Radio Science, Yolume 6, Number 5, pages 517-526, May 1971

Theory of HF and VHF propagation across the rough sea, 1,
The effective surface impedance for a slightly rough
highly conducting medium at grazing incidence
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One method of analyzing radiation and propagation above a surface is to employ an effec-
tive surface impedance to describe the effect of the boundary. In this paper an expression is
derived for the effective impedance at grazing incidence of a slightly rough interface between
air and a finitely conducting medium for which the Leontovich boundary condition is ap-
plicable. The perturbation technique of Rayleich and Rice is employed, and attention 1s
restricted to wvertical polarization. The resulting effective surface impedance consists of two
terms, the impedance of the lower medium when the surface is perfectly smooth and a term
accounting for roughness. The latter term can be complex in general and depends on the
strengths of the roughness spectral components present. The result is applicable to either
deterministic periodic surfaces or random rough surfaces. Various alternate definitions of the
cftective surface impedance are examined and are seen to be equivalent, The analysis of
power flow at the surface permits the interpretation of the interaction process in terms of

scattered fields.

INTRODUCTION

The development of radio at the turn of the cen-
tury heralded an interest in understanding the mech-
anism of propagation over the earth; the classic
works of Sommerfeld [1909] and Norton [1936,
1937a, b] clarified the nature of radiation from a
dipole above a planar, highly conducting earth, Van
der Pol and Bremmer [1937, 1938, 1939] and Fock
[1945] obtained asymptotic solutions to the problem
of radiation above a smooth spherical earth, and
Norton [1941] generated curves to facilitate the use
of these results. No less than five hundred papers
have appeared on this subject over the past 70 years;
“for a more nearly complete review of the history, the
reader is referred to a thorough summary by Wait
[1964] and to a discussion and bibliography by
Barrick [1970].

Nearly all treatments of the subject took the earth
surface as a perfectly smooth (planar or spherical)
interface between the air and ground or water.
Feinberg [1944] published a result derived from an
integral equation formulation of the problem of
radiation above a planar earth with terrain irregulari-
ties. He showed that the effect of small height ir-
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regularities was to decrease the apparent conduc-
tivity of the earth. Details of his derivation were
not provided, and his result did not show the effect
of finite earth conductivity; the term accounting for
roughness was obtained as though the surface were
perfectly conducting. Bremmer [1958] repeated
Feinberg’s result. Rice [1951], in a classic treatment
of scattering from slightly rough random surfaces,
analyzes the problem of propagation along an ir-
regular perfectly conducting surface by employing
a Fourier series expansion for the surface and a
plane-wave summation for the scattered waves. Wait
[1959] derives an effective impedance for a perfectly
conducting surface upon which are distributed hem-
ispheric bosses of constant radius; the approach
taken is attributed to Twersky [1951]. Senior [1960]
derived a general expression for the influence of a
slight roughness on the surface impedance, but his
results are not simplified sufficiently to permit anal-
ysis of the pathological region near grazing incidence.

It has long been known that a slight rectangular
corrugation on an otherwise perfectly conducting
surface has a marked influence in the guiding or
trapping of waves near the surface; surface-wave
antennas are built on this principle. When both the
height and spatial period of the corrugations are
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small in terms of a wavelength, expressions have
been derived for the inductive contribution to the
surface impedance [Wait, 1957; Barlow and Brown,
1962]. The sea surface at HF and VHF can have
waves whose heights are an appreciable part of a
radio wavelength; hence, one should expect to see
trapping effects similar to those obtained for cor-
rugated surfaces,

In this paper we derive a result for the effective
impedance at grazing incidence of a slightly rough
surface electrically describable by the Leontovich
(or impedance) boundary condition. The basic
technique used is that of Rice [1951]. When we al-
low the impedance of the material below the surface
to vanish (i.e., it becomes perfectly conducting),
our expression checks with those of Feinberg and
Rice. Rice did not actually define an effective surface
impedance in his analysis. We¢ show how it is pos-
sible to define this eflective impedance in either of
two physically meaningful ways; both definitions
give equivalent results. By examining the spatially-
averaged Poynting vectors near the surface, we will
interpret this effective impedance in terms of scat-
tered and evanescent modes. Results are derived
for deterministic periodic surfaces as well as random
rough surfaces.

In this paper we describe the fields near the sur-
face in terms of guided waves. In paper 2 we show
how the eftective impedance derived nsing a guided
wave approach can be utilized to analyze the prob-
lem of radiation from a dipole located above such
a surface. As an application, we numerically com-
pute the effective surface impedance for the sea by
using two different directional, empirical models for
the ocean wave-height spectrum. Finally, we employ
these surface impedances in calculations to predict
the basic transmission loss for propagation across
the sea as a function of sea state, frequency, and an-
tenna heights.

The significance and convenience of the nor-
malized surface impedance in the formulation of
ground-wave propagation problems were emphasized
and popularized by Wait [1964]. This dimensionless
quantity is defined as A = Z,/Z,, where Z; is the
impedance of the surface in ohms and Z, ~ 120 Q
is the impedance of free space. For the earth and sea
at frequencies up to VHF, A is much less than unity,
and hence vertical polarization is favored for ground-
wave propagation. The normalized impedance at
grazing for a smooth interface with a lower medium
of complex permittivity ¢; and permeability p; can

be written [ Wait, 1964] as
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for ¢, >> €. But ¢ = ¢,, + i(0,/0) (the time conven-
tion e'“*' is employed), where e,, is the real permit-
tivity and ¢, is the conductivity of the medium. If we
take as an example sea water at 10 MHz, we have
€,; = 80 €, ¢, =~ 4 mho/m, and hence A ~ 1.18 X
107% exp (—ir/4). Thus |A| is truly small for sea water
at this frequency; nevertheless, it will be shown that
it is not negligible when the effect of roughness is
analyzed.

Inherent in the analysis to follow are several as-
sumptions and approximations. These we state here
as: first, the surface height ¢ above a mean plane 1s
small in terms of the wavelength A; ie., (kpf)? < 1,
where ky = 2x/A is the free space wave number;
second, the surface slopes &, and &, (¢ = d&/ox, & =
at/dy) are small for the roughness waves considered
here; and third, the medium below the surface is
highly conducting; i.e., |A| € 1. The first assump-
tion guarantees the applicability of the Rayleigh
technique, but recent studies [Burrows, 1969] show
that the Rayleigh hypothesis can be applied even
when assumption 1 is not satisfied; we shall nonethe-
less specify the regions of validity of our results in
terms of these three restrictions. The satisfaction of
all three restrictions also ensures the applicability
of the Leontovich boundary condition,

DERIVATION OF EFFECTIVE SURFACE
IMPEDANCE

Fourier expansion for surface height. The Rice
[1951] technique to be followed here (the notation of
Rice will be retained everywhere to facilitate refer-
ence to his paper) begins with the representation
of the surface height ¢(x, ¥) above the z = O plane
in terms of a Fourier series periodic over a square of

side L: (see Figure 1)

fa:]

Z P(m, n) exp [ia(mx -+ ny)] (1)
where a = 2»/L and P(m, n) are the Fourier coef-
ficients of the surface expansion. We assume that
the mean plane is the z = 0 plane so that P(0, 0) =
0. Furthermore, since £(x, y) is a real number,
P* (m, n) = P(—m, —n), where P* denotes the
complex conjugate.

When the surface height is a nonperiodic random
variable, the above series representation can still be

(x, y) =
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employed by extending the period to infinity and
allowing the series to approach the Fourier integral.
Rice developed this technique for statistical com-
munication theory [Rice, 1944, 1945] and showed
that the coefficients P(mm, n) become uncorrelated
random variables in the limit as L — oo, Practically,
il is sufficient that I be considerably larger than the
correlation length of the surface height.

As a result of the fact that (¢(x, ¥)) = 0 (sta-
tistical averages are denoted here by angle brackets),
we can state that

(P(m, n)) =
(P(m, n)P(u,v)) =
(P(m, n)P(u, v)) =

0 for
@*/LYW(p, q)

for v =

W, 05 —m, —n

(2)

— M, —AM

p =am = 2zm/L and g = an = 2=n/L. The
function W(p, g) defines the average height spectral
density of the surface, and p, g are the radian wave
numbers (or spatial frequencies) along the x and y
directions, respectively.

The definition of the correlation coeflicient of the
height R(r,, =,) for a homogenous surface illustrates
the limiting process employed when the series be-
comes an 1ntegral

where

(ECe, PG, ) = 0°R(rsy 7,)
= E (P(m, n)P(u, v))

M, U,
-exXp (iamx -+ ifaux’ 4 iany + iacy’)

= Z (P(m, )P(—m, —n))

-exp [iam(x — x') 4+ ian(y — y')]

I
L—sm 4

where v, = x — ¥’ and -, = y — )" and ¢&° is the
mean-square height of the surface,

[ W, exp Gpr. + ian) dpda ()

Geometry of a slightly rough surface.
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Modal expansion for the guided wave fields. Let

us first repeat the expression for a wave guided along
the interface of a perfectly flat, highly conducting
material of impedance A; this can be found in any
standard text on electromagnetic theory such as
Jordan [1950], The wave is propagating in the x
direction, as shown in Figure 2, with the A field
perpendicular to the page. Then

E. .~ E, A exp [iks(l — AY)'°x — ikoA z] (4a)
E,=0 (456)
E, =~ E, exp [iks(1 — A®)'*x — ikoA z] (4c)

where E; is the E field amplitude constant and the
time dependence exp (—iwyl) 1s omitted.

When the surface is slightly rough, we express the
total ficld above the interface as a perturbation of
equations 4:

E, = AE(h, 0,2) + 2. AwE(m + h,n,z) (5a)
E,= 2., Bu.E(m-+ h,n,z) (5h)
E, = E(h,0,2) + D, CuE(m~+ h,ynz)  (5)

Wi, n=—

where
E(m 4+ h, n, z)
= E, exp [ia(m + h)x + iany -+ ib(m -+ h, n)z] (6)

and

bm + h,n) = [ko — a’(m 4+ B — a’n’]"" (7)

The definition of b above is such that equations 5
satisfy the wave equation. The Cartesian components
of the H field are not given here but are readily de-
termined from Maxwell’s equations.

In equations 5, the presence of the roughness
manifests itself as the summation terms. In keeping
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i Free Space mine A,,. To do this we shall substitute Equations 5
. into the Leontovich boundary condition at the per-
; ﬁig;ﬁwm turbed surface z = ¢(x, y).The Leontovich boundary
- I > condition 1s
y-axis into H E
¥ X

page
= X
//////>§/ ////// where E; and H; are the total E- and H- field vectors

Surfoce N ;
) _ . above the perturbed surface { and 7 1s the unit normal
Fig. 2. Guided wave above a planar impedance boundary. to the perturbed surface. It is defined as

with the Rayleigh hypothesis (valid upon satisfac- . R P2

e

tion of the first restriction above), we represent PEU T DY
the field in terms of only upgoing waves. As the ) i L ;
roughness disappears, A,.,, B, and Cy,, will vanish, ~ [—f8 — &9+ 200 — 2@+ 6] (10a)
and b(h, 0) — —Kkoa; equations 5 then reduce here #, ¢, and £ are unit vectors along the coordinate
identically to equations 4, valid above a smooth Im-  axes. The approximation on the right side of (10) is
pedance boundary. Also, we take Coo to be identi-  possible because of the second restriction above, that
cally zero. This choice is possible; what it really  {he surface slopes are small; terms up to and including
means is that the field is normalized such that at  gecond order in &%, ¢,%, and (ko {)° are to be retained
x =y = 0, the total z-directed E field amplitude  throughout this analysis because it will turn out that
is I, Aga 18 of second order.

Definition of the effective surface impedance. When (104) is substituted into (9¢) and the fields
Physically, the guided-wave portions of the field ap-  are represented by their Cartesian components, the
pearing in equations 5 are all terms having the x and y portions of the boundary condition, (9¢),

Lal

E(h, 0, z) structure, These are become
4 . Fa o F, dE o A v d k.

E, — t’E. —~ ttE + LE = —4—¢\ 2 —=] -1 =3¢+ ¢ ( ——)} 105
: — k& ST i e A O3 ”\,“{ L(ax ﬂ,!’) [ (0 1+ ) . P (105)
| - AJ _(0E ﬂ'f;_,) ; , (..—u, EJI?_.)}

v, ™ {p Loy — Y T = — e = ] .11 — 3 - 5 + = 10¢

L, Sy 4oy [ g -+ $E,s ik, { f:( ay A | 5 ( E {0 )l En Ay (10¢)

ES = (A 4+ A)ECh, 0, 2) (8z) 1n the above equations, Maxwell's equation has

" been used to express H in terms of E. No attempt is
E,” = BooE(h, 0, 2) (80) " made in (10a) to order the fields; for example, E.
E° = EW,0,z) (8¢c) Wwill turn out to be of zero order but E, is of first

order. Terms higher than second in the above equa-
tions will be dropped later.

Derivation of first-order coefficients of the per-
A=A+ 4 (9a) turbed fields. In deriving Ag,, we follow the classic
perturbation approach. The smallness parameters
are the normalized surface height (ko¢), the surface
slopes ¢ and ¢,, and the normalized impedance of
A= A+ (Ao (95) the lower medium A. We shall retain terms up to
second order in (kq&), &, and ¢, but only up to
first order in A (i.e., terms of the order of A? will not
be saved). The reason for this is the fact that A,
B,.., and C,., are of at least first order in (ky¢), &
or ¢,, whereas they are of the order of zero 1n A
(e.g., if ¢, &, and ¢, go to zero and the surface be-

By comparing equations 8 with equations 4, one is
led to define tke effective surface impedance as

If the surface height is a random variable, the aver-
age effective surface impedance becomes

Physically, Equations 9 indicate that the average
wave front and polarization tilt at the mean surface 1s
E/E" = A = A + Ay, which is a common way
of defining the surface impedance.

Leontovich boundary condition at the perturbed sur-
face. The ultimate goal of the analysis 1s to deter-



comes smooth, the perturbed field coefficients dis-
appear; if A goes to zero so that the surface becomes
perfectly conducting, however, these coefficients do
not vanish). Since the field coefficients are at least
of first order in the surface parameters, we order
them also as follows: A,,, = A,..'Y) + A,,'* +

-+, with similar expressions for B,,, and C,,,. Thus
Apn™ is the first-order contribution to A4,,, and is
associated with the first-order terms in (10).

We now substitute (5) into the boundary con-
ditions (10); the exponentials E(m -+ h, n, &)
involving the surface height are expanded; i.e.,

exp [ib(m -+ h, n){]
= 1 4+ ib(m + h, )¢ — 3b°(m + h, n){’

Then these equations become:

Al 4 ib(h, O) — 1b6%(h, 0)FF]
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From (11c¢) the zero-order terms are equated to
Zero:

ha(A + Ay) + b(h, 0) = 0

The above equation shows that b(h, 0) is small in
terms of /ia because A and A, are small. Since ha =
[ko* — b* (A, 0)]'/%, we can use the binomial expan-
sion to obtain

(12b)

2
1 b*(h, n)) (126)

ha =~ — -
a kn(l 2 kﬂg
Thus ha is very close to kg, which is expected, since
propagation of the guided wave is very nearly in the
x direction.

Now let us collect and equate to zero all the first-

Drdﬂr tﬁrnlS iﬂ f:': gr: EH! Aum“}: Biuu“".- ﬂnd CHHJ“}

-+ Z {[Amm -+ A, 11 — ib(m 4+ h, e — b°(m + h, H)fg]}fi'x[m, n) — §‘,E A4 L iblh, 0)]

A
+ {. Z C,..'" Ex(m, n) = o {—¢, E [B,..'"i(m ha — Ammffm]Ex{m, n)
0

— ib(h, 0) A[1 + ib(h, 0)¢ — 3b7(h, O)°1 + ihal[l + ib(h, 0)¢ — 3b%(h, 0){7)
— D [(( A + Ann®)iblm + 1) — (€ + C®)i(m + B)a)

(1 = ib(m + h, MOVEx(m, n) + 38" + £50ibh, 0) A — iha]) (11a)
2o B + BT+ iblm + h, w1 Ex(m, n) — &8, A + £,01 + iblh, 0)¢]
-+ Z C.."""Ex(m, " = ‘i_i— -, Z [A,. " ina — Bm,,{”f(m + MalEx(m, n)
0
— 20 B + Bu™)ib(m + b, n) — (Co™ + Con™®)ina)(1 + ib(m + h, W)O1Ex(m, n)) (11b)

where Ex(m, n) = exp (iamx -+ iany). The quantity
exp (ihax) was common to every term and hence was
dropped. Besides the above, we employ a third equa-
tion obtained from the divergence condition V-E = 0:

ha(A + Aq) + b(h, 0)
+ > [alm 4+ W)( A" 4+ 4,.%)

o, el

+ an(ﬂ,,,,.m - B,,,,*m}

+ b(m + h, n)(C,'" + Con®)IE(m, n,z)  (11c)

We now collect terms of the order of zero in ¢, .

L., and ¢,; from (11a) (there are no zero-order terms
in (11b6)) we obtain:

A + (A/ik)ib(h, 0) A — ihal = 0 (12a)

found in (11). We use (12a) to eliminate terms
from (11a). Finally, we employ (1) for the surface
heights and slopes and equate to zero each term of
the ensuing series multiplying Ex(m, n) to give:

[1 g A b(m -+ h, n)] 4. W

kg
— A 24, f UL €. = —imaP(m, n) (13a)
0
[1 4 bUm + b, "}:IBM‘”
ko
— & i’:—-" C..'" = —inaP(m,n)  (13b)
i
(m + mad,.'” + nab,, '
+ b(m + h, 0)C,.,'" =0  (13¢0)
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We now use (13¢) to eliminate C,,,./*) and solve
for 4,,,Y and B,,,'*). When these are substituted
into (13a) and (13b), we solve for the latter coef-
ficients; the result is

r 1"".’5

A 4 LA : (1 _ i¥s ;
. D P(m, n); B D P(m, n);
- hMNaNy — naN
EL Y 2 T = :
b(m -+ h,n) D F: ) (14)
where

The right side of the above equation will involve
double summation sets when we introduce the series
for ¢, &, and ¢,. In order to employ the orthogonality
relationship of the eigenfunctions Ex(m, n) and set
individual terms of the series on the left side equal to
zero, it is convenient to rearrange the double sum-
mation. The examples below illustrate the procedure.

£ = Z}E Z; (ica)(iva)P(a, B)Ply, ¢)
- Ex{a <+, 8+ L)

L b(m + h, n) na’ )]  A(m - Wna”
Na ”””[1 T 'ﬁ( Ky T ittt ] T e < ) Wi3e)
_ b(m -+ h, n) (m + W'a' )] A(m -+ Dna’
Ny = —ina| 1 :
g '”“[ + ‘ﬁ( G T kb ] T R btm b ) i
b(m -+ I, n) (m + h)’a* )][ (E}(m -+ h, n) na )]
D=1+ a( i
I: L ks + kob(m = I, n) LA ko | kKob(m -+ h, b)
- éi'(r:z + ’n’d’
ko b°(mt + h, n) (15¢)
The above equations show that the scattered or = 33 ia(m — K)(iak)PGk, 1)
perturbed field coefficients can be separated into man kol
two factors, The first involves N_,.t, N}], and D and P(m — k, n — DEx(m, H) (l?ﬂ:l

depends only on the electrical properties of the ma-
terial beneath the surface (as contained in A) and
in the directions of propagation of the scattered
plane wave (as contained in am and an). The de-
pendence on the shape of the surface is contained
entirely in P(m, n). Furthermore, the m, nth Fourier
component of the surface gives rise to scatter in a
unique direction determined by a(m + k), an; this
direction is precisely the Bragg direction [Barrick
and Peake, 1967, 1968], and the m, nth component
of the surface is acting as a diffraction grating.

The object of the present analysis is the derivation
of Ayy. But since P(0, 0) was taken to be zero (i.e.,
the mean plane is the z = 0 plane), (14) shows that
Ago™ is identically zero. Hence, Ay, must be of
second order in ¢, &, and £,.

Derivation of the second-order coefficient Ay ).
Apn'®? can be determined entirely from (11a). By
equating the second-order terms and again using
(12a) to eliminate terms, we obtain

[+

(m -+ ha
ko

b(m -+ h, n}) A2 A
Ko

Gnn

b{(m —+ h, n)

D iblm 4+ h, WA, =

mn [ 3

ﬁ Z:r ibla + h, B)

- Ply, ) Aus'VEx(e + v, B + §)

= > D iblk -+ h, DAL"

m,n k.l

«P(m — k, n — DEx(m, n) (17b)

The right side of (16) is then expressed so that
Ex(m, n) shows explicitly, and then the individual
terms of the series in m, n multiplying Ex(m, n) are
equated to zero. Since we are interested in Agp®,
only the m = n = 0 term 1s to be studied here.

The left side of (16) reduces to
b(h, 0) (2) ha
(1 -+ A —ku_) Ay ™ — A E
This result can be simplified further because Cigqg
was defined earlier to be zero to all orders, accord-
ing to our normalization, Furthermore, the term A
b(h, 0)/ky is of at least second order compared to

(2
CDEI

m]ﬂr(ni. ) s %(Lz — ) + iko Aft.

(m -+ ha

na (1)
CyBrn

- Z {I::’b(m =R, n)j‘(l + A

(m -+ Ma
kg

Ko

“t l:—-f'b(m + h, m)f A

+ f,:’ C,,.,,“’}Ex(m, n)

g_;.:l Am“”} + A

)“ﬂz k,

(16)



unity, as can be seen from (125b). Hence the left side
of (16) reduces to Aq,(*’, and we obtain

A = Y {[—fb(k + h, DALY + iakCy ']

k, I

B 2,9 2 .2
o] Bk o528 : af]P(ﬁc, )

[T, 850 a1 2
. tal’ ib (k "'l" h, I}) (13

.ﬂh( K. + Ee At
_id’(k + h)l B,
ko
bk + a5 + k) {11:|}P( B o
(i}

(18)

We now employ (14) and (15) for the first-order
coefficients. Algebraic simplification is possible, but
we spare the reader the details here. Terms are dis-
carded of order A? and higher. We then obtain the

following expression for Ag,*:

W koa’k”
Aoo Z {buc + 4, 1) Dk, D)
a’k® -+ a T — koak

+ ‘ﬂ“[ Dk, 1)

ﬂﬂkﬂ = HEIE
4 (kﬂﬁrk -+ 5 )]} |P(k, DI (19)
where D(k, 1) can also be simplified by discarding
higher terms in A to give

ko btk -+ h, D
"o+ Al T + | e

Thus we have obtained a result for Ay, that is
a summation over the Fourier components of the
surface height. When A — 0, the above equation re-
duces to that of Rice [1951]. The second term in
(20) thus provides a correction and estimate of the
effect of finite conductivity; for a A that approaches
unity, this correction term alone is obviously in-
adequate and another technique must be sought.

Effective surface impedance, F¥rom (9), we have
the expression for the effective impedance of a pe-
riodic surface with Fourier components P(m, n):

Dk, =1

kﬂﬁ'zk:
A=A+ Z{b(k—l—h ) D(k, 1)

¢l k + a f' = kuﬂk
* ﬂ[ DGk, )

2 2P '
=5) )}

ak 1)

+ (knﬂk - i

HF AND VHF PROPAGATION, 1 523

If the surface is a pure sinusoid along the direction
of propagation, for example, then £ = =1 and/ = 0;
hence the above series reduces to two terms. If the
sinusoid is oriented along the y axis so that propaga-
tion is along the crestlines, then k = 0and / = 1. 1In
this case, Ag'> = 0, A = A, and the guided wave is
not influenced by the presence of the corrugations.

If we are dealing with a random surface and desire a
statistical average of A, as expressed in (9b), the sum-
mation can be reduced to an integral yielding

'=¢+%j: j: F(p, q)W(p, q) dp dg (22)
where
Fo. ) = & +; i{iﬁ; i D i
1 ﬂ(ﬁz ; a 2. kﬂﬁ.) (23a)
b = kiﬂ[kf — 4+ ko) — 1 (230)

We have uszd the approximation above that sa o~
ko, which is valid so long as A is small compared to

unity as seen from (12¢) and (12b).
As a check on (22), if we permit A to approach zero
in the integrand, we can obtain a form that agrees with

Feinberg’s [1944] result (after proper normalizations),

1.e.,
A=atyf [

Thus we have in (21) and (22) expressions valid to
order A for the effective surface impedance at grazing

of imperfectly conducting, rough surfaces.

P Wip, f}‘) dp dg

(24)

INTERPRETATION OF THE INTERACTION
PROCESS

Power flow near the surface. Following equations
8, we defined the m = n = 0 terms in equations (5) for
the fields as the guided wave; all the other terms we
will refer to as the scattered field. The scattered field
owes its existence strictly to the presence of roughness.
The strength of the modes in the scattered field, as rep-
resented by A,.., Bn., and C,,,, are proportional to the
Fourier coefficients of the roughness height P(m, n), as
seen from (14). These scattered field terms consist of
both upgoing, propagating plane-wave modes and also
evanescent, non propagating modes. These two modes
are distinguished by the exp [ib(m -+ h, n)z] factor:
when m and » are such that b (defined by (7)) is real,
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the mode is propagating; when m and n are sufficiently
large that b is the square root of a negative number,
this factor is exp [— |b(m + h, n)| z] for z > 0 and the
modes are evanescent.

An understanding of the interaction process is
facilitated by examining the power flow near the sur-
face. We employ the complex Poynting vector S =
1(E xH*), where an average over time is implied.
Furthermore, we intend to average over one spatial
period, which for convenience we take to be the square
of side L centered at x, y = 0, as shown 1n Figure 1;
the spatial average is denoted by 8. This merely means
that we are interested in the net power flow over at
least one complete roughness cycle (or hill) of the sur-
face, rather than over a portion of a hill or cycle. It is
not the same as a statistical average, however; statisti-
cal averaging can be performed on S in addition to the
spatial averaging, if appropriate.

The derivations of the x—, y—, and z— components
of 8 is straightforward. The spatial averaging reduces
the double summation over m, n, k, I to a single set
over m, n. Finally, we set z = 0 because we are in-
terested in the power flow just above the mean surface.
The results, correct to the second order, are:

=

L

where S refers to the power flow in the guided-wave
portion of the fields, represented by the first term in
(254) and (25¢) above; S’ denotes the power flow con-
tained in the summations. Hence the S* terms include
the power in the scattered fields. The scattered power
density in these three directions could have been
defined without our resorting to the Poynting vector
technique; it is merely the square of the ampli-
tudes in each of the three orthogonal polarization
states for each mode, multiplied by the direction cosine
of that mode along the three principal directions. These
direction cosines are (am -+ ko), an, and b(m -+ h, n);
hence, we have a check on our interpretation.

It is evident from equations 25 that S, and S, are
pure real, but S,, the power flow upward (away from
the surface), is complex in general. S,' is imaginary
when b(m -+ h, n) isimaginary; the latter, we have seen,

occurs when m and n are sufficiently large that the
mode is evanescent. An imaginary Poynting vector, of
course, means that the power is reactive and hence is
not dissipated but rather stored near the surface. This
is consistent with the nature of fields near the teeth on
guiding structures, where induction and electrostatic
fields are created around closely spaced grooves, such
that am and an are large in terms of k,, the radio wave
number.

Alternate definition of effective surface impedance.
Earlier we defined the effective surface impedance from
inspection of equations 5 and 8. It may not have been
altogether obvious that the entire contribution due to
roughness comes with A,,'”, the zero-order mode of
E.. A more formal definition can be made in terms of
the power flow. Norton [1937b], Wise [1937], and Jor-
dan [1950] all have shown that the ratio of the Poynting
vector propagating downward into the surface to the
Poynting vector propagating in the forward direction
is equal to the normalized surface impedance A. This is
true whether one is dealing with a guided wave, as
shown by Jordan, or with the energy radiated from a
dipole, as discussed by Norton and Wise. Hence, the
ratios of these Poynting vectors should provide another

—— =

_—

8. = 41:&5“2-:3#) ko + 3 (am + k)| An ™ |F + [Bun™|* + 1Con D] = 8.7 + 8. (25a)
Sp - 41:0;?]2[]?} Z H”ﬂAwminlE + [Bmu“}]ﬂ -E_“ |Ctm;{”12) — Sl.r' (25‘{])
8, =4kD(1};EDw) [—ko(A + Aoe®)+ 3 b(m + hy m)(| A [* + [Ban” + 1€V D] = 8.7 + 8.7 (25)

meaningful definition of the effective surface im-
pedence at grazing.

Extending this to a roughened surface, one would
logically define A as the ratio of the downgoing
Poynting vector to the Poynting vector to the unper-
turbed guided wave in the forward direction. From
(25), thisis A = —8,%/5.°, where it is clear from (25¢)
that the downgoing power flow is represented in the
first term with the minus sign. Thus we arrive at ident-
ically the same expression for A as before, 1.e., equa-
tion 9, where A = A + A" .

Thus we see that the average downward flow of
power, S,°, consists of two portions. The portion rep-
resented by A enters the surface (as though it were
perfectly smooth) and is converted to heat due to
ohmic losses, as represented by the finite conductivity
of the medium. The second downward-going portion,



proportional Ay, is due to roughness and is made up
primarily of the upgoing scattered power density, as
represented by S.'. It consists of energy removed
from the guided-wave mode by scatter and hence is dis-
sipated. There is a final small portion of S, contained
in Ay, that is not balanced by S,*; this is the pertur-
bation in the power that enters the surface, owing to
the roughness. It can be found by subtracting S,’ from
that portion of —S,° containing A4, ; it is of the
order of A.

If we had neglected the last small component of
power mentioned above, an alternate method of de-
fining A would have involved computing only the
first-order scattered fields (both propagating and
evanescent); no second-order derivation of Ay"
would have been necessary. From conservation of
power, one could have argued that the upgoing scat-
tered power, i.e., S.’, must be balanced by a downgoing
component equal to it. Thus for a perfectly conducting
surface, one would define

~ _ [Ey'/4kq(120m)]
A = [Ey*/4ko(120m)] ; b(m -+ h, n)

.(ldmn{ﬂlt +=’|an{1}]2+ |Cm“{1}IE‘)

Using equation 14 for 4,.,"’, B,."’, and C,." with
A = 0, one arrives at

2 o
koa m

& z b(m -+ h, n)

m,n

which 1s identically equal to (21) with A = 0. Hence,
the various definitions are equivalent and provide a
coherent interpretation of the interaction mechanism.
Equation 26, when averaged statistically, reduces to
the integral in equation 24.

Interpretation of the resistive and reactive com-
ponents of A. We now examine the first-order con-
tributions to A (the effective surface impedance),
which result from the roughness. The first-order effect
is expressed in (26) for a deterministic periodic surface,
or in the integral in (24) for a random surface where
A 1s taken as zero in the integrand. The integral is
pure, real, and positive when b’ is real and is imaginary
and negative when b’ is imaginary; the former case
represents a resistive contribution to A, whereas the
latter 1s a reactive contribution.

Physically, the real or resistive portion of A comes
from roughness components whose normalized spatial
wave numbers (am/k, = p/ko, an/k, = g/k,) lie
within the unit circle centered at —1, 0, as shown in
Figure 3. This is possible only if there are components
of the roughness height spectral density W{(p, q) with

|P(m, n)|* (26)

HF AND VHF PROPAGATION, 1 2D

- p/k,

p/k,=roughness spatial
wavenumber in
x-direction normalized
to radio wavenumber

q/kg= roughness spatial
wavenumber in
y-direction normalized
to radio wavenumber

ko= free space radio
wavenumber

=2/ h=w/C

Fig. 3. Effect of various regions of spatial roughness spec-

trum on effective surface impedance; propagation direction

(x axis) corresponds to p/k. axis. Roughness spectrum

within unit circle contributes to the effective surface resis-

tance R.; the remainder of the spectrum contributes to the
effective surface reactance Xa.

spatial frequencies less than 2k,. Physically, this means
that only roughness waves longer than one-half the
radio wavelength can contribute to the resistive por-
tion. But it is precisely these roughness waves whose
wave numbers lie within the unit circle that produce
propagating scattered fields by the Bragg mechanism
[Barrick and Peake, 1967, 1968). As seen from (25).
these longer roughness waves are responsible for the
removal of energy from the guided wave and scatter
into all directions in the upper hemisphere; this active
energy removal produces the resistive term of the
surface impedance.

On the other hand, those components of the rough-
ness spectrum with periods shorter than \/2 (lying
outside the unit circle) yield a reactive component of
the surface impedance. In addition, this negative
reactance always represents an inductance (due
to our time convention e'“*!). Roughness waves of
these shorter lengths do not produce propagating
scattered modes but, rather, evanescent modes. As
seen from (25), the power associated with these shorter
roughness components is reactive also; hence, the
reactive portion of the impedance is directly related
to the reactive power density at the surface.

Let us examine a slightly rough perfectly conducting
surface with spatial periods all less than /, and assume
that we begin to increase the frequency of a wave
guided across the surface. The first effect we notice
1s an increase in the effective inductance of the surface,
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with no resistive contribution at all as long as k, <
x/l,. When the frequency is such that k, > /I, and
when some roughness components lie within the unit
circle, then we will suddenly notice an increase in the
resistive portion. Hence, at lower radio frequencies, a
given rough surface will appear inductive, but at
higher frequencies the resistive term will eventually
increase until it is as large as the inductive term. This
conclusion assumes of course that the height still
remains small compared to the radio wavelength.
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This paper deals with an estimation of the effect of sea state on HF and VHF ground-wave
propagation loss across the ocean. For this estimation, an expression is employed that was
derived in part 1; it gives the effective surface impedance in terms of the spatial height spectrum
of the surface. Two empirical models are employed for the height spectrum of the ocean, the
directional Neumann-Pierson model and the isotropic Phillips wind-wave model. These effec-
tive surface impedances accounting for sea state are then inserted into a standard ESSA ccm-
puter program giving the basic transmission loss above a spherical earth, The dependence on
sea state is plotted in curves which show the excess loss in decibels over a smooth sea. The
propagation loss to points at various heights above the sea is also calculated. Normal sea
state variations are seen to be negligible below about 2 MHz but produce a maximum excess

loss at about 10 to 15 MHz,

USE OF A FOR RADIATION ABOVE
THE EARTH'S SURFACE

In Part 1, we derived an expression for A, the
effective impedance of a slightly rough, finitely con-
ducting planar surface at grazing incidence for vertical
polarization. To do this we assumed a sourceless
guided wave in our description of the fields above
the interface. There is the question How does one
employ this result in the analysis of radiation from a
source above a rough spherical surface such as the
sea?

Norton [1937] has shown that the field radiated
from a dipole at the surface has the appearance
locally of a guided wave, even though the asymptotic
expansion of the total radiated field at large distances
contains no guided wave term. More specifically, the
total radiated field near a point on the surface can be
expanded in a series about that point; its first terms
are the same as those of the guided wave. The hori-
zontal distance p from this point within which the
fields appear to be guided is related to the ‘numerical
distance’ of Norton such that p ~ N\/x |A|” [see Wait,
1964]. Hence, for highly conducting surfaces such
that |A| <€ 1, the region about a point on the surface

within which the field appears guided is many wave-'

lengths in extent. Wait [1964] shows that this is true
for spherical surfaces also in his expansions for the

Copyright © 1971 by the American Geophysical Union.

height-gain function. In addition, one can demon-
strate that even the sum of the incident and reflected
rays appears guided near the surface within a neighbor-
hood of radius p about a surface point.

Therefore, since the fields far from a source appear
guided in nature within a region of radius p (defined
above) about a surface point, one is justified in
treating the fields near an irregular surface of period
L as though they are guided, so long as L < p. As an
example, for the sea at 10 MHz, p =~ 70 km. Hence
the expansion of the fields into guided-wave modes in
part 1 is valid since the water waves of practical
interest are less than 1 km in length.

Thus the value of effective surface impedance
derived in part 1, equations 21 and 22, can now be
used in any of the standard analyses of radiation
above the earth at near-grazing angles. The slightly
rough surface is conceptually replaced by a smooth,
flat surface at z = 0 with effective impedance A. (The
same procedure 1s used, for example, with rectangu-
larly corrugated surfaces, where a A is derived by
Elliott [1954] using waves of a guided nature and
static-field approximations for the fields between the
narrowly spaced teeth.) Wait [1957, 1964] shows that
problems involving radiation above both a planar
and a spherical earth can be formulated in terms of
the normalized surface impedance, and in fact, he
shows Elliott’s value of A as applicable when the
surface 1s corrugated.

327
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We intend in this paper to employ A, derived from
equation 22 for the sea, in a standard ESSA program
provided by Berry and Chrisman [1966] for propaga-
tion above a spherical surface. In this manner, we
shall study the effect of sea state on propagation loss
above the ocean at HF and VHF.

WIND-WAVE SPECTRUM MODELS FOR THE OCEAN

At HF, the longer, higher gravity waves will ob-
viously play an important role in the interaction
process. Such ocean waves owe their existence to
winds blowing above the surface. However, a precise,
quantitative relationship between the roughness
heights and the winds is complicated by several
factors. First, it takes several hours for waves to
build up to their full strength under the influence
of the wind; for example, it takes 20 hours for the
sea to build to its full or ‘saturated’ height under 15-
knot winds. In most instances, the winds will not
stay constant either in magnitude or direction for
this long a period, and hence the sea is rarely
‘saturated’ at the longer wavelengths. Second, the
homogeneity of the wave spectrum aroused in a
given region depends on the spatial area over which
the winds are blowing; this area is called the ‘fetcl’
and may be as small as 100 km in length. Third,
part of the roughness 1s due to winds or storms
located far away in space and/or time from the
region of interest; this is called ‘swell.” It is usually
quite directional and ‘narrowband,” and hence its
spectrum W(p, g) appears as ‘spikes’ in the p-g
plane.

With these complications, the only exact way of

given area is to measure it. For purposes of obtain-
ing a rough estimate of the effect on propagation,
however, we will employ two semi-empirical models
with a minimum of parameters. The models, de-
veloped by oceanographers over the past 15 years,
neglect the effect of limited fetch and swell and they
assume the winds have been blowing sufficiently long
that the sea is fully developed. Empirical evidence
indicates that the wave height spectrum follows a law
close to «™* in the saturated region («* = p* + ¢°)
and that it falls off rapidly to zero at the lower end
when x < g/U?, where U is the wind speed (m/sec)
and g is the acceleration of gravity.

We will examine two models. The first is a Neu-
mann-Pierson spectrum that is modified to give some
preference to waves moving in the direction « from
the x axis. The assumed directionality is cosine
squared, as proposed by Kinsman [1965], and the
assumed form 1is

C(p cos @ -+ ¢ sin a)’
70+ )

cexp {—2g/[U°° + ¢°)'*1) (1)

where C is a constant empirically estimated to be
3.05 m?*/sec®. This spectrum has an inverse 9/2-
power over-all dependence on x in the saturated
region (i.e., for x large); the exponential function
1s an artificial factor producing a smooth but rapid
lower-end cutoff. The spectrum is assumed to be
nonzero only in the half space into which the wind
is blowing. The mean-square height of ocean waves
obtained from this model is ¢* = 34 C(#/2)%"?

Wp, q) =

obtaining the true ocean wave height spectrum in a  -(U/2g)".
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The second model we will consider is attributed
to Phillips [1966]. Basing their conclusions on ocean-
wave data gathered more recently, Phillips [1966]
and Munk and Nierenberg [1969] have presented
evidence to show that «* dependence is a closer fit
than 2, In addition, measurements show that the
lower-end cutoff is much more pronounced than the
exponential factor in the Neumann-Pierson model.
Thirdly, slope measurements by Cox and Munk
[1954] show that the spectrum is closer to being
isotropic than the cosine-squared directionality as-
sumed in (1). Hence they suggest the following
spectrum:

Wp, q) = 4B/z(0" + ¢°)’ (2)
where B =~ 0.005. The spectrum is identically zero

Frequency, megahertz

for k < g/U? and also in the half space from which
the wind is blowing. The mean-square height of the
waves from this model is o* = 3 BU*/g>.

It must be mentioned that very little oceanographic
data have been gathered that support any given di-
rectional behavior of a general model such as these.
FFor this reason we examine both models here to
observe the effect of directionality on the effective
impedance of the surface.

EFFECTIVE SURFACE IMPEDANCE FOR
TWO WIND-WAVE MODELS

The averaged effective impedance A of a random
surface such as the sea is expressed in (22) of part 1
in terms of W(p, q), the average wave height spatial
spectrum of the surface. We shall now employ the
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Fig. 4. Basic transmission loss across the ocean between
poinls at the surface of smooth spherical earlh. Conductivity is
4 mhos/m and an effective earth radius factor of & is assumed.

two semi-empirical wind-wave models for W(p, g)
described in the preceding section. For the directional
Neumann-Pierson model, we examine two dominant
wind (or wave) directions: first, along the direction of
propagation (e« = 0), which we term the ‘upwind-
downwind’ direction and, second, perpendicular to
the direction of propagation (¢« = =/2), which we
term the ‘crosswind’ direction.

In both cases, we evaluate the integral numerically.
We also divide by two and assume that the spectrum
exists symmetrically over all space, instead of over
only the forward wind half. This 1s necessary because
at a given instant the sea profile will appear ‘frozen’
to a radio wave, and it will not be possible from this
profile to tell whether the waves are moving forward
or backward.

Figures 1 and 2 show the effective surface impedance
A for the Neumann-Pierson model of (1) for the
upwind-downwind and crosswind directions, respec-
tively, The broken lines in the figures represent the
imaginary part of the impedance and the continuous
lines represent the resistive part. The lowest line is
the limit of surface impedance as the roughness

vanishes, i.e., A = A, where A is the wave impedance
of sea water. We assume ¢ = 4 mho/m and ¢, = 80,
which are median values for the Atlantic Ocean at
about 40° latitude. Figure 3 shows the calculated
impedance for the Phillips semi-isotropic spectrum
of (2), where the same constants are assumed for
the sea water.

As seen 1n Figures 1 and 2, the most severe changes
in surface impedance occur for propagation in the
upwind-downwind direction (i.e., across the corruga-
tions); this is, of course, expected from the presence
of the p® factor in (22) and (24).

The figures also indicate that the first noticeable
change in the surface impedance at the lower fre-
quences appears as an inductive increase in the
reactance. This means that nearly all the ocean waves
are shorter than the radio wavelength; hence, most of
the spectrum lies outside the unit circle shown in
Figure 3 of part 1. As the sea becomes rougher (or
as frequency increases), the ocean develops waves
longer than the radio wavelength and the resistive
portion becomes about equal to the reactive part.

Even at lower frequencies, however, the reactive
portion is at most about twice the resistive portion.
The resistive portion in this case 1s made up entirely
of the real part of A, the impedance of ocean water.
In fact, throughout the HF and VHEF regions, the
increase in impedance due to roughness is of the
same order as the impedance of ocean water itself.
Hence, the surface cannot be taken to be a perfect
conductor. If the water were a better conductor, the
effect of roughness would be more apparent; if the
water conductivity were poorer (as with fresh water),
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A would be higher and the percentage increase due to
roughness would be less. As it is, roughness on the
sea is seen to produce an increase in A that is by no

means negligible.

INCREASED PROPAGATION LOSS DUE
TO SEA STATE

We shall now examine the increased propagation
loss due to roughness for a vertically polarized
ground wave propagating above the sea surface near
grazing. To do this, we will employ the values of
effective surface impedance for the rough ocean in
a standard formulation for propagation above a
spherical earth. In particular, we use a Fortran 4
program developed by Berry and Chrisman [1966]
of ESSA that has been modified to calculate basic
transmission loss. As a compromise, the values of
effective surface impedance obtained from the Phil-
lips semi-1sotropic wind-wave spectrum will be se-
lected here (Figure 3), since they lie between the
values of the Neumann-Pierson model for the up-
wind-downwind and crosswind directions. Again, a
value of water conductivity of 4 mho/m is selected
because it is typical of the Atlantic Ocean at mid-
latitudes.

As a reference, we show in Figure 4 the basic
transmission loss between two points just above the
surface of a perfectly smooth spherical sea (¢ = 4
mho/m, earth radius factor accounting for refrac-
tivity 1s 4/3) from the program. This basic trans-
mission loss, widely publicized by Norton [1953,
19571, i1s defined as L, = 10 logyy (P::i/P,:) (dec-
ibels), where Py 1s the power transmitted by an
isotropic radiator and P,; is the power received by
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an isotropic radiator. In a simple communication
problem, one must merely subtract out the free-
space antenna gains (in db) in order to determine
the over-all power loss. As a check, the basic trans-
mission loss between two points in free space sepa-
rated by a distance d is 10 log,p (4=d/A)%, where A
1s the wavelength.

In order to show explicitly the increased loss due
to sea surface roughness, we subtract the basic
transmission loss above a rough sea from that value
shown in Figure 4 above a smooth sea; we call this
the excess transmission loss due to sea state Lgg, In
db. The transmitter and receiver points are both
located on the surface. Figures 5 through 9 show
this loss at different frequencies as a function of
range (or distance) between transmitter and re-

ceiver,
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In Figure 10 we show an example of the basic
transmission loss at 10 MHz from a point on the sur-
face to various points above the earth. (By reciproc-
ity these numbers are also valid for the transmitter-
receiver locations interchanged.) The first number
at each height-range grid point is the loss when the
sea is perfectly smooth, and the second grid point
represents the loss when the sea is fully excited by
a 25-knot wind. The Phillips wind-wave spectrum is
employed here also. The ‘height-gain’ effect is clearly
evident as one moves upward at a given range; first,
there is a drop in signal of 2 to 3 db and then a
monotonic increase as one moves out of the surface-
wave region into the lit, or space-wave, region.
More curves and grids of this type can be found in
Barrick [1970].

SUMMARY AND CONCLUSIONS

The principal conclusion of this paper is that sea
state can markedly affect the ground-wave loss for
propagation across the ocean at HF and VHF. This
increased loss will be greatest for rougher seas,
higher frequencies, and longer ranges. For example,
below 2 MHz, sea state effects are generally negli-
gible, but at 15 MHz the increase in one-way loss
can be as much as 15 db at 100 nmi.

In part 1 we developed the theory for the inter-
action of a guided wave with a slightly rough, finitely
conducting surface. A convenient way of accounting
for the presence of roughness is found to be the
‘normalized effective -surface impedance. This is
“shown to consist of two terms; one term is due to
the smooth surface alone and the other depends on
the height spectrum of the roughness. The effective

surface impedance is simply related to the power
flow in the scattered and evanescent modes produced
by the radio wave interaction with the ocean waves.

In this paper the expression for the effective sur-
face impedance is employed to calculate the ground-
wave loss due to sea state. To obtain a rough quan-
titative estimate of this loss, we examined both
directional and semi-isotropic versions of the Neu-
mann-Pierson and Phillips wind-wave spatial spec-
trums. Finally. we used the values of surface im-
pedance calculated for the Phillips spectrum to
predict the excess transmission loss due to sea state.

Figures 5 through 9 for the excess loss show some
significant effects. First, a negative loss is observed
at lower frequencies; this actually indicates an in-
crease in signal. This effect is expected and occurs
where the increase in impedance is purely reactive,
namely where the ocean waves present have lengths
small in terms of the radio wavelength. Wait [1964]
examines and discusses this ‘trapping’ which occurs
when the reactance is greater than the resistance.
The trapping effect here is not pronounced, how-
ever, because the resistance due to finite conduc-
tivity is never that much less than the total reactance.
It is doubtful that such a small signal increase could
ever be measured.

It 1s also interesting to note that sca state loss
appears to be the greatest at about 10 to 15 MHz
and seems to decrease above this frequency. This is
apparently due to the increase in the normal wave
impedance of ocean water with frequency, which be-
comes a significant percentage of the total effective
impedance. Thus, a saturation appears to occur in
the upper HF region.

The restrictions required for the validity of the
theory (discussed in part 1) are easily satisfied by
the sea up to the mid-VHF region. Conductivity is
sufficiently great for ocean water that the Leontovich
boundary condition is applicable. If water waves
have height-to-length ratios that exceed 0.14 for any
appreciable time, breaking occurs; hence the slope
restriction is valid. The requirement that the height
be small in terms of wavelength can be translated to
a restriction on wind speed for a particular frequency
by use of the mean-square heights for the two wind-
wave models given after (1) and (2). By requiring
that (koo)? < 0.2, for example, the Phillips spectrum
shows that the impedance and loss calculations pre-
sented here are valid at 50 MHz for seas driven by
winds of up to 25 knots. Above this Rayleigh height
limit, it is at present unclear whether extrapolation
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of the curves can represent a valid and correct solu-
tion.
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