Chapter 12 REMOTE SENSING OF SEA STATE BY RADAR
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Several radar rechniques have evolved over recent years which permit the straightforward
meagsurerment of certain important ocean wave parameters. At MF and HF, the ocean waveheight
spatial spectrum can be measured directly via the first-order Bragg-scattered signal intensity; a
variety of experiments are briefly examined which involve monostatic ground-wave and
ionospheric radars, bistatic HF buoy-shore systems, bistatic LORAN A signal scatter systems, and
bistatic buoy-satellite systems. The second-order contributions to HF scatter produce «
continuous Doppler returii which varies in position and amplitude with sea state. Ar UIF, it is
possible o measure indirectly the spatial slope spectrum of the longer ocean waves vig
cross-correlation of simudtaneous Bragg-effect returns ar two frequencies. Finally, shori-pulse
microwave satellite altimeters permit a direct measurement of the significant (or rins] waveheight
of the sea at the suborbital point via the specular point scatter mechanism. These techniques will
be important for (i} detuiled oceanographic megsurements of the characteristics of sex waves, (i}
routine moaitoring of sea state for maritime purposes, and (iii) deduction of wind patterns above
the seas for metecrological purposes.

12.1 Description of tite Sea Surface

The quantitative interpretation of radar scatter from the sea requires the use and appreciation of
ceriain properties of ocean waves. A brief review is undertaken here of the ocean-wave physics and
characteristics which we will need later; also, common oceanographic nomenclature pertaining to ocean waves
is defined and explained. A readable but detailed treatment of all aspects of ocean wave physics can be found
in the text by Kinsman (1965); a more elementary introduction to water waves is the concise soft-cover
booklet by Bascom (1964).

12.1.1 Nomenclauire

Sea State. This term as used here refers to the state of the sea, or roughness, as determined by the heights of
the largest waves present. Numbers have been assigned to sea states by the International Mariners’
Codes, and these are refated to wave heights in (T12.1}.

Significant Wave Height. This term is a common maritime descriptor referring to the average of the
heights—from crest to frough—of the 1/3 highest waves; it s denoted H; 13-

RMS Wave (or Roughness) Height. This is a term describing root-mean-square height—ghove fhe mean surface
fevel-used in rough surface scatter theories; it is denoted here by h. While there is no exact general
relationship between h and H; /3> @ common approximation frequently used for wind waves is
H, /3 =283 h.

Length. The length or spatial period of a single ocean wave is the distance from one crest to another; it is
denoted L.

Period. Unless denoted otherwise, this zefers to the temporal period, and is the length of time it takes two
successive crests of a single wave to pass one point. It is denoted T.

Spatial Wavenumber. This is defined in terms of the length of an ocean wave as k = 2x/L.

Temporal Wavenumber. This radian wavernimber is given in terms of the period by w = 2#/T.

Fetch. The fetch is the horizontal distance over which a nearly constant wind has been blowing.

Duration. This term refers to the length of time during which a nearly constant wind has been blowing.

Wind Waves. This term refers (o a system of ocean waves which is being, or has very recently been, aroused by
winds blowing locally above that area of the ocean. Wind waves result in a random appearing ocean
height profile.

Fully Developed Seas. This is an equilibrium sea state condition reached after sufficient duration and fetch at a
given wind speed. The estimated duration and fetch versus wind speed required to produce fully
develuped seas is provided in (T12.1)
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i the fewsh and duration are as great as indicated above, these wavehaight and sea state
conditions exist. it fatch and duration are greater, wavaheight can be up to 18% geeater.

Swell. When wind waves move out of the area in which they were originally excited by the winds, or after
winds have ceased fo blow, these waves change their shape and seitle down to what is known as
“swell”. Swell appears less random and more nearly sinusoidal, of great lengih, and with great width
along the crestlines. The usual period of swell is from six to sixteen seconds. Swell, while an occasional
phenomenon, can arise from storm areas thousands of miles distant.

Deep-Water Waves. When the water is sufficiently deep that the effect of the bottom on the propagation
chatacteristics of the waves can be neglected, they are called *“deep-waier” waves. Generally, if the
depth is greater than 1/2 the length of a given wave, the deep-water approximation is valid. Except near
beaches, ocean waves are deep-water waves, and we utilize this assumption througheout this chapter.

Gravity Waves. This term refers to waves in which the chief restoring force upon the perturbed water mass is
gravity. Waves whose lengths, L, are greater than 1.73 cm (Phillips, 1966) are gravity waves. Since
gravity waves are the essence of sea state, they are the only types of waves considered iu this chapter.

Capillary Waves, This term refers to waves in which the chief restoring force acting on the perturbed water
mass is surface tension. Less than 1.73 cm in length, they are not important for most of the topics of
this chapter.

12.1.2 Wind Wave Surface Height and Slope Distributions

Patterns of wind waves having various lengths, heights, and directions of motion interact to form a
random-appearing surface. Hence the quuatitative characteristics of such a surface are best described
statistically. One of the statistical functions frequently occurring in the analysis of radio wave interactions
with the sea is the probability density function of the surface height and ifs spatial derivatives (or slopes).
Physically, the probability density function p{x} is defined such that p(x)dx is the probability that the random
variabie lies in the interval dx between x — dx/2 and x + dx/2.
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Figure 12.1 Measured versus model probability density functions for sea surface :heighr (after MacKay,
1959,

For the sea surface height, ¢, above the mean sea level, MacKay (1959) found from detailed analyses of
measured wave records that the height probability density function is nearly Gaussian (or normal). This yields

) = (2r*) 7 exp{—-z%] a2:1)

where h is the rms height of the surface, ie., h=(<¢">)*'"?, where <...> denotes average. The actual
density for the sea height cannot be truly Gaussian for two reasons: (i) For Gaussian distributed waves, there is
always some finite—albeit small—probability that very laige waveheights can occur, whereas for the sea, wave
breaking occurs wher the heights and slopes exceed certain critical values. (it) The Gaussian function is
symmetric, wheseas the sea hieight is not truly symmetric about the mean. This can be seen from looking at the
sea surface profile, which tends to have sharp pointed peaks (for { >0), but rounded shallow froughs (for
£ < 0). Thus the sea surface profile would not look the same upside down, whereas a true Gaussian variable
would.

For the latter reason, the true height probability density function is stightly better matched by a
Gram-Charlier mode] than by the Gaussian, as shown in (F12.1), after MacKay (1959). The difference is very
stight, however, and for most analytical purposes the Gaussian model is entirely adequatet. The Gaussian
height distribution will be assumed and used throughout this chapter.

If the height distribution for the sea were truly Gaussian, then the distribution of its spatial derivatives
(i.e., the slopes) would also be Gaussian, because a linear operation on a Gaussian random variable (e.g.,
differentiation)produces another Gaussian random variable. The actual slope distributions for the sea are again
almosi—but not quite—Gaussian. We take the x-axis as horizontal and pointing in the dominant wind direction
(i.e., along the downwind direction), and the y-axis as horizontal and pointing in the crosswind direction. Then
Cox and Munk (1954), using glitter point photography to measure the directional slopes, find that
fy (= a¢/dy) in the crosswind direction is symmetric, but { (= 0§/0x} is skewed toward the upwind direction,
probably due o wind stress. This is shown in (F12.2). Thus the departure from Gaussian is again slight, and
while it could be important in applications involving radar scattcrometers looking near the vertical with high
angular resolution (Nathanson, 1971), the difference is ignored in this chapter. Also noteworthy from the
figures is the fact that the observed rms slope in the upwind-downwind direction is not significantly different
from that in the crosswind direction. Tt can be shown analyticaily that {x and ay are uncorrelated at any given

e

point on the ocean. Thereforé, we take the following for the joint probability density function for the surface
slopes: : :

5

£ + 8y
plExLy) = (™)™ eXP{‘“A"—z_y} (12:2)

# One case where one might desire a higher order correction to the Gaussian model accounting for the skewness is in a detailed
analysis of the short pulse return from a radar altimeter.
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Figure 12.2 Measured versus model probability density functions for sea surfuce slopes (after Cox and Munk,
1954),

where, as explained above, we take s? = <%+ §§,>= I+ <§‘§,> s 2<§§,>: s being the foal
mms slope of the ocean surface at a given point.

12.1.3 First-Order Gravity Wave Dispersion Relationship

The equation for the surface height, ¢, of a deep-water gravity wave is obtained from hydrodynamic
theory (Kinsman, 1965). Generally, the wave surface height, {, is a function of the two orthogonal horizontal
coordinates X,y and of time, t, ie., §(xy.t). This function—as well as the velocity potential and stream
function—must satisfy Laplace’s second-order differential equation; in addition, they satisfy two boundary
conditions at the free surface: (i) the kinematic condition and (if) the dynamic condition. While Laplace’s
differential equatjon is linear, the boundary conditions are not. Thus an exact solution is difficult to obtain.

The common method of solving these equations is to expand all of the functions into a perturbational
serics. Then the nonlinear boundary conditions are ordered into several equations, each containing terms of a
higher order of magnitude. The ordering {or perturbational) parameter is the height of a wave divided by its
length; this quantity is always very smali for gravity waves. The lowest-order equations to emerge are linear
and can be solved for the first-order height, ¢, of the surface. Second and higher-order solutions for ¢ can also
be obtained, and will be discussed in a later section. As the height of the water wave decreases, the first-order
solution becomes increasingly valid because higher-order terms decrease in magnitude. Hence, the first-order
solution is also referred to as the small-amplitude approximation for water waves.

The first-order solution, {, has several distinctive characteristics. It can consist of the superposition of
an arbitrary nmember of sinusoids of different amplitudes, spatial lengths, and directions. Bur—unique to water
waves—each sinusoid of a given wavelength (or wavenumber) moves at a distinct phase velocity, The
relationship for the first-order phase velocity, v, js obtained zlso from the lowest-order surface boundary
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vz fé_&) :\/%_, (12:3)

where g is the acceleration of gravity (= 9.81 m/s}, and & = 2n/L is the total spatial wavenumber for the wave

of length L.
Another way of stating (12:3) is to relate the temporal wavenumber, «, of the wave to its spatial
wavenumbers; this is commonly called & dispersion refationship in physics. It is

conditions, It is (for gravity waves)

wh =gk = gy’ F gt (12:4)
where we assume for generality that the wave is moving in a direction whose angle § with respect to the x-axis
is given by tan™! (fcy/xx). The total wavenumber magnitude, «, is thus the square root of the sum of the
squares of the x- and y-directed spatial wavenumbers Ky and iy

From (12:4) we can obtain still another commenly seen first-order expression refating the wavelength

1o the period:
- (%)L . (12:5)

Teble 12.2 Relationship Between Period, Length, And Phase Velocity
Of Small Amplitude Gravity Waves

Period, T, Wave Length, L Velocity, v
seconds feet meiers knots meters/second
6 184 56 18.1 9.3
8 326 100 24.1 124
10 512 156 302 155
12 738 225 36.2 18.6
i4 1000 305 424 21.8
1o 1310 400 48.6 25.0

Thus we see for first-order gravity waves a unique square root relationship between the water
wavelength and its temporal characteristics such as its velocity and period. Table (12.2) provides a ready
connection between these quantities for the longer, higher waves which generaily comprise sea state. It will be
seen later that this square-root dispersion relationship forms the basis for several unique radar experiments
involving scatter from sea waves. '

12.1.4 Waveheight Spectrum of Wind Waves

The statistical quantity developed by oceanographers to relate the height of ocean waves to their length
is the waveheight spectrum. It will be seen later that this spectrum also appears directly in radar scatter
theories. The most general form for this spectrum contains two spatial wavenumbers (x, 4} and one temporal
wavenumber (c) to describe the waveheight {(x,y.t} as a function of its three independent variables; we denote
it as S(KX,Ky,w).

For a random-like system of wind waves, we assume that the dominant wind and wave direction is in
the +x direction. Then we car express the surface height in a Fourier series as a sum of traveling waves:

= o0

£= 2 Plmakemeny-iki = ) pey aGmety)iop (12:6)
m,n’k=goo m,n=-eoo
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Here a = 2n/Lgand w = 2n/Ty, where Ly and Tz are the wavelength and period of the fundamental components
in the expansion. The wavenumbers of each sinusoid are then xy = am, Ky = an, w = wk. The first summation
in (12:6) is more general, assuming no parlicular dispersion relationship. Because first-order water waves are
constrained to follow the dispersion relationship expressed by (12:4), however, it is possibie to simplify this to
a double summation over two independent indices (or wavenumbers); the third is given in terms of the first
iwo as

wy = sgn(am)(a)' /2 (m? + n*)M* = sgnli g Ky kyF)E (12:7)
where sgn{u) = £1 depending upon whether its argument w is *.

‘The first-order spatial/temporal average waveheight spectrum can now be written in terms of the
Fourier coefficients of the expansion {Barrick, 1972):

’(27{'}3 H]( = -m
g S{ky Ky ) for{n =-n
Lt K =k
<P(mn)P(m’,n k> =9 {12:8)

0 for other m'.n' k'
.

FroN\2
2n m =-m
(Lf) S{Kx,icy) for {nr v

and . <P(m,n)P(m’,n")> =1 (12:9)

0 for other m', n'
-

Again, using the first-order dispersion relationships it is possible to express the more general
S(ux,;cy,w) in terms of the directional spatial speetrum, S(nx,rcy):

Sy ) = Sy k)8 - wy) (i2:10)

where wy, is given in (12:7) and 8(u) is the Dirac impulse function of argument ©. The normalization here is
such that the mearn-square surface height is

o0 oo [==] oo o
n = <g*> =f dxxf dfcvf e Sy Ky, :f diy ] diey S(igry) (12:11)
s O — o - -] oo -

One can define a non-directional temporal spectrum S{co} as follows:

S{w) =j:oo dKX[m diey S(Ky,h’,y,w) =[w dnxj:m ity S(k k3 )8(w - wy) (12:12)

It turns out that oceanographers can conveniently measuse St} directly ina number of ways. For a review of
these techniques, see Kinsman (1965). Many have reported detailed observations of 8(w) for wind-driver
ocean waves. Others have attempted to fit empirical laws to these observations to relate the spectrum to the
wind speed. One such set of observations is shown in (F12.34) taken from Moskowitz (1964); these carefully
selected specira for deep-water waves are fully developed only at wind speeds below 30 knots, however.
Moskowitz notes that on the open seas, the fetch and duration are rarely sufficient for winds above 30 knots
that the sea will reach a fully developed condition. Thus observed spectra at these higher winds will usually be
lower than models developed for fully developed seas.

Several semi-empirical models for wind-wave spectra enjoy popularity, among them are the
Neumann-Pierson, the Pierson-Moskowitz, and the Phillips spectra (Kinsman, 1965). These differ chiefly in the
form postulated for the lower-end cutoff. Because of its mathematical simplicity and for general lack of
detailed information about the cutoff (which is observed to be quite steep in the absence of swell), we shall
here employ the Phillips model when this function is needed for quantitative estimates. Furthermore, since
observations indicate that a specific directionality is difficult 1o justify {(Phillips, 1966; Munk and Nierenberg,
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1969), we shall assume that the model is semi-isotropic. This means that all directions in the +x half-space are
equally favored in amplitude by the waves. This model then has the form

2 -
B/I:Izﬂ(xxz + Ky?')j] for k =4Sk, 2 + Kk, > gl

S(xx,xy) = (12:13)

0 for k =4/, > + Kyt < gfu?

] E i T ! i I I I
- 1200 B5x 107
1200 20 knats ‘! Eﬂﬁ& for f>g/izmu)
5= f
G for f<g/{2yu)

w1000 f — w000 -
o L
7 eoof— ~ & scof 40 knot qutoff .
: : \
£ 2
g soof- - § s00k- 35 knol cutoft —
a o
@ @
.

4 3 L =
§ = 30 knot cutaff
a 2
e £

— 200 — —

| 25 knot cutoff
25 H 20 knot cutoff
20, | i
— o
1] oI5 020 azs ) 005 0.0 15 0.20 025
Frequency , Hertz Frequency , Hertz

Figure 12.3 Measured and model waveheight temporal spectra. {a) Measured [after Moskowitz, 1964/, seas
are not fully developed at winds above 25 knots. (b) Phillips model for fully developed seas.

where B is a dimensionless constant observed by Phillips (1966) and others to be approximately 0.005. Energy
in this spectrum {s spread symmetrically over both positive and negative wavenumbers. The above model shows
the spectral saturation observed when the wavenumber x exceeds the lower-end cutoff, given in terms of the
wind speed u by g/u®. In this saturated region—often called the equilibriuin region—the Phillips spectrum
follows a k=% law.

From (12:13) and {12:12), the temporal non-directional version of the Phillips model is found to be:

g2 Bjw® for w > gju

8(w) = (12:14)

0 for w < glu

where again the crergy is distributed symmetrically for +w. Figure (12.3b) shows plots of (12:14) for
comparison with spectra observed by Moskowitz.

Physically, our Phillips model implies that the wind does not affect the shape of the specirum in the
eguilibrium region. As the wind increases it merely drives the cutoff lowes, piling up more energy beneath the
spectrum (and increasing the rms waveheight}. This assumes of course that one waits until the seas are fully
developed al a given wind speed. The reason for this effect on the lower-end cutoff can be explained simply.
The longest (and hence fastest) waves which can be excited by the wind are those whose phase velocity, v,
matches the wind speed u. The length of these waves is given by the dispersion relationship (12:3):
[(eLeo)/(2m)] = (gfk o) = v2 =u®, Solving this for x.,, we obtain g/u’, the sinusoid with the smallest (or
cutoff) wavenumber which is excited by the wind with speed u.
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12.1.5 RMS Height and Slope of Wind Waves

The rms (or significant) waveheight, as mentioned previously, is the essence of sea state. The rms slope
of water waves, while not as directly indicative of sea state, appears frequently in scatter theories, especially
specular point theorjes for microwave frequencies. Hence it is desizable to have guantitative estimates of the
dependence of each on wind speed for fully developed seas.

The mean-squate waveheight, h?, can be obtained directly from (12:11) by using the Phillips spectrurm
(12:13). This gives

4 .
h* =-2—ga’m2 ,or h=.016u%m , (12:15)

where B = 0.005 (a dimensionless constant), u = windspeed (m/s), and g is the acceleration gravity (9.81 m/s?).

The mean-square slope can be obtained in a sinilar manner. Since we have aiready assumed a
1o
27 ¢
where 2 is the fotal slope at a point on the surface. We obtain a result for s —after integration of the Phillips
spectrum—which depends upon the upper (as well as the lower) bound on the spectrum. If one is inte!rested
only in the slope of the gravity waves, then jt makes sense to take as the upper Hmit k.~ 0.038 m™", the
boundary between the gravity and capillary wave tegions. We then have

2
s =Bt ("Cﬂ“ ) (12:16)

=]

1
semi-isotropic directional pattern for the Phillips spectrum, we have <& §§>:<§§ = 2<§‘§(+ §'§,>=

Often in the specular point theories applicable at microwave and higher frequencies, the slopes of the
capillary waves do in fact affect the magnitude of the scatter. In this case, the mean-square slope should
include these capillaries. Phillips (1966) and Miles (1962) show that for high winds, about haif of the
mean-square slope comes from the capillaries, and one needs to add a term to (12:18) for v>5m/s to
account for viscous dissipation. This correction term is

K
=B Qn(_l.).)’ (12:17)
K

[
where B’ = 0.015 (dimensionless), k,, 2 3.2 u®® ¢m™!, and as before k= 3.8 em L.
A simpler empirical telationship derived from (F4.17) of Phillips (1966) can be obtained which
includes the effect of capillary slopes as well as the slopes of the gravity waves. It is valid roughly for
1 mfs <u<{15m/s.

$? >55X 103y, ers = 0.074/u . (12:18)

12.2 MF/HF Radar Scatier from the Sea

One of the more thoroughly established radar techniques for remote sensing of sea wave characteristics
uses frequencies in the MF and HF regions. Recent quantitative theories, confirmed by a variety of
experimental configurations, lend considerable credence to the concept. We review first the physical
mechanism and theoretically predicted echo strength, and then apply these results Lo several monostatic and

bistatic concepts at MF and HF. Supporting experimental data for these techniques is presented where
available.

12.2.1 Predicted Magnitude and Physical Nature of Sea Echo at MF/HF

Sea echo at frequencies below VHE has been observed Dy radars since World War I1. Crombie (1955)
appears to have been the first to correctly deduce the physical mechanism responsible for this sea scatter.
Based upon HF experimental observations of the backscatter Doppler signal spectrumn, he noted that—in
contrast with a typical noiselike clutter—the sea echo always appeared at a discrete frequency shift above and
below the HF carsier. These discrete Doppler shifts could not be produced by all of the ocean waves
illumninated by the radar, since according to (12:3) waves of different lengths move at different velocities and
hence would produce echoes at many Doppler shifts. Thus, working backwards and calculating the ocean wave
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velocity from the observed discrete Doppler shift, and then the length of the ocean wave traveling at this
velacity, he arrived at the following rather startling result: The only ocean wave from the entire spectrum
present which produces backscatter at HF has a wavelength precisely one-half the radar wavelength and is
moving directly toward andfor away from the radar. The observed Doppler shift of the sea return was seen to
increase with the square root of the carrier-frequency—rather than in direct propertion, as with a discrete
moving target—{urther confirming this explanation (following the square-root relationship between velocity
and length of gravity waves, as given in (12.3)). Hence the experimentally deduced mechanism was seen to be
“Bragg scatter”, the same phenomenon responsible for scatter of X-rays in crystals and light rays from
diffraction gratings and holograms.

Quantitative theoretical analyses of the scatter problem lagged these experimental deductions by
several years. Peake (1959) appears to have been the first to reduce the classic statistical boundary
perturbation theory of Rice (1951) to ¢°, the normalized average scattering cross section per unit area for a
slightly rough surface. Barrick and Peake {1968} noted that this result, when interpreted, shows that scatter is
produced by the Bragg mechanism, in agreement with Crombie’s deductions. Based upon a deterministic
analysis of backscatter from sinusoidal waves, Wait (1966) independently obtained a result which was
explainable via Bragg scatier. .

No atternpt was made until very recenily to apply these scatter theories to (he sea, which, as we have
seen in the preceding section, has a unique waveheight spectrum and simpie first-order dispersion relationship
between spatial and temporal ocean wavenumbers. Barrick (1970, 1972) and Crombie (1971) both have
obtained quantitative predictions for the scattered signal spectrum for sea echo, including the temporal
variation and the dispersion refationship for the ocean waveheight. The resulis and notation of Barrick are
somewhat more general and will be employed in this chapter; Crombie’s solution for backscatter agrees both
quantitatively and qualitatively with Barrick’s, serving as an independent check.

The technique used by Barrick was initially applied by Rayleigh to scatter of acoustic waves from a
sinusoidal surface. It was generalized by Rice to permit the analysis of the average electromagnetic signal
intensity scattered from a randomly rough surface. Basically, one employs a Fourier series expansion for the
surface, as given in (12:0), and then expands the three components of the electromagnetic field above the
surface into the same type of series with the same wavenumbers (am, an wk), but with unknown coefficients.
These coefficients are then determined by enforcing the boundary conditions at the surface. The fields at the
boundary are expanded in a perturbational manner, permitting an ordering of the terms and a straight-forward
solution for the unknown field coefficients. Mathematical details are found in Rice (19351), Peake (1959), and
Barrick (1970, 1972).

This boundary perturbation approach requires the assumption of the following limitations in order to
be mathematically valid: (i} the height of the surface must be,small in terms of the radio wavelength, (ii)
surface slopes must be small compared to unity, and (iii) the impedance of the surface medium must be small
in terms of the free space wave impedance. These conditions are all satisfied by the sea below mid-VHF,

The solutions obtained from the Rice perturbation technique possess some similarity to those obtained
earlier by Davies (1954) for a slightly rough surface using a physical optics technique. The perturbation results
are superior, however, for two reasons: (i} they contain polarization dependence and correctly predict
near-grazing scatter for vertical polarization, whereas physical optics does not, and (i) they are mathematically
valid in the low-frequency limit {as wavelength approaches infinity), whereas the physical optics
approximation will eventuatly fail its inherent requirement that surface radii of curvature be much larger than
wavelength.

Before giving the solutions for the scattering coefficients of the sea, we first review the radar range
equations for average received power and its spectral density scattered from a patch of sea of area dS:

dPp(w) afw) Wirad/s
_ l:"]«"GTGRK1
(47)* RRRF

dPR 00 W

FTFR dS X (12:19)
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where P is the transmitted power, RR and R are the ranges from the scattering paich dS to the receiver and
transmitter respectivety, and A is the radar wavelength. The quantities Fy and FR are the Norton attenuation
factors between the patch and the transmitter and receiver for TM propagation near the surface; they account
for any propagation losses greater than the normal freespace (1/R?) spreading losses, and hence approach
unity for a perfectly conducting flat earth. Gne must be cautious in defining the antenna gains Gy and Gy in
the direction of the scattering patch. For ground-wave or line-of-sight prepagation to and from the patch, G
and G must be the equivalent free-space gains of the antenna; that gain js less than its measured gain in the
presence of the conducting ground by 6 dB. For example, a vertical quarler-wave monopole fed against the
ground would have an equivalent free-space gain for use in {12:19) of —0.85 dB rather than +5.15 dB. For
over-the-horizon ionospheric propagation o the patch, however, one employs the normal gains of the antenna
measured in the presence of tite ground (e.g., +5.15 dB for the quarler-wave monopoleli.

The actual average scattering cross section for the patch of sea within the radar resolution cell of area
dS(m?) is then gdS(m?). Hence, oV js the average scallering cross section of the sea per umit area. Its
counterpart in the equaiion for received power spectral density is o(c), the average scattering cross section per

oo
unit area per rad/s bandwidth. The normalization used here is such that 09 = -,1; f olw)des.

Referring to (F12.4) which defines the incidence and scattering angles at the sea surface patch d3, we
can write the following expressions for o{w) and ¢ for vertically incident and vertically scattered polarization

(Barrick, 1972):
$5 orh
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Figure 12.4 Local geometry near scattering patch,

+ Any ionospheric attenuation losses could in this case be absorbed in a factor similas to FYFR.
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Oyy(e)
Wik,(sin 64 cos g - sin 83), kg, sin 6 sin g, e - wy]
= 4nk¥(sin 8; sin 6 - cos gl X
Wlk(sin 8 cos gg — sin 6;), kg sin 65 sin gl ,
o0y (12:20)

where kg, = 2n/A is the radio wavenumber, w,, is the radiant carrier frequency, and W(Kx,xy,w), W(Kx,xy) are
the first-order spatialf/temporal and spatial waveheight spectra of the sea, respectively; they are related to the
spectra defined in (12.1.4) byt

Wikl y,00) = 22 S(K g,k y,0); Wik k) = 97 S(exaky) - {12:21)

Equation (12:20) was derived assuming that the scattering patch is perfecily conducting. For the sea ai
MF/HF, this approximation is quite valid. The only seemingly confusing issue is the fact that when either the
incident or scatter polarization state is vertical, and when the propagation angle for that polarization state
approaches grazing, the scattered power remains finite. For a finitely conducting surface medium, the result
analogous to (12:20) would always approach zero at grazing. This apparent difference is reconciled by Barrick
(1972); the effect of finite conductivity for vertical polarization is separated from the scattering cross section
and expressed as the Norton attenuation facters, Fp and Fg, in (12:19). Since vertical polarization is the only
mode which can propagate efficiently as a ground-wave near the sea at MF/HF, most experiments would
logically employ vertical (or TM) if one or the other paths to the scatier patch grazes the sea surface. Hence,
one can handle the analysis of such an experiment by treating the sea surface patch as perfectly conducting,
and then accounting for the finite conductivity by employing the Norton factors Fp andfor Fp, depending
upon whether the incident and/or scatter states are vertically polarized.

If one or the other or both polarization states are not vertical, one can modify (12:20) in the following

manner to give the other three cross sections and spectra for the seafi: th(w)/a?,h. crhv(m),’aﬁv, and
opp(w)fofl, are obtained by replacing the factor (sin¢;sin 8¢ — cospg)® in (12:20) by (cos 8; sin vy)*,
(cos 8¢ sin o), and (cos 8; cos &g sin @g)” , respectively. Thus the dependence of scatter upon the nature of
the roughness is the same for any polarization siate; it is contained in the surface height spatial/temporal
spectrum.

Physically (12:20) is interpreted as follows. The ocean spatial wavenumbers (Kx,!{y) which are
producing scatter are given in terms of the radio wavenumber, k,,, and observation angles 8;, 85, o5 by
Ky = kofsin 6 cos g —sin d;) and kg, = kg, sin &g sin ¢ These, however, are precisely the wavenumbers
required of a diffraction grating which is to scatter a wave incident from ] into a direction g, ;. Hence, the
theory shows that the ocean surface produces scatier by the simple Bragg mechanism, which confirms the
experimental deductions of Crombie (1955). Furthermore (12:20) implies that, in order to measure the
directional spectrum of the sea, orie can measure the sea echo (ie., o{w) or 0¥} and vary kg, 85, 05, or wg in
whatever manner is most convenient experimentally. Different schemes which vary one or more of these
quaatities are to be examined in the following subsections.

Having the radar range equation (12:19) and ihe expression for the sea scatter cross sections (12:20),
one can now analyze any monostatic or bistatic configuration by integrating (12:19) over the area illuminated
within the radar range cell and/or beam. Examples will be considered later. To obtain estimates for the
received sea-scatter power magnitude for quantitative system design, one can employ the Phillips spectrum
(12:13) in (12:20). Use of this spectrum for sufficiently high wind speeds (such that u? > gl X

sin® #; — 2 sin 0; sin 04 cos g + sin® 8,) provides an upper limit on received power; for winds and seas which
are lower, the received power will be always less than this amouni.

+ We apologize for the inconsistency in nétation for the waveheight spectrum. Unfortunately, oceanographers independently
established the convention using §, while scattering analysis adopted the Rice convention based npon W. Both are currently
found in the literature, depending upon the discipline preferred by the user. Consequently, we employ both here and give the
connection between them to facilitate reference to other works.

++The first subscript always refers to the polarization state of the incident wave, while the second denotes the state for the
scattered wave of interest.
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12.2.2 Backscatter MF/HF Experiments

We consider in this section possible backscatter experiments employing MF/HF radars. These are in
almost all cases either surface-based ground-wave or ionospheric sky-wave configurations. In both situations,
oy and 8y, 05 are sufficiently close to grazing {i.e., within 207) that the sin @ factors appearing in (12:20)
can be replaced by unity. We then have

Ffw) W(-2kg, 0, w - wg)
= 167k} X (12:22)
od W(-2kg, 0) .

It is understood of course that the waveheight spectrum wavenumbers 1y and &, (in the x,y directions) are
defined af the scatrering patch dS. Hence, as one integrates (12:19) over the surface 3, (12:22) implies that the
X-y axis at the patch remain constant with respect to the radar line of sight, and therefore must rotate as the
line of sight changes in azimuthal position on the ocean. Thus, as one swings the radar beam by 90°, he is not
only looking at a different patch of ocean, but with the k. & waverumber positions in (12:22) interchanged.

Let us first calculate () and 03‘, based upon tge fully developed Phillips spectrum model, and
compare these predictions with experimentat evidence. Using {12:13)in (12:22), we have

T fw} =4 X 1073 8(w - wy +1J2gko) :
0% = 002 =-17dB . (12:23)

It was initially assumed that waves were traveling only in the +x direction (away from the radar). If waves are
also moving into the —x half-space (toward the radar), then we have an impulse function at cw = g 4 ﬁgko,
as well as the one at w = wy —4J2gk, shown above. Thus one sees that in gencral, according to the first-order
theory, all of the energy backscattered is contained at two discrete Doppler shifts (i1|2gk0) from the carrier.
Secondly, the magnitude of 03\;, the average backscattered cross section per umit area, has as its upper limit
—17 dB, as defined according to (12:19).

Let us now compare both of thesc predictions with experimental evidence based upon ground-wave
radar configurations. One set of recent ground-wave measurements of sea backscatter was made by Headrick of
the Naval Research Laboratory (Barrick, 1972) at 10.087 MHz, in which he obtained measurements of U%{. In
the experiment, two vertical monopoles were located near Annapotis, Maryland, on the upper Chesapeake Bay.
Spectral processing permitted separation of water-wave scatter from stationary ground clutter echoes. The
signal format used provided a 20 nmj tange resolution cell. The Norton attenuation factor Fr (=FT1) was
calcutated for four range cells at different distances on the bay using the pertinent water conductivity (ie.,
~ 2 mho/m). :

Data were recorded and processed on Fehruary 4, 1969, a day on which a moderate wind was blowing
from tne north. Waves receding from the radar were observed to be stronger due to the wind, and water waves
of the Bragg scatter length A/2 (15 m in this case) were estimated to be fully developed. The average received
power from the water was processed at four ranges down the bay: 45,55, 67, and 75 nmi. Propagation to all
of these points was via groundwave since they were all below the radio horizon; thus one must compare
measurements with a.‘c,’v at grazing incidence, as given in (12:22) or (12:23). With the water area within each
resolution cell (i.e., dS) estimated from maps of the bay, this [actor—as well as the Norfon attenuation
factors—were removed from the radar equation. This yielded experimental values for agv of —17 dB at all four
rangest.

The fact that the 15 m long water waves were fuily develeped {only a 9.4 knot wind is required to
arouse waves of this length) means that the backscatter might have been expected to approach the Phillips
saturation estimate in {12:23) as an upper limit. The agreement between measured and predicted values of ogv
not only lends credence to the theory, but confirms the oceanographic estimate of the “Phillips saturation
constant”, B=0.5 X 1072 used in (12:13).

?I:I-‘?drick employs the actual antenna gains rather than their effective free space gains. Hence his reported values of ~294B

with {12:19) correspond 1o o}y, of —17 dB by our definition —GdB caused by each antenna.
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As fusther evidence of the validity of the first-order theory for ocean-wave scatter, we cite recent HF
measurements by Crombic et al. (1970) from Barbados Island in the West Indies. Again the antennas were
located near the water so that propagation to ranges beyond the horizon was via ground wave. In this case we
examine Crombie’s received signal spectrum; a very high spectral resolution of 0.002 Hz was obtained with
digital signal processing. Backscatter was received with broad-band vertical monopole antennas from the
half-space toward the east.

Shown in (F12.5) are the relative received power spectra measured simuitaneously on August 15, 1969,
at 2.9 and 8.37 MHz from the range cell at 45 km. Coherent processing at a 0.5 Hz offset (removed in the
figures here) permits both negative and positive shifts above the carrier o be observed. The first-order peaks
{corresponding to our impulse functions in (12:23)) oceur as predicted at 0.174 Hz from the 2.9 MHz carrier
and 20.296 Hz at 837 MHz. The relative strength of the positive spike over the negative spike at both
frequencies agrees with the dominant wind direction in this ared; trade winds from the east should excite
west-moving water waves, producing a positive Doppler shift. Lesser spikes in the records at 0.0 Hz, +0.25 Hz
for 2.9 MHz and at +0.42 Hz for 8.37 MHz are attributed by Crombie as due fo higher-order hydrodynamic
and electromagnetic contributions. Theory of such processes is examined in a later subsection.

We turn attention now to two ground-wave backscatter experiments which can be used to measure the
waveheight spectrum of the ocean. In both cases, one must vary the frequency (and hence the Bragg
wavenumber, 2k,,) which samples the ocean waveheight spectrum in (12:22) over its significant lower end. If
we assume that the spectrum cuts off at 2 wavenumber somewhere near gfu® (£=9.81 m/s?, u= wind speed,
my/s,) then for higher winds and seas one must use lower frequencies. A plot of the backscatter radar frequency
required versus wind speed is given in {F12.6); one of course should actually employ a frequency lower than
this (by possibly 20 percent) to ascertain the spectrat behavior below cutoff,

The first experiment, discussed and tested by Crombie (1971), employs azimuthally omnidirectional
antennas on the coast. Using pulsed signals and a range gate set at 22.5 km from the radar, Crombie obtained
the average received power at as many as eight frequencies, ranging between 1.7 MHz and 12.3 MHz. With such
an experiment, one is simultaneously observing sea scatter from a semi-circular annulus, and it is assumed that
the sea is relatively homogeneous over such a circle (ie., that the directional ocean waveheight spectrum is
essentially constant over 45 km). This assumption is reasonable for on-shore winds and waves; for off-shore
winds, however, ihe limited fetch does not permit the waves nearer the shore to build up as high as those more
distant. Crombie (1971) notes thal even at 100 km, higher off-shore waves may still not be fully developed.
Hence if one spectrally processes the signals and employs the energy only in the Doppler line #bove the carrier,
the homegeneity assumption should be valid.

Since the antennes in this experiment are azimuthally omni-directional and since the received energy
from everywhere in the semi-circular annulus oceurs at the same Doppler shift, it is not possible to obtain
the directional waveheight spectrum. One can obtain the non-directional waveheight {emporal spectrum, which
was defined in (12:12) and exemplified in (F12.3). To do this and relate S(w) to the received power, PR, at
carrier frequency f,, one must integrate the second version of {12:19) over the semi-circular amnulus, using
(12:22) and (12:12). The ore-sided spectral result is

S(V4ﬂgfofc) = %Ré i—? (GTGRF“\/angfo/c)'1 m? [rad/s {12:24)

where ¢ is the free-space radio wave velocity and AR is the width of the range-resolution cell. It must be noted
that several of the factors on the right side of (12:23) may vary with frequency, including antenna gains,
transmitted power, and the Norton attenuation factors,

Shown in (F12.7) are several such temporal spectra reduced by Crombie from observations off
Barbados Island in the West Indies (plotted versus Hertz rather than rad/s). In the upper two, he was able to
compare the predicted significant waveheight {obtained from integrating the arca under the spectrum) with
laser profilometer measurements of significant waveheights; the agreement is good. In the bottom plot,
Crombie shows also a Plerson-Moskowitz model spectrum predicted for a 20 knot wind and fully developed
seas for comparison. Crombie cautions that the spectra to the left of the line marked “minimum observed
frequency™ are estimated; in the upper pair of records, the estimatad portion is a substantial portion of the
arca under the curves. This points up the importance of employing & sufficiantly low (MF) frequency if one
wishes to obtain spectral detail in higher sea states.

A variation of the above backscatter experiment can provide the directional rather than merely the
non-directional waveheight spectrum. The azimuthally omni-directional antenna is placed on a moving ship at
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Figure 12.7 Temporal waveheight spectra deduced Jrom MF/HF ground-wave backscatter observations {after
Crombie, 1971},

sed. In this case the sea return does not appear at the previous single set of unique Bragg Doppler shifts around
the carrier, for the ship’s motion introduces a different Doppler hias on the return from each point around the
range ring. This Doppler shift is wgp = 2w, vy, cos 8/c, where vy is the ship speed and @ is the angle from the
ship’s bow to a point on the range ring. We assume again that the ocean waves are moving predominantly into
one half-space and that the “sea state™ is homogeneous over the area of the ring. Then the one-sided power
spectral density from a givén element of arez on the ring (i.e., dS= RARAH) is found from (12:19) and
€12:22) to be
24 PTGTG'RFa ARAS

dPp(w) = T S(2kg cos 8, 2k, sin #)8(cw - ot wy - wycosd), (12:25)
o

where wp, = Jwavgp /e is the maximum ship-induced Doppler shift and wy =442ek, is the Doppler shift from
the gravity waves. To obtain the average power density spectrum, Pr{w), from (12:25) we must integrate aver
&#. The resulting one-sided spectrum Pplc) is seen to consist of two “pedestzls”, cach centered at wq 2ek,,.
Thus one can relate the spatial directional waveheight spectrum, S(KK,K},) to, say, Pp(w) within the positive
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pedestal at g+ 2gk, as follows:

R3k,.2 Pofw
S(zkon/wm, zko\h e qlfwmr:) :m o - nz—gi—-l, (12:26)
= TYR:

where 11 = (w - wy ~‘\f2gk0, and where it is understood that PR(w) is non-zero only within the pedestzal region,
ie., |nl Sy

Thus, by examining the received power density spectrum Pp{w), one can obtain the directional spatial
spectrum of ocean waves for spatial wavenumbers #y =2k, cos 8, ity = 2k, sin @ over all # by noting that

cos 8 = nfewp, and sin 8 = ‘\!1 =n* fewk. Asin the preceding experiment, one must vary the carrier frequency

{or k) td sample the spectrum at a different roa/ wavenumber, & {k = ek + K%, =2k,). Also, it must be
noted that there is an ambiguity with this technique, for waves propagating symmetricalty with respect 1o the
ship axis (i.e., z8) will be indistinguishable in their Doppler characteristics. Ship course changes can readily
resolve this ambiguity, however.

Up to now, we have discussed only ground-wave backscatter radar sensors. These are limited in range to
perhaps 100-200 km around the radar. Several investigators have recognized the potential of sky-wave
(ionospheric) radars as remote ocean wave sensors (Tveten, 1967, (Ward, 1969), (Hasselmarn, 1971); such
shore-based radars could look at ocean areas as remote as 3200 km away. Since the normal range of elevation
(or grazing) angles with ionospheric radars is usually 20° or less, {12:22) is adequate to describe ionospheric
backscatter from the ocean.

As an example of ionospherically-propagated sea backscatter, we show in (F12.8) an averaged spectrum
made by Bamum (1971) using a wide-aperture antenna at SRI in Californiz, tooking into the Pacific Ocean.
Averaging was done over 16 range cells, each of which was approximately 1 km long by 10 km wide. At the
particular time this record was made (~1500 local time, 30 March 1971), the ionosphere was quiet, and the
resulting signals are relatively “clean” compared (o similar signals under disturbed conditions. The frequency
used was 25.75 MHz, the sea area illuminated was ~2700 km from the radar, and the clevation (or grazing)
angle was about 6°. Use of coherent integration in the receiver/processor of 25.6 s permitted a spectral
resolution of approximately 0.04 Hz.

The predicted first-order Brage backscattered Doppler shifts at 25.75 MHz should occur at +0.518 Hz
from the carrier. 1t should be noted from (F12.8) that ionospheric motion imposed an overalt shift, or offset,
from the carrier of about 0.07 Hz; such offsets are common with ionospheric radars. However, one should
note that the distance between the two first-order Bragg lines (2 X 0.158 Hz in this case) is independent of
such offsets, and can in fact be used to determine the offset. On the day this sea echo was recorded, Barnum
ascertained from weather maps of the illuminated ocean area that the wind {~20 knots) was blowing in a
direction 250°, and that seas with 12 fi significant waveheights were reported moving predominantly in a
direction 260°. His radar beam was pointed in a direction 242°; hence predominant wave movement was away
from the radar, which is confirmed by the preponderance of the negative Doppler components over the
posilive components. Noted also by Barnum are the positions (relative to that of the first-order Bragg line) of
other “higher-order” peaks in the scatter spectrumn. Analysis of such higher-order contributions to scatter will
be discussed in a subsequent section.

Tonospheric radars hold considerable promise for quick and simple routine monitoring of sea state
hurdreds of miles from the radar site. Detailed waveheight spectra and directional information on ocean-wave
movements are probably not possible with such a radar however. The system sees only those waves in a given
part of the ocean moving toward and away from the radar at about one-half the radar wavelength. At a given
tange and time of day, it is not possible to sweep the frequency of an ionospheric radar over a very wide band
due to propagation conditions, Dusing the daytime, one is usually restricted to about 17-30 MHz, while at
nighttime one can operate between 9-17 MHz. Hence, the important lower end of the gravity wave spectrum
can rarely be observed with an ionospheric radar via first-order Bragg scatter. Recent analyses and
interpretations of the higher-order peaks in the received signal spectrum may provide additional useful
information on the state of the sea not possible from the first-order Bragg lines. Signal fading and
multi-moding in ionospheric propagation at times can produce quite confused spectral records, obscuring
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Figure 12.8 Jonospherically propagated sex backscatter speetrum at 25.75 MHz { after Barnum, 1971).

higher-order, less prominent peaks. Nonetheless, ionospheric radars—properly expioited—will eventually prove
to be valuable remote sensors of sea state.

12.2.3 Bistatic Surface-Based MF/HF Experiments

Upon the discovery of the Bragg effect as the first-order mechanism responsible for sea scatter at
MF/HF, several groups independently recognized the potential in bistatic concepts for ocean wave sensing.
Uniike backscatter radars, a bistatic radar at a given frequency can measure the strengths of ocean waves of
several wavelengths and directions of movement; furthermore, it is possible to relate the scattering ocean
wavelengths and directions to the radar observables (namely time delay and Doppler shift). This can be seen by
wiiting the first equation of (12:20) for a bistatic radar with both transmitter and receiver on the surface

(0;=0,= -"2'—). Using (12:10) in (12:20), we obtain-

O {w) = 28 7k? sin“(g)s [kolcos v - 1}, & sin ] ﬁ[w - Wy +\f2gk sin (@fQ)J: {12:27)

where 180°—y is the bistatic angle at the scatrering patch between the lines to the transmitter and receiver.
Thus one sees from (12:27) that the sea echo from different patches having different bistatic angles o will
return at different Doppler shifts. Thus it is possible to relate the echo strength at a given Doppler shift to the
local sea waveheight directional spectrumn evaluated at wavenumbers #y =ko(l — cos @) and Ky = kg sin .
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Figure 12.9 Geometry of bistatie ground-wave MF VHF radar.

Several investigators have examined such systerms: Barrick (1970), Teague (1971) and Nierenberg and
Munk (1969) ail anatyzed the relationships between time-delay and Doppler space (t, ) and the Bragg spatial
wavenumber space (xx;xy). Signals arriving at a given time delay in a bistatic radar system are all scattered
from an ellipse having the transmitter and receiver poinis as foci, i.e., (R + Ry)/e = t, where Ry and Rp, are
the transmitter-scatterer and scatierer-receiver distances. Such a configuration is shown in (F 12.9). Toillustrate
this transformation, let us normatize the ohserved Doppler frequency to that for ocean-wave backscatter, i.e.,
fN= fD/(\ /ngofzﬂ). Since the observed Doppler shifi, as seen from {12:27) is always greatest. for backscatter,
we have 0 < [fiyi < 1. Nierenberg and Munk further define a quantity X equal to ffq; it is exactly equal to the
magnitude of the spatial wavenumber of the ocean waves producing Bragg scatter at a given point divided by
k. Thus 0<KK <, with X =] occurring for backscatter (p = 7). The other radar observable, time delay, is
also normatized by dividing by ty, the time delay experienced by the direct signal propagating between the
transmittet and receiver separated by distance 2d {tg=2d/c): S= t/tg. Then 1 < S < o0, We also normalize the
ocean spatial wavenumbers by dividing them by 2k, ie., U= Ky f2kg, V= xy,’Zko. Then the transformation
relates K or fyy (Doppler shift) and § (time defay) for a point on the eiliptical annulus to the ocean
wavenumbers U, V responsible for scatter. Since ¢ < UL, IVI<C 1, we would like to be able to determine the
ocean waveheight spectrum for all U, V in this range by observing K and S. Figures (12.10) and {12.11) show
this transformation. The figures show that while it may be possibie to find a [amily of time delays and Doppler
shifts corresponding to a given wavenumber, U, it may not be possible to find a single time delay and Doppler
shift if one specifies both U and V. To be able to do so would mean that the curve for U and the curve for V in
terms of 8 and K intersect somewhere. [t can be seen that many of the curves do not in fact cross (e.g., curves
of U and V each near unity do not intersect}. Furthermore, the confluence of both sets of curves to the upper
right indicates that if they do cross in this region where they are nearly parallel, accuracy in the practical
determination of U, V and S, K will suffer. These equations are explored in greater detail by Teague (1971).

We now proceed to find the general expression for the received signal spectrum Pp{w) in terms of the
spatial waveheight spectrum of the surface for a given time delay and Doppler shift. This is most easily done
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by converting to elliptic coordinates, ¢, 8 and then integrating over @ around a given elliptical annulus. We
femploy {12:27) in (12:19), but nate that the wavenumbers in S of (12:27) are vriented with respect to the
incidence direction at a given scattering pafch; we must convert these to a space-fixed set of wavenumbers in
order to determine a directional waveheight spectrum. The x-direction, and hence i, wavenumber direction,
for this space-fixed frame is taken as the baseline comnecting the receiver and transmitter (i.e., 8 =0). As
before,l we assume that the sea is homogeneous over the area of an eliipse; this will restrict one in practice to
transmitter-receiver separations no greater than about 200 km.

The. elliptic coordinate u can be defined in terms of time delay as cosh p = t/tg = 8, where t4 = 2d/c is
tl}e transmlttenrecei\.fcr time of ilight. The effective pulse length, r, defines an elliptical annulus of width Ay
ngenvby 7/tg = Au sinh p. The increment of area. or scattering patch—on the annulus is d$ = RyRpAudd; as
menticned above, we intend to integrate over #. The transmitier and receiver distances at g, 8, it
Rr= d{cosh ¢ - cos #) and Rp = dfcosh g + cos @). We note that in general, transmitter and receiver antennas
may be directional, implying that G and G are functions of ¢ and 8; we assume here that both antennas are
azimuthaily isotropic for conveniencet. Furthermore, the Norton attenuation factors F?r and FZR are
complicated functions of range R and Rp. If frequency is restricted to the lower HF and MF region, and
transmitier-receiver scparation is kept less than 200 km, these factors are approximately unity, a fact which
simplifies the integration; we make this assumption also.

We then perform the integration over 8. Two Doppler constants are defined in order to simplify the
notation: wp = wy E\J2gk, and wg = 2gk, tanh u. The former is the Doppler shifi for backscatter,
accurring here at the ends of the eliipses. The laiter quantity is the Doppler shift which arises from ocean
waves at Lhe sides of the ellipse; hence it is the minimum Doppler shift observed for a given time delay.
Defining Doppler shift as 7= 6 - wg, we then huve a non-zero signal spectrum only for wg < Inl < wp. In
terms of these constants and time delay, t (or g = cosi™ (i1}, we obtain the following expression for the
directjonal waveheight spectrum as a function of the observed one-sided received power density spectrum.

¥ Field tests of this concept—to be discussed—employed simple isotropic antennas.
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In order to obtain a feel for the appearance and magnitude of the received signal spectrurn Pgr(w) with
such a system, we employ the Phillips model for the waveheight spectrum of ocean waves, ie., (12:13). We
assume that wind speed is sufficiently great that all ocean waves which can produce scatter are present and
fully developed. We employ as antennas two vertical ground-fed quarter-wave monopoles with equivalent
free-space gains of 0.82; they are located 2d = 100 km apart, Two frequencies are considered: 5 and 10 Mliz.
The signal pulse is rectangular in shape and taken as 12.5 us, and we consider the sea-scattered signal
originating from the elliptical annulus at a delay ¢ = tq + 7, Le., one pulse length after the arrival of the direct
pulse. The signal spectra calculated for this example are shown in (F12.12). Shown there also are the ocean
wavelengths, ocean-wave directions with respect to the baseline, and the wind speads required to excite the
waves responsible for scatier at the indicated Doppler shift. The “ears” near the endpoints of the two Doppler
pedestals are due to scatter from the “stationary™ regions of the ellipse, viz., the sides and ends; they result
from the radicals appearing in (12:28). The heights actually observed for these “ears” will depend upon the
resolution of the spectral processor, since the area {or energy) contained under them is integrable and finite.

The total sea-scattered power received from this ellipse is approximately 1.5 X 107!% Pt at 5 MHz.

This should be compared with a received signal power direct from the transmitter of 3.2 X10-? P7. Hence the
sea-scattered signal is down about 23 dB from the direct signal at this separation.
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Figure 12.12 Predicted received signal spectrq for bistatic seq scatter of F12.9. Solid curves were compuied
for fully aroused Phillips isotropic ocean wave spectrum, Dashed curves represent expected measurements
for mon-isotropic sea. {a) 5 MHz carrier frequency. (b} 10 MHz carrier frequency.

In practice, the received signal spectrum will be lower than that shown in (¥12.12) for the
semi-isotropic fully developed wind-wave model. The dashed curves show more typical shapes; the signal at the
lower Doppler frequencies is likely to be weaker because the longer ocean waves responsible for their scatter
are likely to be present less of the time.

Two groups have reported the results of such bistatic tests; in neither case were details of the ocean
wave directional spectrum known with sufficient accuracy to allow complete quantitative comparisons. Wind
and wave directions were available in an experiment reported by Barrick and Grimes (1970) at 5.8 MHz,
permitting qualitative comparison and agreement; it will be described here. The other experiment was reported
by Teague (1971) and Peterson, Teague, and Tyler (1970); using LORAN A signals (1.85 MHz), this
experiment allowed the observation of quite long ocean waves (i.e., ~200 m wavelength), which are usually
the essence of swell.

The experiment reported by Bamick and Grimes (1970) was conducted off Cape Kennedy, Florida, as
shown in (F12.13). The transmitter was a buoy located 120 km from the receiving site on the coast. A binary
phase-coded CW signat of basic interval 12.5us was employed. The convolution of the sipnal with a replica of
itself produces an effective pulse shape which is nor uniform in amplitude over the 12.5 us, as assumned in the
example considered previously. Hence, the pattern of the illumination over the range gate one 12.5 us interval
behind the reception of the direct signal tapers in amplitude from a maximum at the center of the elliptical
annulus shown in (F12.13) to zero at the baseline. Therefore, one would not expect to see the innermost
“ears” or the sharp inner cutoff-shown in (12.12) for a rectangular pulse. Also, the receiving antenna had a
beamwidth of about 12°, pointing in the direction of the bucy (the transmitter anienna on the buoy was
azimuthally isotropic). Hence, the antenna pattern: tended lo enbance scatter from the regions close to the
haselire and behind the buoy with respect to scatter from regions toward the sides of the cllipse. The average
transmitted power was 10 watts, and the speciral processor resolution was better than 0.01 Hz.

Shown in (F12.14) and (F12.15} are two observed spectra (non-averaged) at 5.8 MHz. Coast Guard
wind and wave data was available for this area. On March 19, 1970, wind and relatively mild waves were from
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Figure 12.13 Bistatic buoy-shore seq scatter configuration empioyed off Cape Kennedy.

the east, as shown at the top of ("712.14). Thus one would expect approaching waves, predominantly from the
region behind the buoy. Such w- s approaching the buoy and baseline should produce positive Doppler
shifts; such a spectral behavior was in fact observed, as shown at the bottom of (F12.14). On March 23,
however, stronger, more variable winds blew from directions ranging between 220° and 315°. The “mean”
wind and waye direction over that day was from the west, as shown at the top of (F12.15). Hence, strong
negative Doppler shifts would be expected from the region behind the buoy. Again, this behavior was
confirmed by the radar observations, Weaker positive Doppler shifts were produced by waves approaching the
baseline, possibly near the receiving end of the path. It should be noted from these figures that the sea echoes
fall within the bands predicted by the first-order Bragg-scatter theory. This represents a further confirmation
of the theory and mechanism discussed here. Teague (1971) also observed that his echoes were always
contained within the predicted “pedestal” region.f

12.2.4 Bistatic Surface-to-Satellite HF Experiment

As a final example of a remote sensing system based on first-order bistatic Bragg scatter, we examine an
orbiting satellite receiver operating in conjunction with several ship or buoy transmitters. The geometry is
shown in (F12.16). This concept was conceived and discussed by Barrick (1970), and is currently being
developed by NASA into an experiment to be flown in the Skylab series of satellites (Ruck, st al,,
1971). This experiment is capable of providing the directional waveheight spectrum (ie., amplitudes
and direction of ocean wave movements) near the transmitter; like preceding experiments, one
must vary the transmitted frequency in some fashion over most of the lower HF band. Unlike previously

T The echo st zero Doppler shift is produced by land scatter behind the receiver, and also by some feed-through of the direct
signal from the buoy,
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Figure 12.14 Windjwave directions and measured bistatic sea scatter Doppler spectrum at 5.8 MHz, 19 March
1970,

discussed experiments, however, the receiver-processor need not be sensitive to the small Doppler shifts of the
moving ocean waves, but rather obtains its directionality from the much larger Doppiler shifts induced by
satellite motion.

The transmitting antenna on the buoy or ship could consist of a simple vertical monopele (whip). The
receiving antenna aboard the nonsynchronous satellite could be a pair of crossed loops or horizontal crossed
dipoles. Short pulses (or equivalent coded sighals) are employed. In general, ocean areas of constant time defay
are represented by the intersection of confocal spheroids with the ocean surface; the foci of the spheroids are
the transmitter and receiver points. The intersection curves on the surface are non-confocal ellipses. So as not
to overcomplicate the mathematics, we consider here (for the sake of example) the casc when the satellite is
directly overhead, for then these elliptical annuli become circular annuli. The Doppler shift from each point on
the ring due to satellite motion is different because of a varying overall range rate around the ring. Thus curves
of constant Doppler shift are radial lines on the surface emanating from the transmitier. For the general case
when the satellite is not directly overhead, these constant Doppler lines are hyperbolas intersecting the ellipses
orthogonaily; this case is analyzed in detail by Ruck et al. (1971).
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Figure 12.15 Wind/wave directions und measured bistatic sea scatter Doppler spectrum at 5.8 MHz, 23 March
1978

In this case the bistatic angles to a point on the surface are 8; = 7{2, 8, = 0. Hence the magnitude of the
Bragg wavenumber of the scattering ocean waves is kg here, rather than 2k, for near-grazing backscatter
configurations. We again intend to fix the wavenumber directions in the surface height spectrum to the space
around the buoy or ship, since the original scattering cross sections (12:20) were defined with respect to the
local incidence directions at each point on the scattering ring. Hence we take ihe x-axis and . direction as the
horizontal line within the orbital plane. Thus the satellite-induced Doppler shift to any point on the ring of
radius Ry at an angle ¢ with respect to the +x-axis is wov(RT/RR) cos ¢fc = wymy cos ¢, where here the
maximum Doppler is gy, = eoV(RT/Ri)c, vy being the velocity of the satellite, w, the radian carrier
frequency, and ¢ the free space radio wave velocity. Using (12:20) in (12:19), the average received one-sided
power spectrum for & patch on the ring (dS = RTARpAy) is found io be:

4PrGrGRFTARTAY

dPplw) =
o KHRTRR

Slkg cos @, kg sin @)8{w - g T Wy~ gy, COS V) . (12:29)
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Figure 12.16 Bistatic HF surface-to-satellite radar.

Here the width of the ring, AR is related to the effective signal pulse width, 7, as AR = cr. The direct signal
from the transmitter to the satellite is observed at a delay t3 > Rp/c (for Rg >> RT); hence the range R is
given in terms of time delay t = (Rg + R)/cas R = ct — cty.

In 2 manner simtilar to that following (12:25), we integrate {12:29) over ¢ to obtain the total signal
spectrum from the range ring. The various factors preceding S in the above equation are assumed to be
constant in this integration. As before, we assume that the sea height spectrum is homogeneous over the circle
around the transmitter. Then we obtain an expression for the directional waveheight spectrum of the surface
in termns of the received signal spectrum as follows:

RrRHk? PR{w) .
S’kgnfwdm= ko\h - nszzdm :.._'_....T......B_o___ ‘Vwém -2 X —I—J'}-— 5 €12:30)

46RTGTGRFT

where 1= w - wy, @\[g?;. Normaily, satellite-induced Doppiler is so great that ocean-wave-induced Doppler
can be neglected {wyp >>ygk,); in this case, 7 > @ — wq. Thus by measuring the received sea echo signal
spectrum at the satellite, and knowing its velocity, position, and orbital plane, one can obtain the directional
waveheight spectrum for spatial “;avenumbers kx = kg cos, Ky:ko sin g, forall ¢ by noting that cos »
=nfwim and sing= \fl —n*fewim- One must vary the carrier frequency, however, to sample the
spectrum at a different tofal wavenumber,lx (k= \’fci + Kg, =k} As before, there is an ambiguity, in that
waves crossing the circle at +y cannot be distinguished from waves crossing the cirele at —g. Ruck et al. (1971)
discuss several techniques for removing this ambiguity.
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As an illustration of what the received signal spectrum will look like at 5 and 10 MHz for fully
developed semi-isotropic waves describable by the Phillips spectrum (12:13), we consider the following
example, The antenna on the satellite is assumed to be a half-wave dipole with gain 1,64, and the “free-space™
gain of the quarter-wave monopole Lransmitting antenna is taken to be 0.82. The satellite is at an altitude of
300 km and moving with velocity 8000 mfs. We select a pulse length v = 10 us, yielding a clutter ring width
ART =3 km. Let us select a time delay t—tgq=150us, corresponding to R = 15 km. Then we obtain the
spectra shown in (F12.17). At the top of these plots, the angle ¢ of ccean wave directions producing the echo
at that Doppler shift is given. The maximum Doppler shift from the satellite is fdm = 6.67 Hz at 5 MHz, which
is considerably larger than the ocean-wave Doppler Vgt:; of 0.161 Hz; hence the neglect of ocean-wave-
induced Doppler shifts in this experiment seems reasonable. Also, there is no need for spectral processing
resolution less than about 0.5 Hz, which alleviates the data handling requirements aboasd the satellite.

The satellite should receive and process the direct signal as well as the sea-reflected signal. The direct
signal will serve (2) as a time reference, (b) as a Doppler (frequency) reference, and {c) to calibrate and remove
any unknown path loss through the ionosphere from the sea return. For the example considered in the
preceding paragraph, the direct signal power received at the satellite is of the order of 10-* Prto 107%! P,
depending upon the gain paitern of the transmitting antenna in the direction of the satellite. This COIMpares
with a total maximum received sea echo power of approximately 2.5 X 10712 Pt at 5 MHz.

The most serious limitations on & system such as this are imposed by the ionosphere. Orbital aftitudes
greater than 200 km will often not allow penetration of the lower HF frequencies through the ionosphere to
the satellite. The F2 layer of the ionosphere is the densest and if the satellite is orbiting above it (i.e., above
300 km), then the following conclusions concerning ionospheric limitations were determined by Ruck et al,
(1971).

(a) The aperating frequency of the sensor must be confined to the range 3.5 to 30 MHz. (This permits
sensing of ocean waves with lengths between 10 and 100 m.) Propagation conditions favorable to the system
exist at night between 0 and 6 hr lacal time. At such times the minirnum ienospheric penetration frequency
ranges from 3.5 to 5§ MHz depending upon the season and sunspot cycle. Operation throughout the rest of the
day can take place at frequencies as low as 9-10 MHz.

Restriction of operation at the lowest frequencies to a six-hour period every day, however, may not
limit the utility of the sensor for the following reason. At the lowest frequencies, the fongest ocean waves are
being observed (i.e., greater than 40 m). However, these longer ocean waves require greater fimes (i.e., of the
order of 24 h) to build up and die down (T12.1). Thus the heights of these longer waves will not change
appreciably over times less than a day, and their observation once a day should be sufficient.

(b) Duting normal ionospheric conditions, the (excess) absorption loss due to passage through the
ionosphere will be less than approximately 15 dB providing the operating frequency exceeds the rminimum
penetration frequency by 0.5 MHz.

{c) The noise environment encountered by the satellite will be that due to cosmic noise, with a
maximum effective noise temperature of about 4 X 10°°K at 3 MHz. '

Based on these loss and noise considerations, the study concludes that adequate signal-to-noise ratios
can be obtained with average transmitter power output levels of the order of 10 W for a satellite in a 400 km
orbit.

12.3  Second-Order HF Sea Echo

It was noled several places previously in this chapter (when comparing the first-order Bragg scatter
theory with measured sea echo spectra) that the observed records often contain smaller—but non-negligible—
peaks at Dopplers other than the first-order lines. Also, Barrum (1971) observes an overal] higher “floor™
under the sea spectra than would be expected from normat processor and noise clutter. He has confirmed that
this “floor™ is produced by sea echo by {a) looking at fand scatter for comparison, and (b) shutting off the
transmitter and observing the “floor” due to system and external noise. This “floor™ and the higher-order
peaks are not predicted from the first-order theory developed previously; one must g0 to a higher-order
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analysis of scattering and ocean wave interaction processes. Such spectral contributions could ultimately pose
a limitation on the performance of any radar system designed for first-order Bragg scatter, and hence they
should be qualitatively and quantitatively understood.

A more positive reason for examining these higher order séa echo spectral contributions is that they
may in themselves provide additional information about the state of the sea. This suggestion was made by
Hasselmann {1971}, Crombie (1971}, and Barrick {1971b).

Two obvious sources for this higher-order return suggest themselves (a) the second-order terms for
scatter from the Rice boundary perturbation theory, and (b) the second-order terms from the hydrodynarmc
equations describing the water surface height. To simplify matters here, we consider backscattering at grazing
incidence with vertical polarization over a perfectly conducting sea. Then it can be shown that the average
second-order backscatter cross section per unit surface area per radfs bandwith, oy, (w), to be used with
(12:19)is:

o - wy - ws )W, W(E, ) dpdq | (12:31)

T () = }éwkg_ﬂ-_: IFT(RH Ka)

where B, =(p —k )&+ q¥: K2 = ~(p + k)R — q¥; &, = R11; ko = @515 0y = sgn (k1< )VWE, 5 wa = 580 (K2x)

B2 1= W — Wy is the Doppler shift from the carrier; 8(x) is the Dirac impulse function of argument x; and

W(i) = W(icy k) is the directional spatial waveheight spectrum of the ocean, as defined in (12:21).

For the second-order electromagnetic contributions alone, I' is found to be

1 N, e
TEM =75 (iyking = 28) - 2 (VR - '+ koA), (12:32)

where A is the normalized impedance of the sea surface, as discussed by Barrick (1971a).
The second-order hydrodynantic effects produce

I'y ='2Ll}1 try KKy - Ry ?2)“ - 20f it - MBZ\)(g/wimz)}, (12:33)

where i=¥—1 and wp = \/2gko is the first-order Bragg Doppler shift. The total I'y which must be used in the
integral to account for both types of second-order effects is

Pr=Tgm *+ Iy (12:34)
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, Normalized Doppler Shift

The above integral clearly shows that a double-scatter Bragg process is responsible for the second-order
sea return. The scattered radic wavenumber, —ko%, is equal to &) + &2 + k%, where the last term is the
incident radio wavenumber. The frequency, w, of the scattered field is identically o, + e + g In the case
of the electromagnetic second-order effects, an ocean wavetrain with wavenumber &, scatters the radio
energy along the surface to z second wavetrain with wavenumber ¥, which redirects it back toward the
source; the intermediate radio wave can be either propagating or evanescent. In the case of the hydrodynamic
effects, two ocean wavetrains produce second-order ocean waves with wavenumbers &) iﬁ ; these latter
ocean waves are not freely propagating because they do net satisfy the first-order gravity wave dispersion
relationship, but they do produce radar scatter T

+ One of the two integration processes can be done in closed form, this resulting from the impulse-function occusring in the
integrand. The remaining integration is done numerically because of the comple form of the integrand.
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To illustrate the nature of both of these second-order effects at HF, we perfarm the integration
indicated in (12:31) numericailyt for the following example. The frequency chosen is 10 MHz, and we employ
the Phillips semi-isotropic wind-wave model of (12:13) for W(K}, the first-order waveheight spectrum. Using
different windspeeds as the parameter and considering propagation in both the upwind and crosswind
directions, we obtain plots shown in (F12.18) and (F12.19) for the signal spectrum Oyylwiwop. The first-order
discrete Doppler lines are aiso shown for reference; they will be present at 10 MHz for the Phillips mode} at
winds greater than 9-1/2 knots. Also shown is the normalized radar cross section for each spectrum,

(==}
o9y(o%y =é— f Gyp(0)des), where the spectra plotted here are two-sided, ie., a9 ~w) = o{w).
O

The figures illustrate that second-order continueus Doppler sidebands do occur and their magnitude
will depend upon sea state. These sidebands contain continuous, integrable singularities {of the square-reot-
types) at positions of 3 and 23 times the fist-order Bragg line. The ¥2 singularity is due to both
electromagnetic and hydrodynamic second-order effects. Flectromagnetically, it is due to higher-order Bragg
scatter, L., from ocean waves of length L=2 (rather than A/2). These ocean waves travel at a speed V3
greater than those at A/2, and hence the vz spike; this is a “grating lobe™ effect occurring for larger diffraction
grating spacings. Hydrodynamically, the V2 singularity is due to the second spatial harmonic of the trochoidal
wave profile of fundamental length L=13; this second harmonic is of length A2, producing first-order Bragg
scatter, but it travels at the same phase speed as the fundamental to which it is attached. The phasc speed of
the fundamentai is V2 greater than the normal ocean wave with length A/2, and hence the V2 hydrodynamic
contribution. Finally, the 2 singularity is due to a “corner reflector” electromagnetic effect, This occurs
when the two sets of (non-evanescent) scatfering ocean waves pass through 45° with respect to the
propagation direction. The total Doppler shift from these two sets of ocean waves, wy +w; = wp(Veos o+

5T @), is maximum¥ at ¢ =45°, ie, 2°/* wp. Thusa condition of mathematical stationarity occurs for the
Doppler shift when « passes through 45°.

As deduced previously from (F12.18) and (F12.19), the second-order received sea echo spectrum
increases both in its amplitude and in its proximity to the first-order Bragg lines with increasing wind speed.
Conversely, for a given wind speed, the same second-order spectrum increases with increasing carrier
frequency. The common parameter for each curve in the figures is g/(2k,u”), where u is the wind speed and
kg, (= 27f,y/c) is the radar wavenumber. Thus for a given value of this parameter, the same spectrum curve can
be obtained by doubling wind speed and reducing frequency by a factor of four, or if the frequency is
increased by a factor of four, by halving the wind speed.

At present, we have no conclusive experimental validation of the theory because of a general lack of
accurate HF sea echo spectrum measuremntents, Several available records, however, exhibit many of the
principal features of ous predicted second-order spectra, Crombie’s ground-wave measurements at 8.37 MHz
(F12.5) shows a definite second peak above the positive first-order line; its position is greater than the
first-order line by a factor of 1.36. From (Fi12.18), this would correspond to seas aroused by a wind speed of
about 2122 knots. Also evident in this record by Crombie is a third peak which occurs at about 1.69 times the
first-order line: the 23/ (= 1.682) singularity appears to explain this peak. Barnum’s sky-wave backscatier
measurements (F12.8) at 25.75 MHz also appear to contain higher-order peaks beyond the first-order line. He
estimates that these occur at 1.33, 1.70, and 2.00 times the first-order line. Again, the first higher order peak
at 1.35 is explainable by seas driven by about 13-knot winds, while the second peak is quite close to the
predicted 2* singularity. As with Crombie’s record, the height of the third peak near 2% is less than that of
the second, while the height of the second is considerably less than that of the first-order Bragg line; these
features all agree with the predicted second-order spectral behavior.

Hasselmann {1971) has suggested (based upon several approximations which were examined in detail
by Stewart (1971)) that the second-order sea echo spectra above and below the first-order Bragg lines should
be symmnetric reproductions of the first-order temporal nondirectional waveheight spectrum of the sea,
centered about the first-order lines. Qur more detailed derivations show that these second-order spectra are Ro7
symmetric about the Bragg lines; this is especially true for the crosswind case, where no energy at all appeared
above the Bragg line. However, these second-order contributions do possess some of the features of the
tirst-order waveheight temporal spectrum centered around the Bragg Iines. For example, they become higher in

t The angle a here is (180° — ¢)/2, where ¢ is the bistatic angle between the incident and the first-scattered radio wave.

Backscatter produced by such a double interaction process requires that the bistatic angle between the first-scattered and
second-scattered (i.e., backscatiered) radio wave be ¢.
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amplitude and move in closer to the Bragg lines with increasing wind speed and/or {requency. Hence we agree
with Hasselmann’s basic conclusions that sea state can be deduced at higher HF frequencies by examining the
features (ie., strength and position) of the second-order peaks in the sea eche backscatter spectrum, Upon
further confirmation by measurements, this technique may prove to be quite valuable in remote sensing of sea
state, especially with fonospheric radars which are restricted in their operation to the upper HF region.

12.4 UHF Indirect Bragg Scatter Using Two Frequencies

A technique currently under development for measuring the slope spectrum of the longer gravity waves
will be briefly examined here. This concept employs the correlation between the sea return at two closely
spaced UHF frequencies as & measure of the larger and longer ocean waves present. The interpretation of the
final result of the derivation shows that the mechanism yielding the slope spectrum of the surface resembles
Bragg scatter; the surface slope spectrum is evaluated, however, nol at the wavenumber corresponding to the
carrier frequency, but at the “beat” wavenumber corresponding to the difference between the two UHF

frequencies.
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Figure 12.19 Predicted Doppler spectrum of first and second-vrder near-grazing sea backscatter at 10 MHz
for propagation in crosswind direction (Phillips semi-isotropic waveheight spectrum assumed }.
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Before summarizing the analysis, let us briefly discuss the physics behind the anticipated behavior. HF
scatter from the sea has been conclusively shown, both theoretically and experjme.nt.ally, to be due to the
Bragg (or diffraction grating) effect. The theory shows that 2 mathematical upper limit of frequency. (for .a
given waveheight) can be expected, beyond which the perturbation approach Psed should not be valid; this
upper frequency in terms of wind speed is given in (F12.6). Several recent experimental eff‘orts, however, have
established that the Bragg mechanism produces non-specular sea scatter at UHF, microwave, and- even
millimeter-wave frequencies. Wright (1968) deduced this from his signal spectra—as well as from quantitative
comparisons of o¥ for various polarizations with the previously developed th.eory; he observed scatter fr'()m
waves generated in a controfled wind tank. Guinard and Daley (1970) established that the Bragg mechanism
also explained—even quantitatively—the microwave scatier they observed on the sea. In the latter case, much
larger and longer ocean waves are present; y2i measurements have confirmed t_hat the much 51?naller wavelets
actually producing microwave backscatter are those whose lengths are 7\/%2 sin #), where 0 is the angle of
incidence from the vertical. Again, their results measured for Usv and opy (the ayerage backscatter cr_oss
sections per unit area) agree quantitatively with theoretical predictions based on a slightly rough.surface,s.e'.,
(12:20), (12:22), and (12:23), in their dependence on polarization, incidence angle, and saturation effect in
the wind-wave equilibrium region. Such agreement is apparent over most aspect angles, as long as one sta'lys
away from the specular direction {ie., the vertical for backscatter) and grazing incidence (where shadowing

becomes significant). iy
Barrick and Peake (1968) and Wright (1968) explained this behavior by considering the surface at these

higher frequencies to be a “composite™, made up of two or more scales of roughness. Thus, one has the
Bragg-scattering wavelets riding on top of the longer and higher gravity waves. With this model, one obtains
two regions of scatter: the quasi-specular region and the diffuse region. Near the specular direction,
backscatter is produced viz reflections from many specular points, or facets, oriented normal to the line of
sight. For the sea, this type of backscatter dominates oui to 10-15° from the vertical; its magnitude and
behavior is predictable from both physical and geometrical optics approaches. Farther away from the specular
direction, scatter is predictable via the Bragg mechanism, as though the smaller wavelets riding on the larger
waves were really the only ones present. The magnitude and polarization dependence of this “diffuse™ scafter
foilows (12:20) for the slightly rough surface.

Valenzuela (1968) first noted that the magnitude of the return from a slightly rough surface (i.e., the
Bragg scatter) does have some dependence upon the local inciderce and scattering angles, as seen in
(12:20)—even though the dependence may be weak for some polarization states over z large range of angles.
Hence the effect of the longer gravity waves under the Bragg-scattering wavelets should be seen as a “tilting
plane”, modulating the amplitude of the Bragg scatter because of the slope of the larger-scale wave
underneath. Let us take as an example a uniform Bragg-scattering wavetrain on top of a single larger and longer
sinusoidal wave. Now imagine a short radar pulse, less in its spatial length than one-quarter the wavelength of
the longer sea wave, propagating along the surface and backscattering via the Bragg mechanism from the
wavelets. Due to the slope of the longer sinusoidal wave and hence the periodic variation of the local angle of
incidence to the pulse as it propagates along, the radar receiver should see a return which is amplitude
mddulated in a periodic manner by the longer gravity wave. I one analyzed the spectrumn of this amplitude
modulated’ signal, he would be able to relate the result to the slope of the larger wave at its own spatial
frequency or wavenumber. Thus one could, with such a short-pulse experiment, measure the slope spectrum of
the longer gravity waves by Fourier transforming the received signal strength and looking at its spectrum. This
technique was examined recently by Soviet investigators (Zamarayev and Kalmykov, 1969).

The concept to be analyzed here is quite similar to that described above. By using two frequencies,
however, and cross-correlating their received powers, one eliminates the Fourier transform process required for
the short-pulse technique. Nearly CW signals can be used. The bandwidth required (i.e., frequency separation
here} is much the same as for the short-pulse, however, because both techniques are essentially employing
spatial range resolution to distinguish the slopes of the undezlying longer gravity waves. By eliminating the
spectral analysis process and the short pulse requirement, we feel that the two-frequency correlation concept
offers a possibly more tractable sensing tool.

The two-frequency correlation concept was analyzed in Ruck et al., (1971) in detail. The derivation
there was meant to establish quantitatively some of the features of the correlated power. To facilitate the
analysis, the following assumptions were imposed: (a) Only backscatter was considered. (b) The surface was
taken as perfectly conducting. (¢} Horizontal polarization was examined for incidence and backscatter. (d) A
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one-dimensional random surface was analyzed, corrugated along the plane of incidence. (¢) The incidence
angle region was selected to be not too close to the specular direction (i.e., the vertical), but vet not so close to
grazing that shadowing is a problem. (£} The stopes of both the large-scale and small-scale sea-wave components
present were assurned small.

Based upon these assumptions, the variance of the backscatiered power densities at two frequencies, fy,
and fy, was obtained, i.e., Var[P(AK)] = <P Py> .- <P ><Pp> where Ak = ky — k, = 2a{fy, — £,)/c. Thus, Ak
can be copsidered a “beat™ or difference wavenumber. The length and width of the surface patch {(assumed
square} subtended in the radar cell is L, and the angle of incidence from the vertical is 6. Then the result for
the variance was found to be

KZk{ LS ES sin (AKL sin 0)f §
Var [P(Ak)] = —2 2 . 2 (k. EW(k
[Pk Z%q%lG‘ng Rg [ AkL sin 8 o ) ( DE) s=0

A2 (ko DWi 2N |
ds =0

N 1 .
« == Wop (24K sia 0
7T aLZakas ). (12:35)

where R, is the distance from the scattering patch to the far-field point, E is the electric field strength of the
plane wave incident on the surface, and Z, is the free-space wave impedance. The quantity W{(k,) is the
one-dimensional spatial waveheight spectrum of the sea surface in the wave-length range zround one meter;
Wgqr(ky} is the one-dimensional spatial waveslope spectrum of the larger gravity waves. The remaining
quantities appearing in (12:35) are g, =2 cosf, s=d{/dx = slope of the larger-scale component’ of the
surface, £ = 2s cos 8 — 2 sin €, and f(k§) = k, [T — (25 cos 6 —sin 8) +cos@ +ssin @] X [cos 8 +ssinf].

In order to obtain numerical estimates of the relative magnitudes of the first and second terms in
{12:35), we must evaluate the quantity in square brackets and its derivative at zero slope. To do this, a form
for the waveheight spectrum of the smaliler-scale (Bragg-scattering) ocean waves must be assumed. By selecting
our operating frequency in the UHF band (viz., near 1 GHz), we ensure that these Bragg-scattering ocean
waves are of the order of 30 cm in length. Such waves are still gravity waves {in contrast to capillary waves)
and hence should follow the Phiilips model in the saturation region. Furthermore, these shorter gravity waves
require winds greater than only !-1/2 knots to excile them; hence, they are nearly always present. On the
other hand, their build-up time is of the order of 10 minutes, in contrast to capillary waves which build up and
die down in a matter of seconds; therefore they should exist rather uniformly and stably over times and arcas
which are significant in meking the measurements. This is the reason that 1 GHz is proposed as the operating
frequency.
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One can readily convert the two-dimensional Phillips model {12:13) to a one-dimensional version. The
result is

B
4 = 1223
W (Kx) 3 ( 6}
X
where ky >0 {i.e., the above spectrum is one-sided), and as before, B= 0.005_ (_dimensionless).
Upon evaluation of the indicated factors in {12:35), we obtain

k kn1¢B*E2 cot® @ ; N
Var[P(aR)] = 20— foogt g (AKL I D) i)
732677 RS, sin

. 2 g2
L6 sin? & - 3 cos® 8) Wy (22K sin 0) §. (9
L sin? @ (12:37)
Let us now interpret the two terms in (12:35) and (12:37). The first texm is merely the Fourier
transform of the range resolution cell illumiration pattern on the susface (i.e., here we assumed uniform
illumination over the cell of lemgth {1/2)sin 8) svaluated at spatial frequency 24k, If the range cell is
beamJimited rather than pulse-limited, one might approximate the cell illumination by a uniform pattern
between the half-power points of the antenna beam pattern on the surface. If one uses a more realistic
illumination pattern along this cell, the {sin x)/x function will be replaced by the Fourier transiorm oi the
actual pattern. With a properly selected and tapered illumination function, the first term can be kept very
small, so long a5 AkL sin @ is large compared to unity. In a pulse-limited situation, this means making the pulse
length, 7, sufficiently long that 2mAfr sin 8 >> 1 over the range of Af used in the experiment.

The second term in (12:35) and (12:37) contains the desired information about sea state, as
represented in the waveslope spectrum of the longer gravity waves. Their waveheight spectrum is readily
related 1o Wgj (1ty) as Wiy (ky) = Wy (ky)fk%. Hence, measurement of the waveslope spectrum by sweeping
frequency {and thus varying Ak} can be directly transformed into waveheight spectral information. It is
desirable to select 8, the incidence angle, so that the magnitude of the second term is enhanced with respect to
the first. For horizontal polarization and backscatter, a poor cheice would be 8 at or near 37.8° from the
verticat, for this makes the factor in parentheses multiplying the second term identically zero. On the other
hand, a value of § near 60° will usually resuli in the second term being larger than the first for Wg; non-zero
and near its equilibrium (saturation) value.

The argwment of the term containing the waveslope spectrum would lead one to think that a
Bragg-effect scatter were oecurring at the beat wavenumber 24k sin 8, rather than at the carrier wavenumber
k, ar kj,. Hence we refer to this as an indirect Bragg-scatter measurement. By sweeping Af from 2-20 MHz, one
should be able to obtfain sea state information by measuring the magnitude, shape, and cutoff of the larger
gravity wave siope spectrum. The two frequencies can be generated quite simply:by using 4 balanced
modulator near the ontput of the transmitter. Since the scattered power is correlated in the receiver, it is not
necessary to maintain phase coherence of the two signals through the receiver channels. Hence the equipment
requirements should present no significant obstacles.

This technique, examined here for backscatter and horizontal polarization, can be used for other
polarization states and in bistatic arrangements (so long as one avoids the specular reflection direction). The
analysis is currently being extended to include three-dimensional scatter from two-dimensionally rough,
non-perfectly conducting surfaces. The basic nature of the results are not expected to differ from those
examined here, however. Up to the present, this technique has not beer tested experimentally; hence we can
offer no measured data for validation of the concept. Plans are underway to test the technique in the near
future.

12.5 Sea State Effects on a Microwave Radar Altimeter Pulse

As a final tool for remote sensing of both geodetic and sea state information, we discuss the microwave
radar altimeter. Decisions by NASA to fly short-pulse aitimeters in both the GEOS-C and Skylab series of
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satellites have recently accelerated theoretical and experimental efforts on radar altimetry. A sufficiently clear
picture is presently available—both from analysis and experimental data—of the basic interaction process
between the pulse and the sea surface. At and near the (vertical) sub-altimeter point, microwave scatter is
produced by specular points which are distributed in height, thus having some cbvious relationship to sea
state. In most cases of interest, the effective radar spatial pulse width is smaller than the ocean waveheights it
encounters on the surface; hence a stretching of the pulse will occur due to sea state. When the purpose of the
experiment is to find the instantaneous mean sea level (for geodetic reasons) to an accuracy of iess than cne
meter, one is faced with the problem of finding this position in a received echo distorted by sea state effects;
hence one must remove such effects from the signal. On the other hand, one may wish to use the radar
altimeter as a sea state sensor; in this case, he would like to know how to relate sea state to the received pulse
distortion. Both problems are examined here.

The first subsection discusses the specular point-theory of sea scatter and obtains the distribution of
these points as a function of waveheight. The second subsection then applies the specular-point scattering
model to the radar altimeter configuration and determines a simple closed-form solution for the altimeter
return for the case of Gaussian pulse and beam widths. The final subsection simplifies this result for certain
limiting altimeter configurations commonty used in practice, and compares the model with measured data.

12.5.1 Specular Point Distribution and the Scattering Model

For the microwave frequencies at which an altimeter will operate, scatter from the sea within the
near-vertical region directly beneath the altimeter is quasi-specular in nature. This means that backscutter is
produced by specular or glitter points on the surface whose normals point toward the radar. Such scatter
persists only to about 10-15° away from the vertical, since gravity waves can seldom maintain slopes greater
than this amount before they break and dissipate energy. A physical picture of the specular points illuminated
within a short pulse radar cell advancing at an angle 8 with respect to the mean surface normal is shown in
(F12.20).

Specular point scatter is readily predictable from geometrical and/for physical optics principles, and has
been analyzed by Kodis (1966) and Barrick (1968). Here the theory is extended io include the height of the
surface, since the short radar pulse may not illuminate the entire peak-trough region at a given time. As the
starting point, we note from ¢lementary geometrical optics principles that the field scattered by N specular
points {expressed in terms of the square root of the backscatter cross section) is

N
opl* = Z bz gimejzkog'i cos & ) {12:38)
i=1

where g; is the (Gaussian curvature at the i-th specular point, i.e., g = in 1iPail, with pyj and p,; as the principal
radii of curvature at this point. Also, {j is the height of the i-th specular point above the mean surface, 4 is the
angle of incidence from the vertical, and k,=2a/A is the free-space radar wavenumber, A being the
wavelength.

We now square and average the above cquation with respect to the phase, vy, noting that
Py = 2ko($; - §j) cos 0 will be uniformly distributed between zero and 2w as long as the sea waveheight is
greater than the radar wavelength. We then rewrite the remaining single summation in integral form as a
distribution of specular points versus height, ¢, above the surface and versus Gaussian curvature, g. The average
radar cross section per unit surface area per unit height, n°({), can then be written in terms of the average
specular point density, n({.g) as follows (details are found in Ruck et al, 1971}

n*(§)=n) nggde, (12:39)

where n(t.g) is the average number of specular points within the height interval ¢ — 6¢/2 to £ + d&/2 and with
Gaussian curvatures between g —dgf2 and g+ dg/2. The quantity n°() is related to ¢, the average

(==
backscatier cross section per unit area as ¢© =f 7O(f) d¢. Thus a short pulse having a radar resolution cell
— 00

of width A{ will produce, on the average, a radar cross section per unit area of nO(0)AL.
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The specular point density, n, can readily be determined (almost by inspection) from the work of
Barrick (1968) preceding Equation (7) of that paper; one merely includes height, {, in the probability
densities. The following result—applicable for backscatter—is obtained {or the integrand of (12:39):

n(i‘,g)gdg =m SBC4 g p(?:fxspsfyspsg-xx,?xy:g’yy) dg‘xxdfxydg—yy s (1240)

where ;X,gy,g’xx,;:xy,g y are the partial derivatives of the surface height up to second order, fxsp= gysp are the
surface slopes required at a specular point (these latter slopes are known geometrical quantities). The quantity
p(x1, ... ,xp)is the joint probability density function for the random variables x4, . . ., Xp.

The integration over {yy, i—xy: and g'yy can now be performed. Furthermore, since the height ¢ and the
slopes {xqn» g'ysp at any point are uncorrelated (as discussed in 12.1.2), and since we intend to employ
Gaussian distributions for the surface height and slopes {also discussed in 12.1.2), we can finally express the
scatter per unit height as the product of the height and slope density functions:

71°(§) = 7 sec® 8 p(E)oExsp-Lysp) » (12:41)

where p() is as given in (12:1) and p(gx,gy) is given in (12:2). Also, the required total slope at the specular

point to be used in (12:2) is \ﬁ';z(sp + §31/sp =tan 6.

12.5.2 Application to Satellite Altimeter

We now apply (12:41} to the problem depicted in (F12.21). An altimeter at height H emits 2 spherical
pulse which in turn sweeps past a spherical earth. The spatial pulse width for a backscatter radar is A{ = c7/2,
where c is the free space radio wave velocity and 7 is the time width of the pulse {compressed, if applicable).
As our time reference, we choose t =0 to be the {ime that the center of the signal, reflected from the
uppermost cap of a smeooth spherical earth, retuins to the receiver. In terms of the angles shown in (F12.21),
the height, {, to a point at the center of the cell above the mean sea surface can then be written ag

or

= H{l - cos ¥) + a{l - cos @) - {ct/2) cos ¥

€os ¢
or
~Hoaf JHy et JH o ot 12:42
§_2¢(1+a) F ST T (1242)

where it is assumed that H <<a, and that { and ¢ are small over the scattering region on the sea of
significance in the aitimeter receiver return. '

Several investigators have employed the relationship in (12:42) along with a model for surface scatter,
to examine the altimeter radar retuwrn. Godbey (1964) and Greenwood et al (1969) assumed quite simple
models for the scatiering coefficient, and hence obtained a resuit which was not quantitatively dependent
upon ocean waveheight. Miller and Hayne {(1971) made a considerable improvement over these efforts by
assumning a slightly skewed Gaussian model for p(3) in (12:41), but did not show the remaining slope
dependence contained in the specular point model developed here. Hence their radar return, while containing
an unspecified multiplicative factor, nonetheless possesses the same pulse shape characteristics as our model.

For the purpose of obtaining a general closed-form containing all of the parameters of interest in the
design and analysis of an altimeter experiment, we select simple Gaussian beamn and pulse shapes. Thus we
define the power gain of the antenna (squared to account for the use of the same antenna twice) as

G*(v) = exp{-(8n2)* g7 , (12:43)
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Figure 12.21 Geometry of satellite altimeter.

where g is the one-way half-power antenna beamwidth. Likewise, P(x), defined as the spatial (compressed, if
applicable) altimeter signal power pulse, is taken to be

P(x) = expl (4212 17} = P(eto/2) (12:44)

where t_ is time with respect to the pulse center, 7 is the half-power width of the signal pulse, and the distance
x is related to time in a backscatter radar as x = ct*!2.
Now, the product of the average radar cross section and the antenna gain is a function of time as the

spherical pulse intercepis the sea near the suborbital point. This produces an average power at the receiver
2
output which is related to G o(t) through the radar equationt: Pg(t} = Py (T%—H—Z G2g(t).
o

Go(t) = 27° %?L G (W)p(Fysp-Lysp) sec” 6 sin o X [f P( - i) ng dp,  (12:45)
where the Gaussian height and slope distributions, p(§) and p({x,fy) are to be used in integrating (12:45). One

can express # and ¢ in terms of ¢ as follows: ¥ = %ga and 8=+ z% w. Then the integrations over £ and ¢

T The height factor in the radar range equation is assumed to be constant to first order, because only the echo from the
vicinity of the suborbital point is of interest.
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can be carried out to obtain:
G*oft) = (fr3”HxW/sz) exp[(tp/t3)2 - /] {1 - Btp/ts - )] . (12:46)

where x,, = crj(4\}!2n 2). tp= 2\/va +2h%fe, tg=2HW¥/c, and 1/¥2=(8 &n 2)[\1’23 +1/s%, ¢ being the
free-space radio wave velocity. Also, @(x) is the error function of argument x.,

The mean-square sea wave height, h?, and total slope, s?, result from the use of the Gaussian height
and slope distributions given in 12.1.2. For wind-driven fully developed seas, h® can be expressed in terms of
wind speed through (12:15). The mear-square slope is related to the wind speed through (12:16) and (12:17),
or as a simpler model (12.18).

The interpretation of t,, and i, sheds light on the interaction process. The constant 1. is the equivalent
pulse width after siretching by sea waves on a planar mean surface. If the rms height h of the sea waves is
greater than the spatial widih %y, of the pulse, ther the equivalent pulse length after scatter, t.), is essentially
the time of flight between the crests and troughs of the waves. The constant tg is interpreted as the two-way
time of flight difference between the suborbital point and the edge of the effective scattering region
illuminated by the advancing spherical pulse. For a narrow antenna beamwidth, Wy, this time becomes small.
If the slopes of the specular-scattering waves are smaller than the antenna beamwidth, however, then the width
of the scattering region is limited by the lack of specular-scattering sea waves rather than the antenna
beamwidih,

A term commonly used in the Hterature on radar altimeters js the “impulse response”™ of the surface.
This js merely the return from the surface illurninated by ar impulse funetion, P(x) = §(x); let us refer to this
as G oy(t). To obtain the response of the surface to any other waveform, one nead only convolve the surface
impulse response with the desired waveform. The impulse respense can be obtained very simply from (12:48)
by noting that the impulse function 8(x) can be taken hy writing P(x) = (mx3,) "2 exp —x¥x3, in
{12:44) and taking the timit of (12:46) as x,, > 0. We thus obtain

G orlt) = (rH/fs?) expEtp,ftS)il = 2t,n’t£i i1 - D(ip/ts - 1/tp)] (12:47)

where now ty=2 Vihje.

To provide further insight into the interaction process, and also to serve as a check on the model
{12:46}, let us consider the limiting situation where the roughness vanishes. First, we allow the rms height, h,
to approach zero; we siill assume, however, that the rms slope, s, is non-zero, i.e., that there are spatially
distributed specular-point scatterers, but with near-zero height deviation from the mean surface. In this limit,
the form of (12:46) remains the same, but tp=1-/(2\f£n 2). Thos the equivalent pulse width, t , Is not
stretched after the interaction because the waves have zero height. Now, as we allow the rms slope, s, to
approach zero, this results in 13— 0. Then (12:46) simplifies fo G*a(1) = («H?) exp {—tzftf,}. This merely
means that the original Gaussian pulse, represented by the exponential, is reflected from a smooth surface, and
hence the entire return comes from the suborbital specular reflection. The factor #H? is simply the radar cross
sectiofl, from geometrical optics considerations, for a spherical surface with radius H. Hence, one obtains the
expected result in the limit of vanishing roughness.

12.5.3 Limiting Altimeter Configurations

(a) Pulse-Limited Operation. When the altimeter altitude and/or beamwidth are sufficiently large that
tg >> tp. we have the situation depicted in (F12.22). The return at a given time is obtained from the area in
the circular annulus subtended by the pulse. This is referred to as pulse-Jimited operation. The return in the
limit t; > tp may then be obtained from (12:46)as

GPap(t) = (72 Hxy /%) [1 + B(t/1p)] exp(-2t/ty) . (12:48)

The above equation shows that the return consists of a rapid rise near t=0, as expressed by the
quantity in square brackets, followed by a very gradual exponential decay to zero. In this case, the leading
edge of the return contains the desired information about the mean surface position andfor sea state; the
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Figure 12.25 Measured aircraft altimeter responses. Wind speeds inferved from rise times are compared fo
ohserved wind speeds.
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Figure 12.26 Measured {after Yuplee et al, 1971) altimeter [impulse] responses versus calculated using
beam-limited model.
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leading edge {normalized) is proportional to % i+ @(t/tp)] . Shown in (F12.23) are curves of this leading edge

as a function of significant waveheight (related to rms waveheight in 12.1.1). Also shown on these curves are
the wind speeds required to fully arouse wind waves to these heights. The parameters chosen are typical of the
NASA Skylab satellite altimeter. The figure shows that the mean surface position can be found from the mean
return (in the absence of noise) by locating the half-power point on the leading edge.

For sea-state determination, one could determine the rise time of the leading edge. A possibly simpler
technique would be to differentiate the mean return near the ieading edge, producing a pulse-type signal as
shown in (F12.24). This can be obtained from (12:48} as

ad? [62 UP(t)] = [zﬂwa/ (Sztpil exp(-t/3) (12:49)

Thus the width of this pulse is directly proportional to the effective pulse width, t. If the altimeter pulse
width, 7, is kept small with respect to the expected stretching due to roughness (i.c., less than about 13 ns),
then the width of this differentiated return is directly proportional to significant {or rms) waveheight. Thus an
orbiting altimeter such as this could very simply monitor the significant waveheight of the oceans along its
orbital path.

As limited validation of the model, we show results obtained by Raytheon (Ruck et al, 1971) from an
aircraft altimeter at 10,000 ft. The pulse width of 20 ns and beamwidth of 5° resulted in a nearly pulse-limited
operation. Surfzce wind speeds were reported as 12 and 22 knots during two of the flights; these are compared
in (F12.25) with wind speeds deduced from the rise times, t;, of the leading edge (assuming wind-driven waves
in which waveheight is related to wind speed through (12:15)). The agreement seerns quite reasonable.

{(b) Beam-Limited Operation. If the antenna beamwidth and/or altimeter height are sufficiently small,
then the illumination geometry shown in (F12.22) will result. Here, t; <<{tg, and the return at any time
comes from specular points within a disc of area ~aH® ¥3/4 at the suborbital points. In this limit (12:46) can
be simplified to obtain:

G? oy (1) = |7H? @é/(zm s'“):] ('r,ftp) exp[—(t/tp)l] . {12:50)

Normally the bearnwidih and height requirements are such that a satellite alticneter could almost never
be beam-limited; nor are most aircraft altimeters beam-limited. The beam-imited mode of operation does offer
a very simple return to interpret, however; the width of the return pulse is directly proportional to the ocean
waveheight if the signal pulsewidth, 7, is sufficiently small.

As a comparison with the beam-limited model, we show data measured by Yaplee et al (1971). His
measurements were made from a tower with H =70 ft and ¥ =~ 2°_ His pulse width was 1 ns. We compare in
{F12.26) the shape of the curve given by (12:50) with what he has calls his impulse response. He plots the
responses measured both by radar and by a wavestaff for two days on which the significant waveheights
(measured by the wavestaff) were 3.1 and 5.2 ft; these values of waveheight were used in the curves based on
our model. The overall comparison is good, but the figures also illustrate where the Gaussian assumption about
the waveheight is weak: both in the echo tails and in the symmetry about the center. These points of
departure were mentioned previously in 12.1.2. While these differences are interesting, they should not detract
from the fact that the simple Gaussian model is adequate for predicting the mean sea surface position and
significant waveheight, so long as accuracies beiter than about 10 cm are not required., ’
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a {radio) radius of earth {=4/3 times kg radar wavenumber (= 2w/))
actual earth radius) o T
km,n summation indices, assurning integer
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Fourier expansion of (ocean)

surface waveheight (=27/Lyg) _
spaiial period of ocean wave

B Phillips ocean waveheight spectrum . .
saglration constant (~0.005) i cutoff (spatial) wavelength of Phillips
ocean waveheight spectrum
c free-space radio wave velocit .
(mg X 10°m/s) ¥ Ly spatial wavelength of fundamental in
Fourier expansion of {ocean)
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n{g) density of specular points per unit area
Eq electric field intensity incident on versus height and Gaussian
scattering patch curvature
Fr.Fp Norton attenuation factors for near Py P, powers received at two frequencies,
surface propagation between ff; and £,
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receiver. P{m,nk) Fourier coefficient of expansion of
ocean surface height in ferms of
f temporal frequency in cycles per X, ¥,t X, v, .
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7 radio cartier frequency Pr average received power at receiver
0
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fo.fs carrier frequencies in two-frequency density at receiver
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: Pr average transmitted power
ip Doppler shift from carrier (= £~ o)
P(x) effective spatial (power) pulse of radar
N normalized Doppler shift altimeter :
G1.GR free-space gains of transmitter and P(x:,... Xp) jeint probability density function of n
receiver aniennas random variables x, N -
g acceleration of gravity (=9.81m/s?) R, distance from antenna to scattering
g Gaussian curvature of point on surface patch in backscatter radar
CElowez Rt Rp ranges (distances) from scattering
H helght of radas altimatar patch to transmitter and receiver
q significant (ocear) waveheight S normalized time delay in bistatic radar
173 ! x
crest-to-trough (= t/tg)
h rms (ocean) waveheight with respect S(KX,KY) spatial ocean waveheight spectrum

to mean surface S(fcx,vy,w) spatiai-temporal ocean waveheight
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time delay of radar echo

tise delay for direct pulse between
transmitter and receiver in bistatic
radar
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wind speed
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satelite velocity
ship speed
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second-order sea scatter terms
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total coupling factor appearing in
integrand for second-order sea
scatter

normalized average impedance of sea
surface; also, symbol denoting an
increment, i.e., AR - increment of
ange

Dirac impulse function of argument p

height of ocean surface above mean
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9x "y
radian Doppler shift from carrier
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average backscatter cross section per
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angle of incident radar wave from
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average scattering cross section of sea
per unit area

average scattering cross section of sea
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radar temporal pulse width
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error function of argument x

azimuthal angte in bistatic radar near
surface between incidence and
scatter plane (= 180° for
backscatter); also, in radar
altimeter, angle at earth center
between altimeter and surface
scattering patch

azimuthal angle of scattered radar
wave from incidence plane

hatf-power beamnwidth of radar
altimeter antenna

angle of radar altimeter between
vertical and scattering point on
earth

temporal wavenumber of ocean wave
(= 22/T)

radian wavenumber of radic carrier
frequency

radian Doppler shift for near-grazing
hackscatter (= -\/Zkog)

maximum sateliite-induced (radian}
Doppler shift

maximum ship-induced (radian)
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radian Doppler shift from sides of
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