the correlation 
time should  be roughly the time it takes the scattering wave- 
trains to pass through the cell  (e.g., N 1550 s for  a 7.5-km 
cell  size at 10 MHz) is entirely inadequate to explain our 
observations. A more likely explanation relates this time 
to the reciprocal of the width of the respective spectral peak: 
this latter quantity in turn can be related to the differential 
velocities  between the scattering ocean  wavetrains,  which 
resembles a “turbulence” phenomenon. 

5) The implication of the previous result is that un- 
correlated samples of sea-echo  power spectra are obtained 
for iptervals greater than 25 s in the upper HF band (where 
a skywave OTH radar would normally operate). This fact- 
combined with the Gaussian nature of the sea echo also 
established herein-makes it possible to predict the statistical 
errors inherent in spectral samples of finite number. For 
example, a power spectral average of 14 independent 

samples was shown to have an rms error (or fluctuation) 
about the mean  of  1.0  dB. 
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Studies of Backscattered Sea Return with  a CW, 
Dual-Frequency, X-Band Radar 

WlLLIAM 

Abstract-A coherent, CW, dual~freqnency, X-band radar was used 
to stady microwave sea return &om the Chesapeake Bay, It  is shown 
that the product of the backscattered fields  depends  strongly on long 
surface wave properties. In particular, a sharp line is found  in the product 
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power spectrum whose frequency is that of the water wave  whose  wave- 
length is in resonance with the spatial period of the beat frequency 
between the two transmitted signals and whose  wave rector is parallel 
to the horizontal line of  sight. Thus,  gravity wave dispersion relations can 
be obtained  with the system. Furthermore, the degree of modulation  of 
short wares by  long ones is given by the intensity of the line. A broad 
background  corresponding to the convolution  of the single-frequency 
Doppler spectra is also seen in the product power spectrum. These 


