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ABSTRACT

The use and processing of the FM/CW signal for radar and acoustic
sounder systems are examined in this note. This signali--along with real-
time digital processing via minicomputers--is currently being used by
several groups for HF cover-the-horizon radars. A comparative analysis
of the different processing techniques for general radar applications
has yet to be undertaken. This note therefore attempts to promulgate
detaiis of these techniques so that they may find use in other systems.
An example invelving an HF backscatter radar is used to permit the reader
to see how the techniques are applied to an actual probiem.

A linearly swept-frequency signal format is used in a 100% duty-
factor mode. In the receiver, a replica of the linear FM signal is mixed
with the received waveform at an offset such that the desired range window
is observed with the lowest possible IF frequency variation. This pulse
train is then analog-to-digital (A/D) converted and ready for computer
processing. Two techniques are described and analyzed for digitally
processing the signal via the Fast-Fourier-Transform (FFT} algorithm.

The first is a double-FFT process; the first FFT set is done within a
pulse-repetition-interval (PRI) to give range information. The next FFT
set is done over N PRIs to give Doppler information. In the second
technique, a2 single long FFT is used over N PRIs, giving simuitaneously
both range and Doppier information. It is shown that both techniques are
identical, in that they produce the same information and require the same
number of computer steps in executing the required FFTs. Both techniques
yield unambiguous vange and Doppler, for both discrete and distributed
targets; the note shows how and where this information is contained 1in
the processor output. The note also describes how two weighting functions
are normally applied to the pulse train time samples to reduce objection-
able range and Doppler sideiobes. Finally, simple "cookbook" ruiles are
given for obtaining the signal and processing parameters based on the radar
and target range/velocity specifications.




FM/CW RADAR SIGNALS AND DIGITAL PROCESSING

Donald E. Barrick

1. OBJECTIVE

The objective of this note is to present a simple and concise
analysis--backed by an example--of the application of an FM/CW signal
format in radar systems. It is shown how both time-delay (range)} and
Doppler (radial velocity) information can be extracted unambiguousTy.

2. APPLICATION

For the sake of illustration throughout these notes, we pick the
following application and example. The HF radar carrier frequency is to
be 10 MHz. Sea scatter is to be observed from the radar out to a range
of 150 km {corresponding to time delays up to 1 millisecond in a back-
scatter radar). It is known that HF sea scatter is confined spectrally
to frequencies within about 1/3 Hz of the carrier. Therefore a pulse-
repetition-frequency, f., of 1 per second is selected so that all echo
Dopplers within + 0.5 Hz of the carrier will be displayed unambiguously.
To show sufficient detail, a Doppler processing resolution better than
0.02 Hz is desired, and a range resolution of the order of 1.5 km is
desired; the latter two requirements in an ordinary pulse-Doppler system
transiate to a coherent integration time exceeding 50 seconds and a
signal bandwidth of 100 kHz, respectively,

3. TRANSMITTED WAVEFORM

We select a 100% duty factor signal whose fregquency sweeps upward,
linearly, over one pulse-repetition-interval Tr (Tr = 1/fr = T sec for
our example). Since a 100 kHz signal bandwidth is desired, the signal
can be written

vT(t) = cos{wct + Bfrtz] = cos[¢T(t)3 (1)

for -T,./2 <t< Tr/2. It is assumed that the signal is periodic, and
nence phase-coherent from one repetition interval to the next.



Stnce the instantaneous frequency, FT(t), is the derivative of the
phase, we have

Cp dep(t)
fT(t) =77 —ag - fo *Bf,ts (2)

where here fc = 10 MHz, Fr = 1 Hz, and B = 100 kHz. Thus it can be
seen that the frequency excursion of fT(t) over one puise-repetition
interval 1is

AfT(t) = B = 100 kHz. (3)

The amplitude of the transmitted signal is taken to be unity. The
plot of signal frequency vs time is shown in figure 1.

4. RECEIVED WAVEFORM

«—T,—»
|

Figure 1. Frequency vs time of transmitted and delayed/Doppler shifted
received signals.




The received signal is both delayed in time and shifted in Doppler,
To iltustrate the situation, we assume that we have a discrete target at
range 15 km and travelling radially away from the radar at v=5 m/s {e.q.,
an ocean wave). At time .t=0, the target is exactly at R,=15 km from the
radar. After that, its range is a function of time as

R(t) = R +vt . - (4)

The received signal from this discrete target is thus just a replica
of the transmitted signal, but multiplied in amplitude by a factor A
and delayed in position by a factor tj, where t, = 2R(t)/c. It is thus

vR(t) = AVT(t—td) = Acos{wc(t—td)+ﬁ8fr(t-td)2] s (5)

its frequency is shown in figure 1 as the dashed curve.
5. DECHIRPED SIGNAL

Now after RF amplification, we mix the received signal with a replica
of the transmitted signal; this is represented mathematically by sub-
tracting a phase @T(t) from ¢T(t-td) to give a signal

vl(t) & APT(t)cos[mc(t~td)_— th+WBfT(t—td)2 = ﬂBfrtZ] . (6)

There is also a sum signal with phase ¢T(t)+¢T(t'td)’ but it is
near ch (twice the carrier), and hence removed by filtering. The function
PT(t) denotes a pulse of unity amplitude and width T, where here,

.T = Tr'_td'

Thus the mixture of the two sawtooth frequency waveforms and their
subtraction, as shown in figure 1, produces a signal whose frequency
format, fI(t), is as shown in figure 2. The two frequencies are

f?_ = .ZJT?BQE [¢T(t‘td) - dJT(t)} s (7&)

and



£, = o0 e [oplt-ty) - 4r(t+T)] . (7h)

The intermediate, dechirped signal can be represented as the sum
of two pulse trains as shown in figure 2. One, v (t), is at frequency
f » and the width of these pulses is T = Ta-tq- The other, vz(t), is
at frequency f » and the width of the pu1ses is T= ty- It will be

possible to el1m1nate v (t) by filtering if f >>f such will be the
case here.
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Figure 2. Frequency and amplitude plots vs time of received signal after
dechirping.
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Therefore, we are left with a single pulse train to analyze, as
represented by equation (6). It is possible to re-center the time origin
so that it falls in the middle of the first pulse; this is done in
figure 2. The frequency and phase from pulse to puise are changing very
stightly, however; we will analyze this now,

5.1 =T /2 <t <T./2

Let us simplify the phase in the first pulse; denote internal time,t,
within this pulse as t;. Using t=t; and t;=2R/c=2R,/ct2vt/c=t +2vt./c,
(where t =2R /c is the initial delay of the signal), we have
¢’I(t-i )Eq}]‘(ti —td)"be(ti ) s Or

VA,

- 2 vV
¢I(ti) = [—2ﬂfct0+ﬂBfrto} + 2n[-2 -E-fc+Bfrt0 7;—-Bfrt0]ti

L2V o Vyeo

Thus we have three contributions to the phase: a constant, a linear
term in time ti’ and a quadratic term in time, t%. For the parameters
of the example, however, the quadratic phase term is always small within
the interval —TT/E <ty < TP/Z; e.g., at ti=Tr/2’ it is of the order of
0.005 radian. Also, it can be shown that the second term in the Tinear
factor is small compared to the first term and is also much less than one
radian. Of course, in all cases under consideration here, v/c << 1, i.e.,
target velocity is small compared to propagation velocity. Therefore we have

o lti) o -2nl 2L £ 4BF £ 1t (9)

hence within the first pulse, the frequency g is

_ 2V

fr = Tf'fc+8frtu . {10)
As can be seen, this frequency offset (also shown in the preceding

figure) consists of two terms: the first due to the target velocity and

the second due to the time delay (or range) to the target (t,=2R,/c=0.}

e



millisecond for R0=15 km}. For the exampie selected here, the second
term (range term) is larger; i.e., 2V i ; Hz, Bf.t =10 Hz. Thus
it is not possible to separate range from target velocity by measuring

frequency f, within a single pulse.
5.2 (2n~1)Tr/2 <t < (2n+1)Tr/2

Here we want to examine the phase in the n-th pulse, assuming that
the n=0 pulse is the one centered at t=0. Again, we describe the time
within the n-th pulse (from its own center) as ti' The time delay to
the target, td, however is now given by

ty = 2R/c = 2Rj/cHt2vt/c = t0+2v(nTr+ti)Ic s (11)

where we describe time to the center of the n-th pulse as nTr. We can
now substitute this into the phase:

¢In(ti) = ¢‘T(ti“td) = ¢’T(t.i) (]2)
= - gty -ug Bty ~ o, BnT o+ wf [t + &L (nT )1

2v
- ZTIB'Fr{tD'F = (nTr+t_i)]

After expansion and elimination of terms which are small compared
to others and also small compared to one radian, we have {assume n =100)
- 2y 2y _2.’}‘_ )
¢In(ti) = ¢, - 2wfc- = -nT - 2n] f +Bf t, Bn]t 3 (13)
hence the frequency in the n-th pulse is the quantity in square brackets,
i.e.,

fy, = 25 £ ef 2+ 2L o, (14)

Comparison of (14} with (10} shows that the frequency in the n-th
pulse is identical to that in the first pulse, with the exception of the



third term. The explanation for the third term is simple. It merely
means that the target is moving from pulse to pulse, and its range at the
center of the n-th pulse is Ry *+c(2v/c)nT,/2 = Ry+vnT , as we would
expect. Since we want to integrate over as many as 100 pulses, the third

term is not negligible as n increases; e.g., at n=100, %¥'Bn = l-Hz.

Two other effects occur within the pulse; its width, being $=Tr—td

changes very slightly from pulse to pulse., Since T.=1 second,

ty = tr(@v/cInT,., we have for n=1, T =1-10""s; for n=100 we have
T = 1-107%- 33- x 1075 s.  Thus the change in pulse width is negligible.

A very important second effect, however, is the change in phase from pulse
to pulse, as represented by the second term in {13). This phase change
shall in fact prove to be the basis for the Doppler processing. As stated
earlier, all of this assumes that the transmitted signal is phase-coherent,

f.e., ¢T(t+Tr)—¢T(t) = non-varying constant.
6. DOUBLE-FFT DIGITAL PROCESSING

Here we want to demonstrate how a double Fourier-transformation
process can be used--often in real time because of the discovery of the
digital fast-Fourier-transform (FFT) algorithm--to produce a time-delay
(range} and Doppler (velocity) display of the radar target data*. The
first Fourier transform process is performed over a pulse repetition
period, T, (i.e., within a pulse} to obtain target range. The second
Fourier transform is then performed over several pulses of these data to
obtain target Doppler or velocity.

First, Tet us perform a Fourier transform on a single pulse. This
is shown in figure 3. We have a pulse of width T = Tr'td’ ampTitude A,
and frequency fl given by (14}. To perform this Fourier transform
digitally, one must sample the pulse M times within the time period
T.. The number M depends upon the maximum value f, can assume, and
M/Tr must be at ieast twice this value, i.e., 2f2max, according to the
Nyquist theorem. For the probiem considered earlier where we want to

*This technigue is currently being used by the Stanford Research Institute
for real-time processing of HF ionospheric radar signals at thelr Wige
Aperture Research Facility (WARF); (Sweeney, et «l., 1971).



display possible targets at all ranges from zero to 150 km, this corresponds
to a frequency variation in f from 0 to 100 Hz; hence M must be
greater than 200 since T =1 sec Since FFT processors require that

M=2%, where k s an 1nteger, M=256 would suffice.
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Figure 3. Single pulse and its Fourier transform.

The Fourier transform of the putse is then
L4 2nuft.
-i2n
_ i
vy, () _}[ Alcosgy (t.)le dt;

“%/2
or

_ AT fsinlen(f-fp)1/2] ~ig +iznfe. 2L nT
V() [2n{f-fg )T/2]

r

. sin[2ﬁ(f+fIh)T/2)]e+i¢0_iznfc- %§—nTr} 3 (15)
[2Tr(f+f3h)'l'/2]



This Fourier transform is shown in figure 3. Since we started with
M=2f1maxTr samples (M=200 minimum), we obtain samples in the frequency
domain from -f .. to +f_ _ , i.e., at M/2=f, oxlp POSTtive values of fre-
quency. These samples are complex in general, as evidenced by the exponential
phase factor containing ¢, and wac-%¥ nT,. . Thus we conceptually have
M/2 range bins (M/2=100 here), permitting us to realize the 1.5 km range
resolution over a 150 km window, as initially stipulated. Note that each
M/2 resolution element after the first FFT can be considered a range bin
so long as the Doppler term, (2v/c)fc, is small compared to the range
term, Bfypty; this is true for the example considered here. Since each
pulse is approximately 1/T wide at the half-power point (T:=Tr = 1 sec .
here), we should be able to resolve 100 targets in range because the width
of each FFT pulse in this 100 Hz window is 1 Hz. Hence after one FET
process within a pulse we have range information, but no Doppler information;
we turn now to extraction of Doppler.

Note that if we start with the first pulse at n=1 and do this FFT
process on each pulse, we obtain a Fourier transform n times, where we
assume n=N (some upper value). Since the frequency, L and phase,
2nfe %¥.nTr, shifts slightly from pulse to pulse due to target velocity
(as given in (14)), this sinz/x pulse in the frequency domain will change
very slightly after each Fourier transformation. Since our digital FFT
1s capable of producing numbers at M/2 discrete points, (15) should really
%’_’1 £ > where -M/2=msM/2,

Thus the first FFT process on M samples within a pulse gives M/2
range bins for each pulse. For each successive pulse, this FFT gives M/2
additional positive frequency samples. Digitally, we store each M/2
samples in rows of a matrix, as shown in figure 4, until we have N rows.
Thus, we have an M/2-by-N matrix whose columns so far represent range
bins.

be written with f replaced by f =

Now, we perform another FFT over each column, or range bin. This
will require N points altogether. Each matrix element is a complex

number whose value changes in a column because the frequency, fxn’ and
the phase, 2nf s %;-nTr, are changing from sweep to sweep. Since each

of the N vertical elements comes from a different pulse T,. sec apart,

o



NTr sec are required to fill this matrix. Also, n can be related to time from
the first puise by use of t=nT,., or n=t/T,. (again, 1< n< N). Hence each
column is really a function of time, and the N column elements can be
considered (digital) samples of this time function.

To Fourier transform over a typical column (say the m-th}, let us
again refer to our example for the target at Ry=15 km; this target
will appear in the m=10 bin for M/2=100. As we saw before, this produces
flg =10+ %-+ %—- 1072 Hz. Thus for n running from 1 to 100--

corresponding to time running between 1 and 100 seconds--two things happen
to the positive pulse in the

m~th range bin: its ampli-

tude changes slightly due to ————Range Bins memme

the shift of the sinxz/x S11 312' R Slm. Sy
pulse because of Tons and

1ts phase changes. The S12 S22 52m M/ 2

amplitude variation from n=1 .
to n=100 is slow. For the .
example given, the shift in

. S S s ww 8 23 4 8
the pulse due to f _ is %-HZ nl n2 nm nM/z
over N=100 pulses; the 3 dB
width of the sinx/x pulse is )
1/7=1 Hz while the total

SNl SNz' i @ SNmf ¥ . SNMfz

width between the first nulls

is 2/T=2 Hz. Hence the Figure 4. Matrix containing range~Doppler
; w0 s s mumbers obtained with double—

amplitude variation within a FFT process.

column is slight, and can be

represented in most cases by a constant or, for more accuracy, by a constant
plus a small Tinearly varying term; the results will not differ signi-
ficantly for either case. Hence we represent the amplitude by a constant
(i.e., sin[2ﬂ(f—f]N/Z)T/Z}/[2w(f-f1N/2)T/2], its value midway down the
column where n=N/2) and leave the second representation as an exercise
to the interested reader.

Thus the only variation now within the column (at the positive
frequency corresponding to m) is the phase factor, i.e.,

10



. 2v : 2V
i2af - == nT i2nf, ==
S, = K(f)e S K(fle e ¢ » Where (18)

in the rightmost expression, nTr has been replaced by 1:n to represent the

discrete flow of time from pulse to pulse. The Fourier transform of this
quantity over t, from 0 to NT,. is

sin[2n(f- 2 £ INT,/2]
[2n(f- &Y £ )NT,/2]

4 s = KNT , where (17)
here again we should note that our digital FFT does not really give a
continuous variation over f (frequency), but will compute values at N -
discrete frequency points. The question arises as to how we should choose
these N frequency points, i.e., how wide a frequency window do we want
to display. Since our PRF, fu{f=1 Hz here) results in an unambiguous
Doppler of %-Hz, we would logically select fDmax= %-fr(= %—Hz here) so
as to display all of the unambiguous Doppler window. Then the frequency
window in Doppler will be from ~Fomax O Hppayx @t 8 spacing fomax/Ns
which turns out to every 2fra/N Hz, or 1/100 Hz here. Note also in
(16) that if %g-fc, i.e., the Doppler shift, exceeds %‘fr=1/27r= then
from pulse to pulse we will be sampling at less than the required Nyquist
sampling rate. Hence our pulse-repetition frequency (PRF), fy, must
always be at least twice as great as the maximum expected Doppler frequency.
Cbserve now an important fact in {(17): the displacement of the
sinxz/z pulse resulting from the second Fourier transformation over the
columns occurs at %g-fc. This is precisely the Doppler shift that results
from a target at (radial) velocity v with a backscatter radar having
carrier frequency fe- Furthermore, the 3 dB width of the pulse represented
by (17) is 1/NT. Hz, as shown in figure 5. Thus we produce N (or 100)
Boppler frequency points every f./N Hz (or .07 Hz here} having a Doppler
resolution of 1/NT Hz (= .01 Hz here}. Since NT, 1s the coherent
integration time (in this scheme, it is the time required to Fill the
matrix), 1/NTr is exactly the Doppler resolution one would expect from
any coherent pulse-Doppler radar.



Therefore, in summary, we have done two sets of FFTs. One set
within each pulse at M points to give M/2 range bins; these bins
are the elements of a vow of a matrix. The second set is over N. pulses,
or over the N column elements of the matrix, to give N Doppler bins
for each range bin. Note that the original target range also contained
a small offset due to Doppler. If this offset is objectionable, it can
now be removed--in the case of a discrete target--by using the Doppler
information to correct the target range.

A little thought
will show that this

process also works ‘J > 4-1/NTir
for distributed tar- m (\
gets such as rain or
sea waves., If one
has many targets in A ~ g .
. AV \v4 T
a range bin (say L ( V f
t
targets), he has L o2V ¢ D max
terms in (15), and ¢ e
gach element in the
matrix is really Figure 5. Doppler spectrum after second trans-
She: sum oF L ssudh Formation within a given range bin.

terms. The second

FFT over the columns, therefore by superposition, gives L terms in {(17);
if each of the L scatterers in the bin {representing the distributed
target complex) has a different velocity, then the resulting Doppler
spectrum for the L targets will consist of L-sinz/x pulses at different
positions, as given by (17) and shown in figure 5. Thus a continuous
Doppler spectrum represented by the sum of L scatterers with many differ-
ent velocities and scattering amplitudes will result, as would be expected
in any coherent pulse-Doppler radar system.

7. SINGLE-FFT DIGITAL PROCESSING

Now we examine another technique for extracting range and Doppier
information from the same signal. This involves a single, Zong FFT over

12



the same N puises. This technique is used by the Rome Air Development
Center for some of iis HF over-the-horizon radars (Eddy, 1973). It
involves the same number of computer operations as that described in the
preceding section.

Here we will draw heavily on much of the material in the preceding
section. Since we have a maximum frequency P in our pulse T (=T)
seconds long, we require M=2F  ox® T, samples per pulse, as before.
Performing the FFT over N pulses gives a total of M x N samples per
transform. Let us analytically find an expression for the Fourier trans-
form of this pulse train first. To do this, we can use superposition to
express the Fourier transform of the pulse train as the Fourier transform
of each pulse as though it were all alone:

(2n+1)T./2

v (f) =3 J v (t)e M g (18)

n=0
(En—l)Tr/Q

Here we reexpress the phase ¢In(fi) appearing in Vi,--as given
in (13)--in terms of continuous time, t, rather than time within a pulse,

t;. This is done by substituting ti=t-nT, into (13) to give
- 2v 2y 2y Bnlt (]9)
b1a(t) = ¢, + 2n[Bt,+ 5 BaT In-2n[ &% f, +Bf t,+ L Bnlt .

Using this in (18) and performing the indicated integration, we
obtain (with the approximation T,.=T)

i3 ~i2wfnT
v (f) =§ Vi (fle L (20)

where VIn(f) is given in {15) and discussed in that section.

Now, to perform the summation, we make the same assumptions as
before; i.e., that of both the amplitude and phase variations over n
which occur in VIn(f), only the phase variation is important. Also
we use only the first sinz/x function in (15) since it represents positive

13



frequencies; an identical result obtains for the second term representing
the negative frequencies. Therefore, (20) becomes

N-1

VI(f) K(f)z -i2w({f- -— f )nT (21
n=0

where we have used (16). The above summation can be performed by using
the identity:

N
i N+1 2
E;%ejﬁa o pTho/e, 51255[;/%?/ ] . (22)

Thus we obtain

sin[2(f- & £ NT,/2] ~127r(f— L £o) (N-1)T,/2
sin[2n(f- 2" £)T,/2]

Vi {f) = K(F) (23)

In the above final result, the complex exponential factor--as well
as the residual phase factor e '® contained in K(f}--is not important
because it has unity amplitude. However we note that the sinNxz/sinz is
much like the sinNx/Nz function. It contains a peak at x=0 and side-
lobes away from the peak; it is, however, periodic whereas sinNx/Nx s
not.

Now, we note that the FFT does not actually compute a continuous
function, FI(f), but a transform at MN positive and negative frequency
points. Since the maximum frequency, f imax® 1S determined primarily by
the maximum target range desired, we have MN/2 posttzve frequency points,
and hence a vailue of Vi (f) computed every f = 2f  /(MN) Hz along the
positive frequency axis.

To see how a discrete target will appear, we plot first in figure 6
the broad function representing the integration over a single pulse, i.e.,

K(f) = (24)

[Zﬁ(f—fIN/z)T/ZE
This gives the range bin, or location of the target in range. Its center
is slightly displaced, however, due to the Doppler term 23 fe in fIN/2‘
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of the broader function, corresponding to fr = 'I/Tr Hz {(i.e., a 1.5 km
bin here), while the Doppler resolution is essentially the width of the
narrower line, corresponding to 1/NT,. Hz, the coherent integration time.

The frequency axis after the tong FFT can thus be broken up into
M/2 coarse range bins of width 1/Ty Hz; within each range bin, finer
frequency divisions then correspond to the Doppler spectrum of the target.
In particular, there are N Doppler bins per range bin, corresponding to
a Doppler resolution of 1/NT,. Hz. It seems proper therefore to center
each range bin on a zero-Doppler line. The centers of each range bin--
as shown in figure 6--are thus located at mf.(multiples of the PRF) along
the frequency axis, and extend + f/2 away from this central, zero-
Doppler position. Thus we can take the plot along the positive frequency
axis and divide 1t into M/2 pieces, each centered at mf,. where
0 <m< M/2. Each piece then represents the Doppler spectrum of an indi-
vidual range bin. Or, we can have the computer do the "dividing" for us,
displaying each range bin however we choose. Fop example, range bins
could be lined up behind each other, closely spaced, to give & 3-dimension-
al range-Doppler-intensity display. Note also that each range bin--and
the resulting Doppler spectrum thus obtained--is similar to the Fourijer
transform over a given column in the preceding section; both are range
bins containing a Doppler spectrum with the same resolution and width.
THEREFORE THE TWO PROCESSING TECHNIQUES YIELD IDENTICAL RESULTS.

A Tittle thought will also show that this technique will work for
distributed targets. For example, if we have many targets over several
range bins but at the same velocity, we will effectively have several
K(f) functions in (23), but centered on slightly different positions.

The sinNz/sinz functions for the Doppler will be identical. Thus in effect
the target at a given Doppier will appear in several range bins, as it
should, but at the same discrete velocity in each.

8. NUMBER OF COMPUTER OPERATIONS REQUIRED

The possibility exists with present day computers--especially
"minicomputers” of the NOVA and HP 2110/2115 variety--that the range-
Doppler processing described above can be done in real time. Such
processing for HF radars has in fact been done digitally in real time by
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several groups for both discrete targets and sea scatter, using no more
than a single HP 2115 minicomputer. To ascertain whether such is possible
for a given application, we must know the number and size of the digital
words to be stored and processed per second.

The FFT process is known to require LTog,L operations for a linear
array of L numbers. Let us first analyze the total number of operations
vequired by the double FFT. We first do an FET on a pulse, using M
samples; this requires Mlog,M operations. Next we begin transforming
over each of the M/2 columns; each now contains a real and imaginary
word for a total of M words. With N elements in a colum, Nlog,N
operations are required for the FET on each column. For M column words,
this gives MNTog,N operations. Thus the sum of operations required in
the first and second sets of FFT processing is

MNTog,M + MNTog,N = MN{1og,M + Tog,N) = MNTog,MN (25)

operations.

The number of operations required in the single long FFT is simple
to calculate. With N pulses and M samples per pulse, we have MN
total samples per transform. This therefore requires MNlog MN operations.
THIS 1S IDENTICALLY THE SAME NUMBER AS FOR THE DOUBLE FFT!

Normally the FFT requires that the number of samples to be transformed
be an integer power of 2. For the double FFT process therefore, both
M and N must be powers of 2 (e.g., 256 and 128, 32 and 64, etc.; Just
so M and N individually are greater than the number required by the
sampling rate and Doppler resolution). For the single, long FFT, the
product MN must be a power of two, and hence again M and N must
individually be powers of two.

In both cases, MN elements must be accumulated and stored for
processing; this dictates the size of the required core and/or disc
storage. The entire number of MNlog MN operations must be performed
every NT,. seconds if the process is to be done in real time. This
requires that (Mlog,MN)/T,. computer operations per second be done {(not
including time for buffering and display functions). Thus the obvious
way to reduce the reguired data rate--if such is necessary--is to Tower
M, the number of range bins. Since M is equal to 2f ., T,.> We must
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reduce flm&x, the maximum IF frequency per pulse. This does not
necessarily require one to reduce the range resolution. For exampie,
suppose for our example that instead of observing all ranges from 0 to
150 km with a 1.5 km resolution {giving M=200), we decided that we only
wanted to observe the window between 126 km and 150 km, but still with
1.5 km resolution. This gives conceptually M=32 or M/2=16 range bins.

To achieve this, one merely slides the linear sweep delay in the receiver
so that instead of varying between 84 and fimax=100 Hz, fl now runs
between 0 and flmax=16 Hz. Then the M=32 samples are adeguate for
the Tr=1 second pulse repetition interval.

Finally, the number of bits required per word also affects the data
rate to some extent. The processor dynamic range depends upon the bits
per word because of quantization error. Thus the dynamic range is optimally
6b decibels, where b 1is the number of (binary)} bits per word. Currently
about 80 dB dynamic range can be realized by digital processors without
too much difficulty, requiring 14 bit words and a 14-bit A/D convertor.

9. WINDOWING AND WEIGHTING

In all of the preceding sections, we assumed a square pulse at
frequency T,, and N such pulses all with the same amplitude. As a result
we arrived at sine/z and sinNz/sinz functions in the frequency domain
for the target echoes. Both functions have rather high, objectionable
sidelobes: the first sidelobe of the sinz/x function is only 13 dB down
from the main lobe, while the average sidelobe Tevel of the sinNxz/sinz
function between main lobes is only down 20 dB. Thus some of the side-
lobes from a single target--as illustrated in figure 6--are quite high
and could be mistaken for other targets.

The remedy for this is the same as that taken by antenna designers
to reduce sidelobes: use an amplitude taper across the original function
before Fourier transforming. This technique is currently being used in
nearly all radar digital processing schemes. The common amplitude
taper--or weighting--used across the time window is the Taylor weight
(atthough Hamming and cosine-squared weights (Blackman,1958; Nathanson,
1969) are sometimes used). This results in average sidelobes down 40-50 d&
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below the main lobe. The only bad effects of such weighting are the slight
broadening of the main Tobe {by as much as 40% in some cases at the 3-dB
point} and a drop of 1-2 dB in signal-to-noise ratio due to attenuation of
the original received signal at the edges of the window.

For both types of processing described above, two weighting functions
are normally performed digitally. The first is to weight the M samples
within the pulse according to the selected function (e.g., Taylor weight-
ing}. The next is to weight the N pulses to be used in the coherent
integration by the selected technique. Both weighting processes across
the two respective windows of T, and NT, seconds are normally required
to keep both the range and Doppler sidelobes unobjectionable.

10. RULES FOR SIGNAL DESIGN

Here we give a simple, stepwise procedure for calculating the signal
parameters required for a given set of backscatter radar or sounder specifi-
cations. We assume that the following parameters describing the system are
given: (i) f_, the carrier frequency, in Hertz; (ii) Ry, the range
window width to be calculated and displayed, in meters; (iii) vy, the
maximum target velocity in m/s; (iv) AR, the range resolution desired,
in meters; (v) Av, the velocity resolution desired, in m/s.

With these parameters given, the following four steps are to be used
to calculate the following four FM/CW signal and processing parameters:

(i} B, the signal bandwidth, or frequency excursion, in Hertz; (ii1) T,,
the pulse repetition interval, in seconds; (iii) N, the number of pulses
of period T, needed for a single coherent processing operation; and

(iv) M, the number of samples needed per pulse interval, T.,.

(1} B = c¢/{2aR}, where ¢ 1is the wave propagation velocity in the
mediunm.

(2) T, = 1/f,, where f,. = 2fpys Tpy being the maximum target
Doppler shift, given by fyy = (ZVM/c)fc.

{3) N= To/Ty» where T, the total coherent integration time is
the reciprocal of the desired Doppler resolution, ﬂfD, where
Afy = (Zav/c)fc.




(4) M= 2R, /AR samples per pulse interval, T,

In the above, we have assumed that fc’ Rw’ Vs AR, and Av were
all given and that B, Tr’ N, and M were to be found. In practice, the
size of the computer and data handiing rate will often Timit M and N. _
Thus one usually iterates until an acceptable compromise is achieved, i.e.,
he varies his requirements for R,» AR, and Av until values of M and
N are obtained within the capacity of his machine.

11. SATISFACTION OF REQUIRED ASSUMPTIONS

In the course of the analysis herein, certain assumptions were made,
upon which the desired output is dependent. If these are not satisfied,
quadratic and other types of distortions will result which reduce or 1imit
the achievable signal-to-noise ratio. Having derived B, Tr’ M, and N
from the rules of the preceding sections, one can quickly check the follow-
ing criteria to see whether the optimum processing gain will be realized.

(1) %—BTr(ZvM/c)ZN2 << 1,
B(2VM/c)(2Rw/c)N << 1,
B(ZVM/C)Tr/4 << ]

Satisfaction of the above conditions was assumed in going from (312)
to (13) for the phase; 1if one or more of these conditions are not
satisfied, distortion will reduce the achievable processing gain.

(2) VMNTr < AR.

This merely means that the target is not traveling so fast that it
moves through several range bins within one coherent integration period,
NTr. If the inequality fails, it simply means that the echo will appear
in several range bins, but with a proportionately reduced amplitude in

each.

{3} dv/dt NTr < Av,
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This assumption--heretofore unmentibned—-concerns the rate of
change of radial target velocity (or radial acceleration). It has been
assumed throughout the analysis that the targets under consideration have
a constant, nonaccelerating velocity. Small radial accelerations can be
tolerated, but if dv/dt s sufficiently Targe that the above inequality
fails, then the echo will appear spread into several Doppler bins with
proportionately reduced amplitude in each.

12. SUMMARY

Despite statements often seen concerning "chirp" (i.e., Tinearly
swept frequency) signals used with microwave radars, there is no ambiguity
between target range and velocity for processing done in the straight-
forward digital manner described in this note.* Furthermore, two seemingly
different digital processing schemes are described and analyzed herein,
which will produce exactly the same pulse-Doppler (range-velocity) output.
Both employ the FFT; the first uses a shorter FFT many times, while the
second uses only one long FFT to produce the same coherent pulse-Doppler
map. Both techniques work equally well for discrete targets (such as an
aircraft}, as well as for continuous or distributed target complexes
(such as ocean waves, rain, atmospheric turbulence, etc.), and display the
targets in their appropriate range-velocity perspective.

Identically the same total number of FFT operations is required for
both techniques; the same data rate (A/D convertor rate) is required in
each case also, i.e., (ZRW/AR)XZX(ZVM/c)fC words per second. Here, R,
is the range window length to be examined, AR 1is the range resolution
desired, iy is the maximum target velocity to be encountered, c¢ 1is the
free space wave propagation velocity, and fc is the carrier frequency.
The choice of whether to use the multiple vs the single FFT processing
technique then rests with the availability of appropriate equipment. For

*Perhaps the ambiguity occurring in the microwave systems is attributable
to the analeg pulse compression techniques commonly employed there, such
as the dispersive delay line. Here the technigue used is more properiy
described as a coherent correlator followed by pulse-Doppler processing,
rather than time-domain pulse compression. The difference between %he
two techniques results in the elimination of the ambigulty for type cf
processing described here,
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example, small computers may be 1imited in the size of a single FFT they
can handle; in this case, the multiple FFT technique having smaller

unit size may be required. On the other hand, special hard-wired FFT
computers are currently available (called "FFT boxes”). These can perform
a fairly large, fixed-length transform very rapidly because of their
specialized construction, and are used as one component in the overall
digital processing system. Here, the single tong FFT is usually more
effieient because the need for continual, interactive storage/retrieval

of elements in matrix/fashion demanded by the multiple FFT scheme is
eliminated.
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