Reflection of Electromagnetic Waves from
Slightly Rough Surfaces

By STEPHEN O. RICE
Bell Telephone Laboratories

1. Introduction

) The problem of reflection of waves from a rough or corrugated surface is
of interest in a number of different fields. In particular, the problem occurs in
the propagation of radio waves over rough ground or over the sea. The general
problem of. reflection from rough surfaces appears to be difficult. However, a
number of investigators have been able to make progress by dealing with spec’ial
cases or by.' making suitable assumptions. For example, the radio problem in
which the impressed field originates at a point has been studied by E. Feinberg
{1]. L.V. Blake [2] has applied probability theory to the problem of calculating
the reflection of radio waves from a rough sea. The reflection from the very
rough surface formed by the edges of an infinite set of plates has been investi-
gated by J. F. Carlson and A. E. Heins [3]. Also, in addition to the studies of
W. 8. Ament' mentioned below, I understand that a considerable amount of
work on this subject, which is unpublished as yet, has been done by Mr. Twersky
(7 ot: New York University, and by Messrs. Norton and Hufford and their
associates at the National Bureau of Standards.

Here we shall be concerned with the reflection of plane eleciromagnetic
waves from a surface z = f(z, y) which is almost, but not quite, flat. The
small d?viations of this surface from the z,-plane are of a random nature.
.Except in Section 7, the surface is assumed to be a perfect conductor., Although
m practical cases the surfaces are usually much Mumed here
our problem has the virtue of being one of the simplest which still shows th(;
effect of roughness.

y The roug.hnf:ss of the surface is desceribed by a “roughness spectrum” o
roughness distribution function” W(p, g). When the surface is expressed as
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the sum of two-dimensional T'ourier components, W p ¢ dp dg represents the
relative strength  measured by th ir contribution to the m an square valu
offz,y oftho componentswhich go through between pand p + dp radians
meter in the z dire tion and through between ¢ and ¢ + dg in the y direction.
If the average d’ ance betw n th hills on the surface is larg , and the surface
is smooth ex ep for the hill, W p, ¢ will be appreciably different from zero
only for small values of p and ¢. The associated auto-correlation function of
the surface, whi h may be expressed as the Fourier transform of 71 p, ¢, is
not used here although it do oc ur in the work of . 5. Ament.

The reflected field is d termined by a method similar to that used by
Rayleigh [4] to study the reflection of acoustic waves from rough walls. The
expressions which we obtain for the field are not exact since the boundary condi-
tions at the surface are satisfied only to within O(f*(z, )), i.e. to within terms
of the second order—a shortcoming forced upon us by the increasing complexity
of our successive approximations. The two cases corresponding to horizontal
polarization (incid nt E vector parallel to z,y-plane) and vertical polarization
(incident H vector parallel to z,y-plane , respectively, are considered.

After expressions for the components of the field are obtained, various
averages are computed, the average being taken over many surfaces which are
different but which have the same statistical properties. In parti ular, the
average value of the reflected field leads to an expression for the reflection co-
efficient. It is found that this reflection coefficient depends upon the polariza-
tion in somewhat the same way as does the reflection coefficient for an almost,
but not quite, perfectly conducting plane. Also, when the average distance
between hills is large, the reflection coefficients for both the horizontal and
vertical polarizations reduce to the same expression. By a method similar to
the one used in the study of Fraunhofer diffractions, W. S. Ament has obtained
an expression for the average reflection coefficient when the distance between
hills 1s large and they are such that they do not cast any shadows (with respect
to the incident wave). Our approximate expression agrees with the first two
terms in the expansion of Ament’s expression, which is as much of an agreement
as the aceurncy of our work allows.

Closely associated with the problem of reflection is the problem of surface
wave propagation. This corresponds loosely to the case of grazing incidence
and vertical polsrization; a modified form of the reflection analysis may be used
to obtain an expression for the propagation constant of the surface wave. It
is found that, roughly speaking, the Fourier components of the surface whose
wavelengths are much greater than that of the electromagnetic wave tend to
produce attenuation through scattering, while the guiding action of the surface
is due to the components of shorter wavelength. This is in accord with the
results of earlier studies of surface waves on corrugated surfaces [5, 6].

The method used to study reflection from a slightly rough but perfectly
conducting surface may be extended to take into account the electrical prop-
erties of the reflecting medium. This is done in Section 7 for the case of hori-
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zontal polarization, the magnetic permeabilities of the two media being assumed
equal. There are two reasons for this study. The first is to determine the
additional amount of complication introduced. The second is to show that an
annoying difficulty encountered in the perfect conductor case, namely that the
integral for the mean square value of E, (i.e. the component of electric intensity
which is approximately normal to the surface) sometimes diverges logarithmie-

ally, may be removed by taking into nccount the finite conductivity of the
reflector.

2. Description of Rough Surface
We shall take the equation of the perfectly conducting rough surface to be
2= flz,y) = 2 P(m,n) exp {—ia(mz + ny)}
(2.1)
a = 2¢/L

where the double summation extends from — o to + = for both m and n.
The definition of a shows that f(z, ¥) is periodic in both z and y with period L
(assumed to be large). In order to make f(z, ¥) real we impose the condition
(2.2) P(—m, —n) = P*(m, n)

where the asterisk denotes the conjugate complex quantity.

INCIDENT € Foa .
VERTICAL POLARIZATION

MAIN REFLECTED RAY
e-lp (oax + X2)
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/z:f(x,r)

Y At -

INCIDENT RAY —_
e-lp (xx-¥2)

|~
VY

o/ o X

Fi6. 1. Diagram showing the coordinate system and the incident E vector for vertical
polarization. For horizontal polarization the incident E vector is parallel to the y axis.

The random character of rovghness is introduced by taking the coefficients

P(m, n) to be independent random variables, subject only to (2.2). For the
sake of being definite, we assume P(0, 0) and the real and imaginary parts of
P(Ov 1), P(ly 0), P(2: 0): P(ly 1), P(O; 2): P(1, —-1), e.t.EJQ.Jle_indﬁnendﬁnt
random variables distribute a We assume further that, for
assigned values of m and n, the four independent random variables formed by
the real and imaginary parts of P(m, n) and P(m, —n) sll have the same vari-
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ance, i.e., the same mean square value. When we use angular brackets to denote
average values, our assumptions tell us that

(P(m,n)) =0
(P(m, n)P(u, v)) = 0,
(P(m, n)P*(m, n)) = (P(m, n)P(—m, —n)) = «'W(p, ¢)/L’

W, g =W(pl,lab

(u, v) (—m, —n)
(2.3)

p = am = 2xm/L, g = an = 2mn/L

Here { ) denotes that m and n are to be held fixed and the :wersge take.n
over the universes of the real and imaginary parts of the P(m, n)’s. W(p, q} is
the roughness spectrum mentioned in the introduction, and p and g are radian
wave numbers. Note that (P?(m, n)) is zero, except Yvhen m=n= _0' by
virtue of the real and imaginary parts of P(m, n) having f:he same variance.
Incidentally, the statistical properties of P(m, n) were obtained by expressing
the typical Fourier series term

(@mn CO8 amz + ba, 8iD amz) cos any
a9 m>0,n>0

as the sum of four exponential terms. This leads to four relations of the form

-+ (cmn co8 amx + d.,sin amz) sin any,

.-ll .Il\_dﬂl
R EY NE ¥

roperties of P(m, n) follow when a,, , +-- , d.. are as.sumed to be

;i;lept:l:dzntp:andom variabl  distributed normall about zero with the same

variance, namely 4x*W(p, ¢) L. The 4" arises from the fact that we have
elected to measure p and ¢ in radians meter instead of cycfles meter.

Equation (2.1) defines a surface for each set of coefficients. As an exf.mple

of the use we shall make of W(p, ¢) we compute the average va.lue of f(z, ¥)
as we go from surface to surface, holding z and y fixed all the while.

(P, 9)) = 2 (P(m, n)P(u, 1)) exp {—iaz(m + w)  day(n + v)}

= 3 (P(m, n)P(—m, —n))

@9 — ": dm j: dan =*'W(p, 9)/1*

- f_:dpf:dq'—v%'—ﬂ= [dpL-dqW(p, ?-
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Here we have used (2.3). In going from the summation to the double in

we have let the period L approach infinity. It is seen that W(p, ) dp da/4
represents the contribution to (f*(z, y)) of those components in (2.1) hays
between p and p + dp radians/meter in the z direction and between g ang
q - dg radians/meter in the y direction.

3. Incident Wave Horizontally Polarized

We assume the components of the total electric intensity for z > f(z, )
to be

E.= 3 An.E(m,n,z2)

(3.1) E, = 2isin vz exp {—iamz} + Y, B..E(m, n,2)

E.= Y C..E(m,n,z)
where the summations extend from — o to + = for m and n and
(3.2) E(m, n, 2) = exp | —ia(mz + ny) — ib(m ROTIR

The time factor exp {iw!] is understood. b(m, n) is either a positive real or a
negative imaginry number:

8 — a'm® — a:"n’]ln, m? +n? < 52/02
(3.3) b(m, n) =

_ilaﬂma + a’-’nﬂ — ﬁzllll’ m'-' + n? > ﬂl/aﬂ

where 8 = 2x/A, X being the wavelength of the incident wave. Auny Bun , Cas
are constants which we shall determine approximately on the assumption that
Bf and the partial derivatives f, and f, are small there and in what follows we
shall often denote f(z, y) by f) compared to unity.

The field obtained from (3.1) when the summations are omitted is the one
which would occur if the perfectly conducting surface were flat (f 0). In
(3.1) we take » to be an integer so that the field is periodic in z and y of period
L by virtue of a = 2r/L. It follows that the angle 8 between the incoming
ray and the z-axis is restricted to certain discrete values given by

av = 2mv/L = fsin 8§ = Ba av 8
(3.4)
a == sin §, v = cos @ 0 <+~.
Since L becomes very large we can pick an integer » which will correspond
approximately to any angle of incidence. The leading term in E, may be
written as

exp {—i8{az — v2)} ~exp {—ifaz + v2)}
where the first term represents the incoming wave and the second term the
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muain part of the reflected wave. It is seen that the direction cosines of the
incident and reflected rays are (e, 0, —v) and (a, 0, v), respectively. From
the definition of B(m, n) it follows that

(3.5) b(», 0) = (8° — a™)'* = By.

The exponential form (3.2) of E(m, n, 2) ensures that all three components
of the electric intensity (3.1) satisfy the wave equation. The coefficients are

determined by the relution div E = 0,_which gives.
(3.6) amd.,.. + anB,.. + b(m, n)C,, = 0,

together with the condition that the tangential com onent of £ must vanish
at the perfectly conducting surface z = f. If N denotes the unit vector normal
to the surface, N(E-N) is the component of the electric intensity normal to the
surface. The remaining portion of E, the tangential component, is E — N(E-N),
all three components of which must vanish. Equating the z and y components
to zero gives

E: - Ar,(E,.N’, + Eul\ry + ElArx) =0
3.7)
E, - NEN,. +EN,+EN,)=0

If these two equations are satisfied the z component is also zero (if N, = 0) as
may be seen by multiplying the first by &, , the second by N, , and adding.
The components of N are

38) N.=-fN., N,=—fN.,, N=Q+f+/""

We now assume gf, f. , f, all to be of the same order of smallness which,
for the sake of simplicity, we shall denote by O(f) instead of O(8f). Likewise
instead of O(8°f*) we shall write O(f*), and 50 on. In our work we shall neglect
O(S*) terms and it will not be necessary to go beyond the leading terms in

B9 Ne=—+0/F), N —£+0¢), N 1+0)

Near the surface z = f, i.e. near z 0, the leading term in E, as given by
(3.1) is O(f), and we assume for the moment that E, and E, ate also of this
order. Then, neglecting O(f°) terms in (3.7), we obtain the two boundary
conditions

E NE =0
(3.10)
E, NE =0

which must hold at z  f. Thus, if E, is O(/), then both E, and E, must be
O(j*) at the surface. Of course this holds only for horizontal polarization.
For vertical polarization it turns out that E, is O 1) and both E, and E, are O(f).

The problem now is to choose the coefficients in (3.1) so that the divergence
relation (3.6) and the boundary conditions (3.10) are satisfied to within O(/®).
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Writing
sin Byf = Byf + O
(3'11) E(m’ n, f) = {1 - ib(m, wyf - ]E(m; n, 0)

Apn = A 4+ A2 4 ...

where A%} is O(f), A% is O(f%), etc., and expressing B, , C,. in a similay way
enables us to write the boundary conditions (3.10) as

2 A+ A+ L0 — ib(m, ) fJE(m, n, 0) =g

-

(3.12) 2 exp [—iavz}-Byf
+ 2 BU 4 BY + LCUIN — ib(m, n) fIE(m, n, 0) = 0
where we have neglected O(f°) terms. In this work we shall overlook questions
of convergence although they may perhaps be treated by placing suitable re-
strictions on the components P(m, n) of the surface f.
Equating the first order terms in (3.12) to zero gives
22 ARE(m, n, 0) = 0
(3.13)
2i exp {—iavz}Byf 4 32 BYWE(m, n, 0) = 0.

Likewise, the second order terms yield

2 (A% + £.0% — ib(m, n) fADIE(m, n,0) =0
3.19)

2 BG4+ 1,09 = ib(m, ) fBR)E(m, , 0) = 0.
As (3.2) shows, E(m, n, 0) is the exponential function of z and y which occurs
in a double Fourier series. Hence the first of equations (3.13) requires 4%} = 0

ms T

In order to interpret the remaining equations we need the following results.
Writing , v for m, n in (2.1) and using the definition of E(m, », 2) leads to

5 1
=X

(3.15) ~tau |P(u, t)E(u, v, 0)

Se —1iay
whence, upon setting m = u »n =y,

exp {—iavz}f = 3 P(u, 0)E(u + v, v, 0
(3.16)
= > P(m — v, m)E(m, n, 0).

A somewhat similar argument may be used to establish
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f
Z f: JnnE(m’ n! O)
5

3.17)
1

= Y| —ia(m — k) [JuP(m — k,n — D)E(m, n, 0)

—ialn — )
i g i from — o to @ and
where the summation for m, n, k, 1 on the right extent.ls . L
J mn represents an arbitrary f;m::tion of mandn. (3.17) is obtam‘ed by feplacmg
Yy, n by k, I on the left and then introducing (3.15). The t_'.wo E fu?ctlons may
be combined by the multiplication law for the exponential function and the
right- side of (3.17) obtained upon setting m = u« + I.c, n=v41L ]
Equating the coefficient of E(m, n, 0) to zero in the second of equations
(3.13) after using (3.16) gives
(3.18) BQ) = —2i8yP(m — v, n).
The second order terms A2, B%) may be obtained by setting the values of
A B%)in (3.14) and using (3.17):
A® = Y da(m — HCPm — kyn — 1)
ki
3.19
G190 BG = 2 lialn — DCLY + 28vb(k, DP(k ~ v, DIP(m — k, n — ).
ki

Once the A’s and B’s are known the C’s may be obtained from the divergence
relation (3.6). For example
(3.20) C0) = —anB}/b(m, n) = 2iByanP(m — v, n)/b(m, n).
When the appropriate expressions for the coefficients are set in (3.1) we get
E, = —28y Z: E(m, n, 2) ‘:; a’(m — kK)IQ(m, n, k, 1)

E,

2i exp { —iBaz} sin fyz — 28v ; E(m, n, 2)[iP(m — v, n)
3.21) + 20 {a'n = DI — bk, H1Q(m, n, k, D]
E, = 28y Z [E(m, n, 2}/b(m, n)][ianP(m — », n)

+ Z {asl(m: + n' — mk — ”I) - anb’(k: l)lQ(mr n, k, l)]
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where E(m, n, z) is the exponential function defined by (3.2), (a, 0, —7) arg
direction cosines of the incident ray, @ = 2x/L where L is the period of the
surface, v is an integer given by av = e, 8 = 27/ and

(3.22) Q(m,n, k, 1) = Pk — », DP(m — k, n — )/b(k, 1)

The summations for m, n, &, [ extend from — © to 4 .

The terms entering the summations in (3.21) may be divided into two
classes. A term is in the first class if the corresponding values of m and n satisfy
a'm’ + a’n® < B° and in the second if the opposite inequality is satisfied. For
a term in the first class b(m, n) is positive real and E(m, n, ) represents a wave
traveling in the direction specified by the direction cosines am/g, an/B, b(m, n) B.
The corresponding electric intensity is perpendiculur Lo the direction of propaga-
tion, as is shown by (3.6). In terms of the wavelength A of the incident wave
and the period L of the surface these direction cosines are Am/L,\n/L, b(m, n) B.
For a term in the second class b(m, n) is negative imaginary and E(mn, n, 2)
corresponds to a surface wave traveling in the direction determined by m nand
exponentially attenuated in the z direction.

An examination of the series for E, shows that the terms become large for
n near ==8/a = =L/ and for m near zero if the coefficients around P(—», 8/a)
are appreciably different from zero, for then b(m, n) in the denominator is small.
This indicates that for some surfaces there will be an appreciable sidewise
(i.e., in the y direction) scattering of the wave. It will be seen later that if the
finite conductivity of the reflecting surface is taken into account the large
terms remain finite even if b(m, n) = 0.

That E, sometimes tends to be large may be seen from the following physical
considerations. Take the case of normal incidence so that » = 0 and take the
surface to be z = 2P cos 8y. The incident E, produces a surface current in
the y direction and each upward (and downward) slope of the surface may be
regarded as & surface current element (infinitely long in the z direction) which
radiates a field. Since the period of the surface is equal to one w avelength at
the incident radiation, the E, components of the fields of various current ele-
ments are in phase at z = 0 and hence the resultant E, tends to be large.

As the roughness increases, the additional energy in the scattered radiation
is obtained at the expense of the energy in the main component of the reflected
wave. This is closely connected with the relation

(3.23)  RealPartof 28vB,o = X, [ A%, |+ B% + C. Jbmn

which is an extension of a result due to Rayleigh [4]. Here the summation
extends over all values of the integers m and n such that m* + 2* < g* a? (i.e.,
over the values for which b(m, n) is real). Equation (3.23) is an exact relation
and does not depend on z = f(z, ) being only slightly rough. It may be es-
tablished by equating to zero the average power flow through a square of side L
lying on a plane z = constant parallel to the z,y-plane and at a grea height
above it. B,, is the change in the main reflected wave produced by the rough-
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ness. Although (3.23) was derived by integrating Poynting’s vE:ctor over
square, it is interesting to note that the m,n-th term on the right is proporti
to the intensity of the m,n-th component of the field times the cosine, b{(m, n
of the angle between its direction of propagation and the z-nxis. That (3
and 3.21 are in accord may be seen from the fact that (since {P(r — », (
imaginary) the real part of B, is, from (3.21) and (3.1),

(321 28v 2 [@F + b kDI Pk —» D * bk, D + 0

where the summation extend over values of k and I such that &* 4 I’ < £
(because b k, 1 is real for only these values). Furthermore,

oY, B.. * |26vP(mn  v,n) |° 4 O(S)

| Con |* = | 28yanP m

da FF

v,n b(m,n) * + O(f)

and when these are put in the right hand side of (3.23) we get a result w
agrees with (3.24). )

Up to this point the results of this section hold for any assigned val}u
the P(m, n)’s except that they are usually required to be small. No statis
considerations enter into equations (3.1) to (3.21). However, from here to
end of this section we shall make use of the statistical properties of the P(m.,
described in Section 2, to obtain various average values from the approxir
expressions (3.21) for the field. From (2.3) and (3.22) follows

0, (m, n) = (¥, 0)

m=v,n=20

3.25 m by D) =
(3.25 Q(m, n ) {rznr(ak - av, al) L'b(k, D),

When the averages of E. , E, and E, as given by (3.21) are taken only the t(
for which m  », n = O remain. Furthermore, since the first power of I
factor of the terms remaining in E. and E, and since W and b(k, I) are «
functions of I, it may be shown that the average values of E; and E, va
This is to be expected on physical grounds.

The average value of E, is

(B,)) = 2¢ exp {—ifazx} sin Bvz
nln 2 .
+ 28vE(, 0, 2) ; [;%»——5 + bk, 1)] %— W(ak — av, I)
(3.26)

— exp {—iBlax — v2)}

L) @ 2 W( "‘.6
— exp {—iﬁ(az-l—-yz)]{l "2BL_er=d3 ’I%-I-yb]—rz—-e

where we have used av = Ba and have set
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r ak 27h/L, s=al

(3.27) ) { B r S >
i +8 g1, B <+

.In g(')ing. from t{le summation to the integration we have assumed L to approach
infinity just asin (2.5). By setting

p=r Ba q==s
(3.28) . { (8 @ Ba) — ¢
illp + fa)* + ¢ — £

the last term in (3 26) may be written as
“ ¥ W(p,
2 [Lip [ a2 4] M0,

The coeﬁicienii of exp (.—iﬁ ar + v2)} in (3.20) represents the average
value ?f the reﬂ?ctlon coefficient and hence (3.29) represents the change in the
reflection coefficient produced by the roughness.

The anding‘ term in the mean square value of the fluctuation of E, about
the value it has in the absence of roughness is

(E, 2iexp{ tfaz)sinfy: )

(3.29)

48 +° § E*(m, n, 2)E k, 1, (P*(m — v, n)P(k — v, D)

(3.30) 48% g exp | zo(k, D)= W(ak @, al) L?
— 48%° f a‘rf dse™"*W(r — Ba, 5)/4
= 48%"° f_, dpf dge™* "1 (p, q)/4
where
= Imaginary part of —2b(k, 1
(3.31) b

F4+TF<pgad

2[(12]\:2 + azlz — 5211/2’ k! + l'.' > B.e a
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and ¢ = O when 7* + 8 < B2 or (p + Ba)’ + ¢° < £ and
(3.32) =2+ & — £ =2+ o)’ + ¢" — FI”

when the inequalities are reversed. It is interesting to note that the average
value of

E, — 2i exp { —iBaz] sin fyz

is O(8*f%) (this is indicated by (3.26) and (3.29) since the double integral of
W(p, q) gives (f*(z, y))) while the rms value of its modulus, as obtained by
the square root of (3.30), is O(8/).

When the procedure used to derive (3.30) is applied to the O(f) terms in
the expressions for E, and E, in (3.21) we obtain

8.1y 4 [ ap [ ag %2

(3.33) 41vl
(E. =0

where, from (3.28),

(3.34) 10 = |8 — (p+Ba) — ¢ |-

Here we encounter trouble because the denominator may become zero. If
W(p, q) is continuous and not zero on the circle | b|* = 0 in the p, g plane, the
double integral in (3.33) diverges logarithmically. This difficulty may be over-
come in several ways. If the reflecting surface is not perfectly conducting a
convergent double integral analogous to (3.33) may be obtained from the ex-
pression for C'.\ given by (7.21). When the conductivity g of the reflecting
surface is large, but not infinite, equation (7.26) shows that the b occurring in
the | b |* of the denominator of (3.33) should be replaced by b + i’ r where =
is the intrinsic propagation constant of the reflecting material: 7 = (iwpg)' %, it
being assumed that the permeability x (¢ = 4w X 1077 henries/meter for free
space) is the same for the reflecting material as for the region z > f(z, ). Since
b is purely real or imaginary, it is seen that the new denominator never vanishes.
Another method of meeting the difficulty is to assume f(z, y) = 0 outside a
square of side L instead of taking it to be a periodic function. The integral will
converge as long as L remains finite.

Equations (3.30) and (3.33) show that the first approximation to the scat-
tered field vanishes as z approaches infinity if W(p, ¢) is zero for the region
inside the circle (p + Ba)® -+ ¢° = ° where ¢ is zero, i.e., if the average distance
between the hills is rather small compared to a wavelength. This means that
the reflection in this case is perfect {the modulus of the average reflection co-
efficient being unity).

Incidentally, as Rayleigh has pointed out, the reflection from a simple
sine wave surface will be perfect if the period of the sine wave is small enough.
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In order to see this from our analysis suppose the equation of the surface to be
z = 2P cos (m,az + n,ay) so that all of the P(m, n)’s are zero except

P(m, , ny) = P(—my, =n)) = P = real.

The only non-vanishing O(f) terms in (3.21) are the two given bym =+ m, ,
n = =tn, (e.g., the upper signs go together), and the only non-vanishing 0(j?)
terms are the three givenbym = v 2= 2m, , n = £2n, and m = yvwn=0 It
follows that if m, and n, are such that

(3.35) (¥l =1mD* + =} > g'/d’

the only term which can possibly correspond to a scattered wave is the one
given by m = », n = 0 (remember that | v | < B/a) because all of the others
correspond to surface waves which carry no energy away from the surface.
Since the m = », n = 0 term corresponds to a wave traveling in the same direc-
tion as the main reflected wave it cannot be regarded as scattering. All it can
do is change the phase of the reflection coefficient. Our work doesn’t go beyond
O(f?) terms but it doesn’t seem likely that the higher order approximations will
bring in any terms which can be interpreted as scattering.

However, the situation is quite different if the surface consists of the sum
of two (or more) rapidly varying sine waves whose “interference pattern’” has
a period long enough to produce scattering. For example, let the surface be

(3.36)

where m, , n, satisfy (3.35) and m, , n, satisfy a similar inequality. An examina-
tion of (3.21) and the definition of Q(m, n, k, I) shows that the O(f*) terms
which might produce scattering are the two for which m = » & (my — m,),
n = ==(n, — n,). At least one of these is certain to produce scattering if

(3.37) (vl =1m = m )+ (n, ~ n)* < gY/a.

because it would correspond to a wave for which b( m, n) is real and hence would
carry energy away from the surface in a direction different from that of the
main reflected wave. Even if (3.37) were not satisfied there is a possibility of
higher order terms corresponding to scattering.

If we now consider the case of the rough surface with the above examples
in mind we see that although the reflection may sometimes be perfect to a first
approximation, the O(f*) terms in (3.21) give rise to a scattered field (somewhat
similar to the Rayleigh scattering produced by small particles) which does not
vanish as z becomes large. In order to study mean square values involving the
O(f?) terms it is necessary to deal with averages of expressions containing the
product of four P(m, n)’s. Since the results appear to be rather complicated, we
shall not go farther than to state the following result which may be applied to our
problem when P, is replaced by P(m, n) and the summation taken with respect
to m, n instead of n, and likewise for k, ', k.

Let P, be real. Let P, and the real and imaginary parts of P, , P, , ---

z = 2P, cos (myaz + n,ay) + 2P, cos (myaz + n,ay)
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be independent random variables with average value zero. Let the rez:l and
imaginary parts of P, , n > 0, have the same mean square value so that (P =0
unless n = 0, and define P , as the conjugate complex of P, so that

PPy P (P,

PPy 0O if ms-n.

If F(n, k, n', k') denotes an arbitrary function of n, %, n’, X’ it can be shown
that, if the summastions run from ® to 4 o,

> Fn, k, n', K')PPLPyPy

nkn'k’

= Z (F(n, —n, k, =) + F(n, k, n, —k) + F(n, k, —F, ~n)]
nk

(I PZX P

+ X [Fn, ~n,n, n)+ Fn,n, —n, —n) + F(n, —n, —n, n)]

(3.38)

Kl P2y = 2¢| P2 )M

+ F(0, 0, 0, 0)[3((Ps )* — 2(P3)].

One method of establishing this result is to break the four-fold summation
into the subgroups for which () k =% n, bk = —n, (D k=n,n50,3) k = —n,
n#0, (4 k=0,n=0 The terms which have averages different from zero

in subgroup (1) are those for which (la) n' = —n, ¥ = —Fk, (1b) ' = —k,
¥ = —n. Likewise for the other groups we have (2a) n’ = ¥ = —n, (8a)
n' = —nk =mn @b)n' =na,k = —n, (3¢) ' = —k' but 2’ = =n, (4a)
=k =0 db)n’ = =k, n 0.

When, as in the case of the rough surface, the surface z = f(z, ) has many
Fourier components of the same order of magnitude, the only term of importance
on the right hand side of (3.38) is the double summation over n and %. This
term goes into a fourfold integral involving the product of two W (p, g) functions.

4. Incident Wave Vertically Polarized

In this section we assume the electric intensity of the field to be, in the
absence of roughness,

E; = 2iy exp {—ifax} 5in By2, E; =0
(4.1)

E; = 2c exp {—1Baz} cos Byz
where the symbols have the same meaning as in Section 3. In particular,
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8 = 2x/\, and (a, 0, —v), (a, 0, ) are the direction cosines of the incident d
reflected rays, respectively. A procedure similar to that used to obtain (32)
leads to the following expressions, accurate to O(f*) terms, for the e ctric. i

tensity in the presence of the slightly rough surface. "

E.=E+2 -E E(m, n, 2)[ilaam BP(m » n)
+ ; @ (m =B kB+ (B ocam bk, 1)Q(m,n, k, D]
E, = 2a 3, E(m, n, 2)[ianP(m — v, n

—+ ; [a(n - i)(l’ - k)ﬁ - “"ba(k: l)}Q(mr n, kr l)]

@D B —Bt2 X ) bom, )]

. [1’ {a(m = »)B + ab’(m, n)}P(m — v, )

+ ; [@k = )(m® +n*  mk —n)p

+ a'[a‘-l("l:ll + nc) - mﬁ]b:(kr D]Q(mr n, kx l)]'

In these equations E(m, n, z) is the exponential function of z, y, z defined
by (3.2) and Q(m, n, k, 1) is the function (3.22) containing the product of two P’s.
The average electric intensity of the reflected wave is in the direction

specified by the direction cosines (=7, 0, @). The corresponding wave function
approaches, s L —w, E(», 0, z) multiplied by

1—2Bf_drf ds[gr;,rfgl-!“yb]ﬁ'(r—ﬂa,s) 4

=1-2[ af dq[%+‘rb]W(p,q 4

where b is defined as a function of r, s and P, g by equations (3.27) and (3.28).
The derivation of (4.3) is similar to that of its analogue in (3.26): the expressions
(4.2) are averaged, the reflected wave picked out, and the square root of the
sum of the squares of its z, y, z components taken (the average y component
turns out to be zero).

An idea of how the field components vary about their values in the absence
of roughness may be obtained from the following analogues of (3.30) and (3.33).

(4.3
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(B —EP =4[ dp [ dacp — BrV W0, 0/t
(4.4 By =4 [ dp [ dgeraa W, /4

(E, —E: [ =4 f_: dp f_i dge " (pB + b)Y’ W(p, 9)/4 | b

Here, as in (3.33), the last integral may not converge on the circle b = 0. It
was pointed out that this difficulty can be overcome in the case of horizontal
polarization by considering the clectrical properties of the reflecting surface,
and the same is probably also true for the case of vertical polarization.

The analogue of (3.23) is

(4.5)  Real Part of 284, = X, [| A% | + [ B2 | + | C2. |ib(m, n)

where the summation extends only over those values of m and n for which
b(m, n) is real (m® + n* < °/a°) and A, etc. are defined by

E.=E+ 3 A.E(m,n,?2)
Ey = Z anE(m, n} Z)

E, = E: 4 D Co.E(m,n,2).

Equation (4.5) and C,, = —aA,q/v, which follows from the divergence relation
(3.6), give a partial check on equations (4.2).

5. Special Cases

Suppose that the roughness spectrum, W(p, ¢q) is zero except for a small
region around p = 0, ¢ = 0. In this case the average distance between the hills
of the surface is large compared to the wavelength of the incident radiation.
The function b defined by (3.28) differs but little from its value at p = q = 0,
namely g8y, and (3.29) becomes

65.1) 2 [ dp [ dgvmyWp, o) 4 = 285 a, ).

Here we have used expression (2.5) for the mean square value of f(z, 3) and

have assumed vg*/b in (3.29) to be negligibly small in the region where W (p, @)

is different from zero. The average value of the reflection coefficient for hori-
. . —_— e ——

zontal polarization now becomes

(5.2) 1 — 28°* {(f*(z, ¥))-

A similar treatment of (4.3) which involves the neglect of p°/vb shows
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M 5.2) also holds for the case of vertical polarization. It is interesting to
note that (5.2) agrees with tlie first two terms in the expansion of a result ob-
tain  y-W. S. Ament_n which B/ is not required to be small namely, that
the roughness reduces the amplitude of the average reflected waves by the fa tor
exp [—=28*(f*(z, y))}. As pointed out in the introduction, this agrecment is
all that the approximate nature of our results will allow.

When W(p, q) differs from zero only in the region around p 0, ¢ = 0
equations (3.30) and (3.33) show that for horizontal polarization ,

(| E, ~ 2i exp [—iBaz) sin Byz )  46%F f(z, 4)),

(6.3)
(B ) =4 fiz,y)
where f,(z, y) = 8f(x, y)/dy; equations (4.4) show that for vertical polarization
(B: = B2 ) = 48%" (=, v)
(5.4) (| E, 1) = 4a™(fla, y)
(VB - E7| = 468% (S, y)).

. Suppose now that 1§’(p, g) is such as to make the terms v¢'/b and p* b,
which were neglected above, the dominant terms in the integrands of (3.29)
and (4.3). The average distance between hills of the corresponding surface will

n v he.small compared to a wavelength. The magnitudes of tThe average re-

flection coefficients are then approximately

1=2 [ dp [ dyveWoo, b 1 s,
(5.9

l—zﬂf l’lp[ dep W(p, q 4vb l—i"

for horizontal and vertieal polarizations, respectively. Here s, and s, stand for
small quantities, and v is the cosine of the angle between the z-axis and the
reflected ray. The remarkable thing about the reflection coefficients- (5.5) is
that they depend on v in the same way as do the corresponding reflection co-
efficients, computed from I'resnel’s formulas, for a good, but not perfect, plane
conductor,

For vertical incidencey = 1, « 0 and the two expressions given by (5.5)
reduce to essentially the same thing, the ¢* in the first expression (where the
incident Z is parallel to the y-axis) goes over to the p” in the second expression
(where the incident E is parallel to the z-axis) because of the difference in the
assumed incident waves,
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6. Propagation along Surface

As the condition of-grazing incidence is approached v appr aches zero, and
expression (4.3) giving the average reflection coefficient for vertical po rization
breaksdown., n his case & modification of th method used to study reflection
may be used to obtain a solution corresponding to a wave guided by the surface.
A solution of this sort is to be expected since it has been known for some time
that a corrugated or slotted surfa e will support a typical “surface wave” in
which the field decresses exponentially with distance from the surface.

To start with, we take the perfectly conducting surface to be

(6.1) z 2Pcossz=f

which shows that f is now merely a function of z. Guided by the hnown prop-
erties of surface waves, we assume that there exists a wave in which the electric
intensity is predominantly in the z direction (approximately normal to the
surface) and that there is also 2 small component of E in the z direction (in the
direction of propagation). We also tacitly assume that the velocity of propaga-
tion of the wave does not differ much from that of a wave traveling freely in
the medium above the surface; ie., if the propagation of the principal part of
the wave is described by exp {iwt — ihsx} then hs approaches 8 = 2% A as the
amplitude P of the corrugations approaches zero.

When we attempt to express our assumptions as equations some experi-
mentation suggests the forms

E.= 2 AE(h + m,2), E, =0

(6.2)
E,=EMh,2) 4+ 2 C.Eh + m, 2)

where the summations with respect to m extend over all integers from — = to
@ and A, , C, are small quantities which approach zero with P. In order to
fix the amplitud of e various components C, is taken to be zero so that
t ere 18 no term correspondin to E(, 2) n summation rt fE,. Here

Eth + m, 2) = exp {—i(h + m)sz — ib(h 4 m)z)

(6.3) { 8 — (h + m)’s*]'?, 8 > (h + m)%"
bk + m) =

—if(h + m)s* - £1'?, B < (h + m)%

so that the components (6.2) satisfy the wave equation. Since the difference
between 8 and hs is assumed to be small it follows that b(k) is to be regarded
as small.

Since we do not intend to carry our approximations beyond O(8’f*) we
may use the first of the boundary conditions (3.10) which, for our surface (6.1),
becomes
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E. = N.E, = — f.E, = 2Pssin szE,
6.4)
= Ps(—ic'"* + ie""*9)E, .
g?lli )felatlon must be satisfied at z = 2P cos sz = f to within an accuracy of
Upen substituting the assumed expressions (6.2) for E, and E, in the
boundary condition (6.4), using relations of the form

A=A,‘,,”+A.(,?)+ e
Eth + m, 7) = E(h + m, Q1 — ib(h + m)f + --}

E(h+m,0)f=PE(h+m—1,0)+PE(h+m+1,0)

in the same manner as in the reflection problem, and equating first order terms
we see that

AV = Psi, AY = ~Psi
(6.5)

AP =0 i mz=1lor-1.
The divergence relation div E = 0 gives

(h + m)sd. + bh + m)C, = 0, m#= 0
(6.6)

hsds + b(h) = 0, m = 0.

Since A" is zero, b(k) is smaller than a first order term (it will be shown later
to be O(P?)). From the first of equations (6.6) it follows that

6 Ci" = —=(h + DsA/bh + 1), €% = —(h — )4 b(h — 1)
6.7

cP =0 if m=1,00r—1.

Equating the second order terms in (6.4), and using (6.5) and (6.7) gives

40" = PR + DAM ~ sC + bk — 1A + 50
o py| B =B+ B k48— h’s’]
P"[ e+ D T =)
(6.8) A" = Pk + 1AM + 0]
A = iP[b(h — 1)A") — sCY)]
AP =0 if m==0,2o0r -2,

The expression for 45 is of particular importance because when it is combined
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with the second of equations (6.6), which we write as 4s¥ = —b(h) ks, we
obtain an equation which may be solved for the propagation constant hs in the
z direction:

hs® — B8 + B
b(h 4+ 1)
This expression shows that b(h) is O(P") and therefore, when P is small in

accordance with our assumptions, ks is nearly equal to 8. Replacing hs by 8

in (6.9) gives

(6.10) b(h) = —iP'gs[(1 + 28/8)"" + (1 — 28/9)™"%)

which shows that if s > 28, b(h) is negative imaginary and E(h, 2} decreases
exponentially with increasing z. Thus in this case we have a true surface wave.

When g is much greater than 8 so that the surface ha corrugations
in one wavelength of the electromagnetic wave, we get from (6.10)

b(h) = —2iP8%

he* + 8° — h’e’:l

—~bh) = P’hs‘[

hs = g + 2P'g%’
and the principal part of the field is the surface wave

(6.11) , = exp {—iB(1 + 2P'8s")z — 2P%6’sz)

which travels a little more slowly than a free wave.

The same type of analysis may be to_investigate the surface wave _
which is guided by the mor general rough surface_described in Section 2. We
assume

E,= Y AnE(m+ h,n,z2)

(6.12) E, = X B..E(m 4 h,n,2)

E,=Eh0,2) + 2, CoaE(m + h, n, 2)

where the summations extend over all integral values of m and n beiween plus
and minus infinity, Coe = 0, and E(m + h, n, 2) is defined by (3.2) and (3.3)
with m replaced by m + h. The situation is somewhat similar to puttingy = 0,
a = 1 in the vertical polarization case of reflection. The boundary conditions
are

(6.13)
and these, together with the condition div E = 0:

E, = '_fsE- ) Ev = —qul
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a(m 4+ A, + enB,. + bh + m,n C,. = 0, m,n %0

(6.14)

ahAg + bh, 0) 0, m n=20
lead to the expressions

A

tamP(m,n, B\, = ianP m, n)

(6.15)
Chor = —id’[m® + mh + n*)P(m, n /b(h + m, n)

for the O(f) terms in the coefficients. The O(f°) terms in A,,, and B,,, are

AS = Yila m — BCE + blh + k, DASIP(n — &, n — 1))

kl

(6.16)

{2}
Bnn =

2 tlaln — 1 CY + b(h + k, DB 1P(n — &y n ~ 1),

ki

Since Ay is zero, from (6.15), A’ is given by the second of equations
(6.14). Equating this to the value of 457’ given by (6.16) leads to

(6.17) bk, 0) = D a*hk(8* — a®h* — a’hk) Pk, 1) P b + K, D).

ki

As the roughness decreases, b(k, 0) approaches zero and ha approaches g
and we have

b(h, 0) = — Z;: AR Pk, D *bk+8al).

When this is averaged over the universe of rough surfaces mentioned in Section 2
and when (2.3) is used we obtain, upon letting L approach infinity,

6.18) o, 0) = ~ [ dp [ dg £, /a0,

where b, is the function of p and q obtained by setting « = 1 in expression (3.28)
for b:

[8° = (» + B)° — ¢'I'*
(6.19) b =
~illp + 8" + ¢* — £
The principal part of the surface wave is
E, = exp {—dtahz — ib(h, 0)z}
which leads us to introduce B = {b(h, 0) so that
B* = =8 4 a’h* = (ah — B)28

ah = g + B*/283.
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We may therefore summarize our result by saying that the prineipal part of the
surface wave corresponding to the general (slightly rough) surface of Section 2 is

E, = exp {—i8(1 + B*/28%)z — Bz]

where
B=B.+iBi=—if [ dp [ dqr'Wp, o) b,

and the attenuation in the x direction is —B,B; 8 (nepers meter). The defini-
tion (6.19) of b, shows that B, is never positive. It also shows that if W(p, ¢)
is zero where b, is real, namely inside the circle of radius 8 centered at p = —3,
g = 0, B, is zero and there is no attenuation. This corresponds to the case
where the hills of the surface are close together and is 1n agreemen wit t e
view that the guiding action of the-surface is due to rapt y undulating com-
ponents ¢ z = f(z, ) while the attenuation 15 ue e scattering produced
b the more slowly varying components. It should e remembered that (6.18)
is on y an approximate expression for b(h, 0). It seems probable that more
accurate expressions would show an attenuation even if W(p, ¢) were zero in
the circle mentioned above because this is no guarantee that A%, and B, given
by (6.16) will vanish for values of m and n which correspond to waves carrying
energy away from the surface. Thus it appears that even though the surfaces
z = P cos sz and z = Q cos iz can carry surface waves without attentuation
when s > 28 and ¢ > 28, the same is not true of the surface z = P cos sz 4
Q cos tz if, for example, 8 — ¢ were almost equal to 8. The situation is somewhat
similar to the one encountered in the discussion of reflection from the surface
(3.36).

7. Reflection from Wavy Interface between Two
Media—Horizontal Polarization

Let the interface coincide approximately with the plane z = 0 and let the

propagation constants o and 7 of the upper (z > 0 and lower media, respectively,
be given by
(7.1) o = fw(pe)' * = 18, 7 = ole, + g/iwe)'”.
Here we ed-tha beth-m ° have the same ermea '~ that
the ratio of their dielectric constants is ¢, . g 18 e conductivity of the lower
medium and ¢, the dielectric constant of the upper medium. The upper medium
is non-conducting. For free space p = 1.257 X 10 °® henry meter and ¢ =
8.854 x 107" farad meter.

If the interface coincided exactly with the plane z = 0 the electric intensity
for horizontal polarization would be
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E, = E* = exp {—oaz)(exp {ovz]) + R exp {—avz}), z2>0
E,=FE =Texp|{—ocaz + ~'z), 2<0
(7.2)
a’ = oa = iav, v =0 -a%"
_
R = :yy/ T= 2 T
14 v
+5 I+5

As before, & = sin 8 and ¥y = cos 8 where ¢ is the angle between the z-axis and
the reflected ray.

When the equation of the separating surface is z = f(z, ¥) = f we assume
the electric intensity to be

{Z AuE(m,n,2) for z>f

> G..F(m,n,z2) for z2<f

{E" + 2 B,.E(m, n,z) for z>7f
(7.3) E, =

E 4+ 3 H,.F(m, n, z) for z<f
{ 2 CuE(mmn,2 for 2>
E, =

> I1..F(m,n, 2) for 2L f

where E*, E™ are given by (7.2) (with the dividing surface z = 0 replaced by
z = f(z, y)) and

E(m, n, 2) = exp {—ia(mz + ny) — tb(m, n)z}

- F(m, n,2) = exp {—ia(mz + ny) + ic(m, n)z)
ib(m, n) = [¢" + a’(m® + n?)]"* a = 2¢/L

ie(m, n) = {7 + a¥(m® + n®)]",

Here b(m_, n) .is th?, same as the b(m, n) defined by (3.3) and is either positive
real or negative imaginary. The same would be true of c(m, n) if the lower
medium were non-conducting.

At z = f we require the continuity of

Ez - Nz(NxEt + NuEy + NtEr)
(7.5)
Eu - NU(N:Es + N,E, + N:Ea)
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and two other expressions obtained by substituting I/ (the magnetic intensity)
for E. When we assume the components N, , N, of the normal to be small (g0
that N, = 1), and also assume E, and E, to be small, (7.5) becomes

E. - N,N\E, — N.E,
(7.6)
(1 - N:)El - NrEn .

The H conditions corresponding to (7.5) and the assumptions that N, ,
N,, E., I, and their derivatives must be small tell us that the two expressions

OB, _ o _ OBy _ N 9E, ok,
ay (=N dz N. ax + N dy
(7.7
dE, OE, OB, .. 9E, oF,
oz T ap TN N, 6.1:+N"ay

must be continuous ot z = f, Here we have made use of the assumption that
the two media have the same permeability, and have neglected O(f°) terms.
The terms N: 9E,/3z and N, N, 8E,/dz may be omitted from (7.7) since the
first of the two Telations
oyl —R) =T+
(7.8)
1+R=T

ensures the continuity (out to O(f*)) of the terms in question. In the same
way, the second of relations (7.8) enables us to omit N.N,E, and N} E, from (7.6).

When the assumed expressions (7.3) for the electric intensity are set in the
boundary conditions (7.6) and (7.7), as just amended, the terms arising from
E* and E~ can be simplified by using (7.8). For example, in the second of
equations (7.6) these terms are

exp | —oazj(exp {ovf} + R exp {—ovf} — T exp {r'f})

(7.9

= exp {—oaz) U + O(f")
where
(7.10) U=T" — 7)/2

After similar reductions are made in (7.7), the four relations arising from (7.6)
and (7.7) may be wriiten as

2 {[Amn + LLE(my 1, ) = (Gun + folnalF(m,m, )} =0
exp {—oaz} U + 2 {[Ban + fiCunlE(m, n, )
= Hw + fuIn)F(m,m, )} =0
(7.1)  —exp {—oazx]U[2f 4+ v'f*] + i X {[~anC., + b(m, n)B,,
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— f.amB, + fa 1.1E n,n, f)

— [~anI, cn,nH, famHf | + f.an@G,, 1F(m, n, fl 0

> {[=b(m,n A, + amC famB, + fand, |Em n f

= lelm, n G,., + amI,,

where O(f*) terms are neglected.

We now assume « is such that oa = fav where » is an integer. In order to
separate the first and second order terms in (7.11) we write the various coeffi-
cients as A% 4 4@ 4 ... »and 50 on and use the approximate expressions

Em,n, f) 1 ibm nfIE m,n, 0

famH,, + fa G, Fman f1 o

(7.12)
Flm,n, ) 1+ i m,n)flE m,n, 0.

By replacing s exp {—iavz} by it Tourier series expansion (3.16) and pro-
ceeding as in Section 3 we find that the first order terms in 7.11) lead to

4. 6% BY=pgw

(7.13) id(m, n)B .}, — dan C !, IV = 2UP(m v, n

—dm,m)A, +amC¥ —~ IY=0
where
(7.14) dm = bm, n) + c(m, n).

The equations arising from the second order terms in the first two of equa-
tions (7.11) may be simplified with the help of equation (3.17), the relations
(7.13) between the first order terms, and the expansion
(7.15)  exp {~iavz)f' = 3" P(k — “wDP(m  kn— DEm, n, 0

where the summation on the right extends over all integral values of m,n, k1

from —o to 4+w. In dealing with the last two equations of 7.11) we need
the additional results

clmyn) = bm,n) o -
(7.16)

b(m, )CO +e(m,n ['
the first of which follows from the definitions of ¢ m,7) and b m, n and the
second from subtraction of the first order terms in th two div £

amA,, + anB,,, + b(m, n C,, 0

0 equation

(7.17)
amGo, + anH,,, — e(m n 1, 0.
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The results of this simplification are given by the equations
AR — G0 = b,
BU —HG =h,

@19 an(©%, = I'2) ~ b(m, B2 — c(m, WHE. = hy

am(CSh — 1) — blm, WAL ~ clm, G2, = h

where, taking the summations over k and I,
hy, = iam 3, (CiY — II)P(m — k,n — )

hy = 2, [UP(k — v, 1) + ian(CiY — LMY P(m — kyn — D)
@19 hy =1 Z ([Ury'P(k — v, D) + (6* — B IP(m — k,n — 1)
hy = i(c* — %) 2 AP(m — k,n — D).

Equations (7.13), (7.17) and (7.18) may now be used to obtain expressions,
valid as far as O(f%), for the coefficients. From (7.16)

b(m, n W _ tl)=——(—L—HmnC‘:’.
(7.20) % = —;%;’,-n% Com O = Lon = )

and these relations enable us to derive the expressions
2Ud*mnP(m — v, )

ay _
A(.lu). = Gum =

d(m, n) D,
2 2
2UP(m — v, n) | g'n’ ]

BY = g = 22U d(';’ n)" 5o -1
(@20 ay _ 2Uan e(m, n)P(m — v, n)

Con = d(m, n)D,,,

o I = i2UanP(m — v, n)

mrn ma D""I
where

(7.22) D,. = a’(mz + 11.:) + b(m, n)e(m, n).

Explicit expressions for the )'s are obtained when (7.21) is put in (7.19).
The second order terms may be obtained from
dDAS = a*mibhy + (D — &*m*)(chy — hy) + a*mn(bk, — chy + ha)

(7.23) dDB'® = a*n*bh, 4 (D — a’n®)ch, — hs) + &*mn(bh, — chy + h)

dDCS = r’a(mh, + nhy) + ca(mhy + nhy)
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by dividing through by dD) (where we have written d, b, ¢, and D for d(m, n)
b(m, n), c.(m, n), and D,,). These expressions are obtained from (7.18) ,ami
(7.17) (written out for the second order terms).

\ The manner in which these expressions approach the earlier expressions for
P e ;?erfect conductor may be examined by letting the conduetivity g approach
infinity. Fro.m.(7.1) “f:ansee that, since ¢ 8, 7 behaves like a large positive
number multiplied by i'*. From equations (7.2, 4, 10, 14, and 22)

14 0( 7

a« = ogafr, &

2 .
T==240(%Y, U —oyr+001)

(7.24) emyn) = —ir+0(r Y, dlmn) —ir + b(m,n) + O(+

Dpu = —irb(m, n) + o’(m* + %) + O(r ')

tU/d(m, n) = oy + 0O(1).

In the case of perfect conductivity studied in Sections 3 and 4, one source of
annoyance was the appearance of b(m, n) as a factor in certain denominators.
Here the corresponding term is —irb(m, n) in D,., . Since b(m, n) may become
small, or even vanish, we have retained the a’(m® + n*) term in D, .

When r becomes large equations (7.21) become

AW = 20va’mnP(m — v, n) 0
" a(m’ 4 ') = irb(m, m)
BY = 26yP(m — », [ o —J
.29 i %) a‘(m* + n°) — irb(m, n) 1
— —20yP(m — », 1)
cm - 2ovanP(m — v, n)

b(m, n) 4 ia’(m* + n*)/+"

When b(m, n) is very small a*(m® 4+ n?) is near| ?
y equal to — d
place the denominator in C%%) by ! e

(7.26)  b(m, n) + ia’(m’* + u%)/r = b(m, n) — ic’/7 = b(m, n) + i8*/r

which never vanishes since b(m, n) is either positive real or negative imaginary.
Thui.a the difficulty encountered in Section 3 (and, presumably, also that in
Section .4) may be overcome by taking the electrical properties of the reflecting
surface into account,

The average value of E, in the upper medium, from which the average
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value of the reflection coeflicient may be obtained turns out to be the average
value of

E*+ B, Ev,0,z  exp {~oaz}[exp {ovz} + exp {—enz}(R + B.3))}

() _
(7.27) dv, 0 B, e, 0h; — h
t2 20 {(0 | af _ ] , ,} wWr—af s
BLY 4,0 Z\any Lo, 4 r
where we have used the relations
ic v, 0 ', av Pa ocal
r abh 2xk/L, s al

When we let L approach infinity, the double summation may be replaced by a
double integration in the u ual way and we get, after some reduction,

» 2 = @ —
1,277,:- ”1- f_ drf_ ds Wr 456!,8 I:_in,r
G ) g
+ c+ b (r’+82+b6_1):|

where ¢ and b denote functions of r and s defined by
ic (FH+r7+H7

(B,
(7.28)

(7.29)
'ib (62 + 7'2 + s!)l 2 - i(ﬂz — rﬂ — s‘))l 2.

As g approaches infinity (7.28) should approach the value of its counterpart,
given by the double integral in (3.26), which was obtained in Section 3 for re-
flection from a perfectly conducting but slightly rough surface. That this is
the case may be verified with the help of expressions (7.24) which hold for large
values of g.
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